MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com

Nested Gibbs sampling for mixture-of-mixture model and its
application to speaker clustering

Tawara, N.; Ogawa, T.; Watanabe, S.; Kobayashi, T.
TR2016-138  August 2016

Abstract

This paper proposes a novel model estimation method, which uses nested Gibbs sampling to
develop a mixtureof-mixture model to represent the distribution of the models components
with a mixture model. This model is suitable for analyzing multilevel data comprising frame-
wise observations, such as videos and acoustic signals, which are composed of frame-wise
observations. Deterministic procedures, such as the expectation maximization algorithm
have been employed to estimate these kinds of models, but this approach often suffers from
a large bias when the amount of data is limited. To avoid this problem, we introduce a
Markov chain Monte Carlo-based model estimation method. In particular, we aim to identify
a suitable sampling method for the mixture-of-mixture models. Gibbs sampling is a possible
approach, but this can easily lead to the local optimum problem when each component
is represented by a multi-modal distribution. Thus, we propose a novel Gibbs sampling
method, called nested Gibbs sampling, which represents the lower-level (fine) data structure
based on elemental mixture distributions and the higher-level (coarse) data structure based on
mixture of-mixture distributions. We applied this method to a speaker clustering problem and
conducted experiments under various conditions. The results demonstrated that the proposed
method outperformed conventional sampling-based, variational Bayesian, and hierarchical
agglomerative methods.
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Abstract—This paper proposes a novel model estimation
method, which uses nested Gibbs sampling to develop a mixture-
of-mixture model to represent the distribution of the models
components with a mixture model. This model is suitable for an-
alyzing multilevel data comprising frame-wise observations, such
as videos and acoustic signals, which are composed of frame-wise
observations. Deterministic procedures, such as the expectation-
maximization algorithm have been employed to estimate these
kinds of models, but this approach often suffers from a large bias
when the amount of data is limited. To avoid this problem, we
introduce a Markov chain Monte Carlo-based model estimation
method. In particular, we aim to identify a suitable sampling
method for the mixture-of-mixture models. Gibbs sampling is a
possible approach, but this can easily lead to the local optimum
problem when each component is represented by a multi-modal
distribution. Thus, we propose a novel Gibbs sampling method,
called ‘“nested Gibbs sampling,” which represents the lower-level
(fine) data structure based on elemental mixture distributions
and the higher-level (coarse) data structure based on mixture-
of-mixture distributions. We applied this method to a speaker
clustering problem and conducted experiments under various
conditions. The results demonstrated that the proposed method
outperformed conventional sampling-based, variational Bayesian,
and hierarchical agglomerative methods.

I. INTRODUCTION

Real-world data often comprise a set of component features,
such as images made of a set of pixels and speech comprising
a set of frames. These data sets have a hierarchical structure,
as illustrated in Figure 1. We describe data such as images and
speech as higher- and lower-level observations. For example,
in speech data obtained from a multi-party conversation,
higher-level observations correspond to each speaker’s utter-
ances, where their variation is caused by the differences in the
speakers. Lower-level observations correspond to frame-wise
observations comprising each utterance, where their variation
is caused by the differences in the contents of speech. To
cluster utterances by a speaker, we need to derive a suitable
mathematical representation of an utterance for extracting each
speaker’s characteristics independently of the contents of the
their speech [1].

An effective approach for representing higher-level observa-
tions is modeling as stochastic distributions. Thus assume, we
that each higher-level observation follows a unique distribu-
tion, which represents each speaker’s characteristics. Members
of exponential families of distributions are employed widely
to model higher-level observations due to their usefulness and
analytical tractability. However, the underlying assumption of
uni-modality for these distributions, is sometimes too restric-
tive. For example, frame-wise observations, short time fast

Fourier transforms of acoustic signals, and filter responses
in images are known to follow multi-modal distributions,
which cannot be represented by unimodal distributions [2],
[3], [4]. Mixture models are reasonable approximations for
representing these multi-modal distributions [5], [6] and var-
ious distributions have been used as components of mixture
models such as the t-distribution [7] and von Mises-Fisher
distribution [8], [9]. In particular, Gaussian distributions are
used widely as a reasonable approximations for a wide class of
probability distributions [10]. By using a mixture distribution
to represent each cluster, the whole speaker space is modeled
as a mixture of these mixture distributions. We refer to this as a
mixture-of-mixture model. The optimal assignment of higher-
level observations to clusters can be obtained by evaluating
the posterior probability of assigning each observation to each
cluster’s mixture distribution. Thus, the clustering problem is
reduced to the problem of estimating this mixture-of-mixture
model.

The concept of mixture-of-mixture modeling was introduced
to analyze multi-modal data sample observations comprising
both continuous and categorical variables [11], [12] and data
that composed of sets of observations such as data from
students nested within schools or patients within hospitals
[13], [14], [15]. However, in these studies, the applications
of mixture-of-mixture modeling were limited to simulated
or low-dimensional data. In the present study, we focus on
applying mixture-of-mixture modeling to speech data, which
usually comprises high-dimensional continuous data. In [13],
[14], [15], an expectation maximization (EM) approach [16]
was used to estimate mixture-of-mixture models by aug-
menting observations with two-level (higher-level and lower-
level) latent variables. However, this maximum likelihood-
based approach often suffers from an over-fitting problem
when applied to high-dimensional data [1], [17]. A Bayesian
approach can make the estimation of mixture-of-mixtures
models more robust. For example, maximum a posterior
(MAP) and variational Bayes (VB)-based methods have been
applied to estimate the mixture of Gaussian mixture models
(MoGMMs) [1], [18], [19]. However, the VB-based approach
often still suffers from a large bias when the amount of data
is limited [20]. Moreover, these methods are easily trapped
by a local optimum due to the deterministic procedures in the
EM-like algorithm.

To solve this problem, we propose a novel MoGMMs
estimation method based on the Markov chain Monte Carlo
(MCMC) method. In this approach, the optimal parameters for
the MoGMMs are obtained stochastically by drawing values
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Hierarchical structure of multi-level data analysis. Segment-wise (higher-level) observations are composed of a set of frame-wise (lower-level)

observations. Left figure illustrates the hierarchical structure in speech data composed of frame-wise observations (e.g. Mel-frequency cepstral coefficients).

iteratively from their posterior distribution. These parameters
can be estimated theoretically while avoiding a local optimal
solution by evaluating a huge number of samples and combina-
tions of higher-level latent variables (hLVs) Z and lower-level
latent variables (ILVs) V' from their joint posterior distribution
P(Z,V). However, in practical implementations of MCMC,
evaluating such a huge number of combinations is infeasible
and some approximations are required.

Previously [1], [17], we introduced a Gibbs sampling-based
MoGMMs estimation approach, which draws the values of
ILVs and hLVs alternately by first sampling the 1LVs after
initializing hLVs Z, ie., V ~ p(V|Z), and then sampling
hLVs by using the fixed 1LVs, ie., Z ~ p(Z|V), sampled
in the previous step. This sampling method is easy to im-
plement and highly accurate, and the it actually outperforms
the VB-based approach, especially when the data are limited
e.g., when each utterance is short and the spoken utterances
are few [17]. However, this sampling method, has a severe
restriction because the sampling of hLVs is strictly determined
by the values of the 1LVs obtained in the previous sampling
step. This restriction can cause the local optima problem for
the hLVs, because the hLVs estimated in each iteration can be
highly correlated. To solve this problem, we propose a novel
sampling method for the MoGMMs based on nested Gibbs
sampling, which samples both the hLVs and 1LVs at the same
time. This sampling method allow an enormous number of
combinations of 1LVs and hLVs to be evaluated efficiently, so
we can find a more appropriate solution than that obtained by
alternating Gibbs sampling for ILVs and hLVs.

The reminder of this paper is organized as follows. In
Section II, we formulate a MoGMMs by creating a mixture-
of-mixture model where each component of the mixtures is
represented by a GMM. In Section III, we explain how to
estimate the MoGMMs using fully Bayesian approaches based
on VB and MCMC methods. In Section IV, we describe
the MCMC-based model estimation method in more detail
as well as the proposed nested Gibbs sampling method for
MoGMMs estimation. In Section V, we present the results of
speaker clustering experiments conducted to demonstrate the
effectiveness of the proposed method. In Section VI, we give
conclusions and discuss some directions for future research.

II. FORMULATION

In this section, we define the MoGMMSs models where each
component of the model is represented by a GMM. In addition,
we define the generative model for segment-oriented data.

A. Mixture of Gaussian mixture models (MoGMMs)

Let 0,; € RP be a D-dimensional observation vector, e.g.,
mel-frequency cepstral coefficients (MFCCs) at the ¢-th frame

in the u-th segment, O, 2 {om}tT”1 is the u -th segment

comprising the T,, observation vectors, and O = {Ou}
is a set of U segments. We call this “segment-oriented data.
Here, a MoGMMs is defined as follows:

Hthp (0.10;),

u=11i=1

p(0|©) = (1

where S denotes the number of clusters; h; represents how
frequently the i-th cluster’s segment appears; and p(O,|©;)
is the likelihood of w-th segment O, being assigned to the
i-th cluster. In this case, p(0,|®;) models the intra-cluster
variability for each cluster, which can be represented as:

T

t=1j=1

P(0.]0;) OUt|p’ij72ij)a 2)

where N denotes the j-th component in the i-th cluster,
which is represented by a Gaussian distribution with a mean
vector p;; and a covariance matrix ;;; w;;, the weight of
the j-th component; and K is the number of components in
each cluster’s GMM. Egs. (1) and (2) imply that the whole
generative model for all segments O can be represented by a
hierarchically structured MoGMMs where a GMM represents
a cluster’s characteristics (i.e., intra-cluster variability), and
that a mixture of these GMMs can represent the entire cluster
space (i.e., inter-cluster variability).

To represent this hierarchical model, we introduce two types
of latent variables: Z = {z,}Y_, represents segment-level
latent variables (sLVs), each of which identifies a MoGMMs
component (i.e., speaker GMM) to which the u-th segment is



assigned, and V = {V,, = {vu:}1*, }U_,, represents the frame-
level latent variables (fLVs), each of which identifies an intra-
cluster GMM component (the cluster distribution to which
the u-th segment is assigned), to which the ¢-th frame-wise
observation in the u-th segment is assigned. For instance, the
sLVs and fLVs in MoGMMs correspond to the document-level
and word-level latent variables in the latent Dirichlet allocation
(LDA), where discrete data are used [21]. By contrast, we
focus on modeling a continuous data space with a MoGMMs
in this study.

By introducing these latent variables, we can describe the
conditional distributions of the observed segments given the
latent variables as follows !:

U T
p(OIZ2,V,0) = ] bz [ [ wervue N Outlbte o Bzsns);
t=1

u=1

3)
where © 2 {{hi} Awi;}, {mi;},{Si;}} denote the weight
of the i-th intra-cluster GMM, weight, mean vector, and
covariance matrix of the j-th component of the i-th intra-
cluster GMM, respectively. Note that we have assumed 3J;;
is a diagonal covariance matrix where the (d, d)-th element is
represented by o;; 4.

We describe the distribution of the latent variables as
follows:
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where 0(a,b) denotes Kronecker’s delta, which takes a value
of one if a = b, and zero otherwise.

B. Generative process and graphical model

Using a Bayesian approach, the conjugate prior distributions
of the parameters are often introduced as follows:

h ~ D(ho)
w; ~ D(w?)
{Mz’j,ch Eij,d} ~ /\/G(foa 7707 /’Lg')7d7 Ujo',d)

where D (h°) and D (w°) denote Dirichlet distribu-
tions with hyper-parameters h° O, respectively.

and w",
NG (50,170,@7(1,0?@) denotes the normal inverse gamma
distribution with hyper-parameters £°, 7%, 1§ ;, and o .
Based on these likelihoods and prior distributions, the
generative process for our model is described as follows:
1) Initialize {h°, ©°}
2) Draw h from D(h°)
3) For each segment-level mixture component (i.e., cluster)
i=1,---,8,
a) Draw w; from D(w")
b) For each frame-level mixture component (i.e.,
inner-cluster GMM component) j = 1,--- | K,

p(©]0°%) = (6)

'We use the notation p(-) to represent continuous probability functions and
P(-) to represent discrete probability functions.

i) Draw {p;a,05a} from NG(E},n], uf 4,07 1)
for each dimension d =1,--- , D
4) For each segment u =1,---,U,
a) Draw z, from multinomial distribution M (h)
b) For each frame t =1,--- , T},
i) Draw v, from M(w,,)
ii) Draw o, from N (g, ., 3., 0,,)
Figure 2 shows a graphical representation of this model.

III. MODEL INFERENCE BASED ON FULLY BAYESIAN
APPROACH

When we use a Bayesian approach for estimating the
MoGMMs, the main task is calculating posterior distributions
for the latent variables {V, Z} and model parameter © given
observation O:

1
p(V,.2,0|0) = FOP(O,MZ,@) )

Hj is a normalization coefficient, which is defined as follows:

H25(0) =Y [p(0.v.2.0)0. ®)
V,Z

Note that the model-based clustering problem is reduced to
the problem of estimating the optimal values of the fL.Vs and
sLVs, {V, Z}, based on the posterior distribution defined in
Eq. (7). Thus, the posterior probabilities of the latent variables
VY and Z can be calculated as follows:

©))
(10)

A ) )
= p(vut :.]|O7®7Zu:2)7
2 p(z, =i|0,0).

vaut:j|zu:i;®
Vzu=4;0©

Sufficient statistics of this model are computed using the
aforementioned posterior probabilities as follows:

Ci = u Veu=i

Nij = u,t Vvwe=5lzu=0 " Vzu=i (1 1
m;; = u,t Yvur=j|zu=i * Vzu=i * Out

Tijd = Zu,t Vvwe=jlzu=1 " Veu=1" (Out7d)2

where c; denotes the number of segments assigned to the i-th
component of the entire cluster MoOGMMs; n;; is the number
of frames assigned to the j-th component of the i-th intra-
cluster GMM of the MoGMMs; and m;; and 7;; are the first
and second sufficient statistics, respectively.

However, it is generally infeasible to analytically estimate
these posterior distributions, so we must introduce some
approximations. In the rest of this section, we discuss how to
approximate the posterior distributions using VB- and MCMC-
based approaches.

A. Model estimation using a VB-based approach

When the VB-based model estimation method is used, the
sLVs, fLVs, and model parameters are obtained determinis-
tically by estimating their variational posterior distributions.
To optimize a variational posterior distribution, we attempt
to maximize the marginalized likelihood, which is described
by Eq. (8). p(V, Z,0|0) = ¢q(V, Z)q(®), where the optimal



Fig. 2.
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variational posterior distribution (i.e., the ¢(V, Z,©) that
maximizes the free energy) can be determined as follows:

gV, 2) « exp(<logp((’),V,Z,®)>q(®)), (12)

q(©®) exp(<logp(O,V,Z,G))> z))' (13)

where (A)p denotes the expectation of A with respect to B.
The optimal values of ¢(V, Z), and ¢(®) from Egs. (12) and
(13) are obtained according to Algorithm 1, as follows. The
posterior probability of an fLV is estimated as follows:

q(V,

,yvut:j\zu:i;é
A 1
= exp | (log wij>q(w7:j) + D) Zd<10g O'ijyd>q(01:j,d)
D 1 (Out,d — ftij,d)*
_5 log 2m— 5 Zd< ijd . >Q(Mj.d\0ij,d) :
14
We can determine the posterior distribution of an fLV by

normalizing (14) as follows:
,‘Y:;ut=j‘zu=i§(:)

Zj’y* -

Vyt=J|2u=1;0

15)

Q(Uut = .7|Zu = Z) =

In the same manner, we can compute an sLV v, _. & from
u—"o

the posterior probability ’y: .6 88 follows:

Voo =D | (loghidgu + D log > i e
t J
(16)
. V: =i;0
i)= 72 TR .
( ’yzu :i;é
The expected values of the parameters described in (14) to
(16) are computed as follows:

(log hi)q(n,y = (hi) — ’/’(Z,; hi), (18)
(log wij) g(w,,) = Y (Wiz) — 1/)(Zj W;5),(19)
(log 0ij.d) q(o.,.0) =¥ (1Mij) —log Gija,  (20)

~ ~ 2 =~
= i (Out,a— flig,a)” +Eij @
q(pij,d|0ij,d) — ~ %
Hij,d|0ij,d O-ij}d

q(zu = a7

<(0ut,d—uij,d)2>
0ij.d

‘f;" hy — Hyper-parameter of prior for utterance-level weight i — Utterance index
i=1:5 wf — Hyper-parameter of prior for j-th compenent’s weight J — Frame index
hi 1. &” — Hyper-parameter of prior for J-th component’s mean vector u  — Utterance-level mixture index
L% — Hyper-parameter of prior for J-th component’s covariant matrix t — Frame-level mixture index
hy — Weight of i-th GMM U — Number of utterances
s, L_ Wy — Weight of j-th component in i-th GMM T, — Number of frame-wise observations in u-th utterance
T i — Mean vector of j-th component in i-th GMM K — Number of components
Zy — Covariant matrix of j-th component in i-th GMM §  — Number of speakers
Ju 2y — Utterance-level latent variable of u-th utterance
L Vi — Frame-level latent variable of t-th frame in u-th utterance
Lot Oy — Frame-wise observation of r-th frame in u-th utterance

Graphical representation of mixture-of-mixture model. The white square denotes frame-wise observations, and dots denote the hyper-parameters of

where 1)(-) denotes the digamma function and © =
{hi7wij7§ijvﬁijaﬁij
terior distributions for (:), which are computed as follows:

are the hyper-parameters of the pos-

il/i = hO + Ci,y
Wiy = “i)? + 1nij,

= &Gi =& +ny,

0= > 22
Nij = TZO 1+ Mg, (22)
I]’z‘j = fz_j (5%2 + mij) ) ~
Gijd =054+ Tia+ 8 (15 ) — &ij(fij.a)?

Algorithm 1 shows the VB-based model estimation algorithm.
The fLVs and sLVs that maximize (Eqs. (15) and (17)) are the
MAP values of their posterior distributions, where we assume
that these MAP values are the optimal clustering results.
This VB-based procedure monotonically increases the free
energy, as described in Eq. (8) under the variational posterior
distribution ¢(V, Z, ©®), but this approach suffers from two
problems, which are caused by the difference between true and
variational posterior distributions, as well as the biased values.
The first problem is that the true posterior distributions of
fLVs, sLVs, and the model parameters in MoGMMs cannot be
factorized (i.e., p(®,V, Z|0) # p(V|Z,0)p(Z|0)p(©|0)),
although the variational posterior distributions assume that
they can. The second problem is that the posterior probability
obtained is generally biased because the calculated statistics
are strongly biased by the size of each segment. These
problems are especially severe when the number of segments
is limited. To solve these problems, we need to estimate
the marginalized posterior distributions, into which model
parameter ® and frame-level latent variables V) are collapsed'.
This is obtained by marginalizing Eq. (7) with respect to these
parameters as follows:
P, 2|0) = Hi /p(V, 2.0,0)40. (23
0
We can then estimate the posterior distribution of the latent
variables directly and obtain an unbiased estimation.

!n this case, “collapsed” means that samples are drawn from the marginal-
ized distribution with respect to the model parameter ®. In the following, we
refer to collapsed Gibbs sampling simply as Gibbs sampling.



Algorithm 1: Model estimation algorithm using the VB
method.
initialize ©;
repeat
for all clusters i and components j do
for all segments u and frames t do
Compute v,(V, Z) in Eq. (12) before
computing the expectation values described in
Egs. (15) and (17);
end

n A W N -

end

for all clusters i and components j do
Compute the hyper-parameters of ¢(®) in
Eq. (13) using the sufficient statistics, as
described in Eqgs.(18) - (21);

e e

10 end
1 until converged,

-

Collapsed VB methods for estimating the marginalized
posterior distribution have been proposed in several studies
[22], [23], but these approaches are generally infeasible for
our hierarchical model because we cannot apply the approxi-
mation of convexity to a hierarchical structure. Therefore, we
introduce the Markov chain Monte Carlo (MCMC) method to
estimate the marginalized posterior distribution from Eq. (23).

B. Model estimation based on the MCMC approach

Using an MCMC-based approach, we obtain samples of
latent variables directly from their posterior distributions.
We can derive the marginalized distribution with respect to
the model parameters described in Eq. (23) because we do
not need to evaluate the normalization term Eq. (8) when
employing an MCMC approach.

1) Marginalized likelihood for complete data: First, we
derive the logarithmic marginalized likelihood for the complete
data, logp(O,V, Z). In the case of complete data, we can
utilize all the alignments of observations o,; to a specific
Gaussian component distribution because all of the latent vari-
ables, {V, Z}, are treated as observations. Then, the posterior
distributions for each of the latent variables, P(z, = i|-) and
P(vy = j|-) for all 4, j, u, and ¢, return O or 1 based on the
assigned information. Thus, ~,,,—;|.,—; and 7.,=; described
by Egs. (9) and (10) are zero-or-one values depending on the
assignment of the data. Then, the sufficient statistics of this
model, then, can be represented as follows:

ci =, 0(zu,i ;

'I’L” - ut(s(zuvl) '5(Uut7])

’ 24
mij 5(Zuvl) 5(Uut7]) Ouh ( )
Tij.d §3u175(2u,1) 8 (Vut; 7) - (Out,a)?,

We can analytically derive the logarithmic marginalized
likelihood for the complete data by substituting Eqs. (3), (4),

and (5) into the following integration equation:

logp(V, Z,0)
= log/p(V,Z,(9|(~))p(®)d®
L[, T(h II I'(wi;)
% T (h0)ST (T, h HH L(wd)T(Y; wij)
+a10g [[2m) " (fo)g( (@)_D(Hd Jdd)_:’
iJ (5@])%( (%)) (Hd&ij»dd)T

(25)

where @w = {hl,wm,fu,nw,um > 0ij, d} denotes the hyper-
parameter of the marginalized likelihood defined in Eq. (22).

To construct the MCMC sampler, we define the following
logarithmic likelihood function for the complete data using
simulated annealing (SA) [24]:

L(B) 2 logps(V,2,0)

1
= logp(O|V,2)+ 3 log P(V,Z), (26)
where [ is an inverse temperature defined for SA, which
controls the speed of convergence. We can now derive the
posterior distribution as follows:

PV, Z|0) = p(V. 2)p(OIV, 2)°

1
Hy(B)

1
= g P A
where H, () is a normalization term introduced to normalize
{V, Z} under the temperature . The goal of the MCMC
approach is to obtain samples from Eq. (27). In the next
section, we discuss how to design the sampler in order to
obtain samples from this posterior distribution.

27

IV. IMPLEMENTATION OF MCMC-BASED MODEL
ESTIMATION

We introduce a collapsed Gibbs sampler [25] to obtain
samples of sLVs and fLVs from their posterior distributions.
Previously, we introduced a Gibbs assumption that alternates
the sampling of fLVs with some initializations of sLVs, before
sampling the sLVs using the fixed fLVs sampled in the
previous step [1], [17]. The drawback of this approach is
that the sampling of sLVs is determined strictly by the values
of the fLVs obtained in the previous sampling step and the
sLVs estimated in each iteration can be highly correlated. To
solve this problem, we propose a novel sampling method that
samples both sLVs and fLVs at the same time. This sampling
method allows an enormous number of combinations of fLVs
and sLVs to be evaluated efficiently, so we can find a more
appropriate solution than that obtained when alternating Gibbs
sampling for fLVs and sLVs. We refer to this novel sampling
technique as nested Gibbs sampling. This section describes its
formulation and implementation.



A. Nested Gibbs sampling for MoGMMs

For Gibbs sampling, we draw the value of each variable
iteratively from its posterior distributions and conditioning it
with the sampled values of the other variables. This posterior
distribution is called the “proposal distribution.” In the case
of MoGMMs, the proposal distribution is the joint posterior
distribution of the sLV and fLVs related to the u-th segment
of {Vu, 2y}, which is conditioned on the sampled value of

the latent variables related to the other segments Vq‘u, Z{"u}

Therefore, the proposal distribution of MoGMMs 1s described
as follows:

p (Voo 2 V00 20} 0)

- r(pes)o)

(28)

where V7, = {v},,|Vu' # u,Vt} and Z7, = {2, |Vu' # u}
denote the sets of samples for fLVs and sLVs, respectively,
except for those related to the u-th segment. After some
iterative sampling using Eq. (28), the samples obtained are
approximately distributed according to their true posterior
distributions. Direct sampling from a proposal distribution
Eq. (28) is theoretically feasible because Eq. (28) takes the
form of a multinomial distribution. However, it is impractical
to evaluate an enormous number of possible combinations of
solutions. We notice that it is enough to estimate the value of
sLVs in order to estimate the optimal assignment of utterances
to speaker clusters. Therefore, we try to marginalize out fL.Vs
in Eq. (28) to make the computation simple. We propose
an MCMC-based approach, which samples the value of z,
directly from the following marginalized posterior instead of
Eq. (28):

(2l {25} 0)

:/p (zu|v;;, {v\*u,z\*u} ,o) p(Vil{Viu 25} ,O) v,
(29)

P (sl {¥1 20,}.0)

However, this integration is also infeasible because each v,,; in
V, takes one of the number of K values (i.e., the number of
GMM components) and their combination are exponentially
large. Therefore, we introduce an approximated approach,
which uses the sampled value of V;* obtained from its true
posterior p (V{ﬂ {Vq‘u,Zq‘u} ,O). Then, V; is marginalized
out from Eq. (28) using the sampled value V;* by the
following approximation:

p (=l (W0 20}, 0) =D P (s P 21} 0) 6o
v

We can easily sample the value of z, from Eq. (30) because
this is a multinomial distribution over z,, that takes the one of
the C' (i.e., number of clusters) values. With this approach,
the Gibbs sampling chain for z, is followed by another
Gibbs sampling chain in which we sample the values of V),
from its posterior distribution, conditioned on any potential
value of z,. We refer to this Gibbs sampler for V), as a
sub-Gibbs sampler and we refer to the obtained samples as

* % kK

Tu
} . In the sub-Gibbs sampler, each

ulzy=1 ut|zy=; =
value of UZ’;‘%:i is samplled for all 7 as follows:
Vi~ P (vut| {Wu,zqﬂu} Vil 7 = i,(’)) . 6D
where V:? tleumi = {U’Z:’Izu= ;|Vt' # t & denotes the samples of

fLVs obtained from the sub-Gibbs sampler that are related to
all of the frames, except to the ¢-th frame in the u-th segment.
After several iterations of Eq. (31) for all ¢ in the u-th segment,
we obtain NS samples. We then draw a sample of sLV for
the u-th segment from its posterior distribution conditioned on

NGibbs
the samples{ e .(”)}

u|zy =1
NGibbs
U| 2y, =1 ne1
sampler for z, is defined as follows:

2u~ Pl PP 20,1 ,0)

=3PVl 2L} O)

. By aggregating the value of

n=1

over all possible values of ¢, the Gibbs

YV
=Y Pzl {2t} v 0) P (il {R 20} 0)
YV
(32)
By aggregating NY®*  samples of ), from
p(Vu|Zu =1, {V{‘u,Zi‘u},O) for all possible values

of ¢ and then plugging them into p(z,|Vy, O), we obtain the
following Monte Carlo integration:

S (2l {0 200} Vs 0) P (Vi { M 20, 0)
YV
Gibbs

> P (a2} 0) 63)

1
= NGibbs
We refer to these procedures as nested Gibbs sampling,
because we sample z, from Eq. (33) using the value of
**(") which can be obtained from the sub-Gibbs sampler
defined by Eq. (31) in a nested manner. A large number of
samples, N may be required to accurately represent of
the marginal value for Eq. (33). To evaluate the effect of the
number of samples on the overall sampling procedure, we
applied the proposed nested Gibbs sampler to practical speech
data. Figure 3 shows the logarithmic marginalized likelihoods
(LMLs) obtained using the proposed nested Gibbs sampling
method with different sampling sizes. The eight lines in each
figure correspond to the results of eight trials with different
random seeds. This figure shows that high accuracy may be
achieved with a small number of samples, and that even one
sample may be adequate to approximate the marginal value
in Eq. (33). Algorithm 2 shows the algorithm of the nested
Gibbs sampler for MoGMMs. The formulations of Eqs. (31)
and (33) are described in the Appendix.

B. Computation of the marginalized likelihood

For the Gibbs sampler described in IV-A, we can approx-
imate the joint likelihood Eq. (26) using the sampled latent
variables {V, Zx}U_
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seeds.

Algorithm 2: Model estimation algorithm based on the
proposed nested Gibbs sampling method.

1 initialization {V** Z**}, V*;

2 repeat
3 for all segments u do
4 for all clusters i do
5 for all frames t do
6 for all components j do
7 Update fyf =il rumi
Py (var=31{ 20, Vi, } Vit za=i);
8 end
9 Draw the values of the fLVs, v}, from
their posterior probability with
UZI N’Y/,,m:.|zu=¢;
10 end
11 Update
75“=z'|v;; « Ps (zu = i {Ziku’viku} ,V;*);

12 end
13 Draw the value of the sLVs, 27, from their

posterior distribution with z;; ~ fyf iV
14 Update the values of the fLVs with V < V**;
15 Update the SA temperature 3 with respect to

scheduling;
16 end

7 until some conditions are met;

-

Figure 4 is a scatter diagram showing the marginalized
likelihood and K values (which are used widely for the
measurement of the clustering) calculated from the results
obtained when the proposed nested Gibbs sampler was applied
to B1 and B1 with four types of noise. The values of K are
explained in the Experiment section. The differences in the
plots indicate the distinct speakers. This figure shows that
the value of K is strongly correlated with the marginalized
likelihood. Therefore, we can use the marginalized likelihood

as a measure of the appropriateness of the models.

V. SPEAKER CLUSTERING EXPERIMENTS

We investigated the effectiveness of our model optimization
methods at speaker clustering using the TIMIT [26] and
CSJ [27] databases. We compared the following four model
estimation methods:

« n-Gibbs: MCMC-based model estimation using the pro-
posed nested Gibbs sampling method.

¢ Gibbs: MCMC-based model estimation using conven-
tional Gibbs sampling where the fLVs and sLVs are
sampled alternately [1], [17].

e VB: VB-based model estimation [18].

o HAC-GMM: hierarchical agglomerative clustering
method. A GMM is estimated for each utterance in a
maximum likelihood manner. The similarity between
utterances is defined as the cross likelihood ratio between
corresponding GMMs. The pair of utterances with the
greatest similarity is merged iteratively until the correct
number of speakers is obtained [4].

A. Experimental setup

1) Datasets: All of the experiments were conducted using
11 evaluation sets obtained from TIMIT and CSJ. Table I
lists the number of speakers and utterances in the evaluation
sets used. T1 and T2 were constructed using TIMIT. T1
corresponds to the core test set of TIMIT, which includes 192
utterances from 24 speakers. T2 is the complete test set, which
includes 1,152 utterances from 144 speakers. In this case,
there were no overlaps between T1 and T2. The remaining
nine evaluation sets were constructed using CSJ as follows: all
lecture speech in CSJ was divided into utterance units based on
the silence segments in their transcriptions, five speakers were
then randomly selected, and five, 10, and 20 of their utterances
were chosen for Al, A2, and A3, respectively. In the same
manner, we randomly selected 10 and 15 different speakers
and five, 10, and 20 of their utterances were used for Bl to
B3 and C1 to C3, respectively. We evaluated five combinations
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Fig. 4. Logarithmic marginalized likelihood (LML) as a function of K value. Each plot shows the results obtained by applying the proposed n-Gibbs sampler
to five different datasets (id:000, 001, ..., 004). Refer to Table I for the details of test set B1.

of different speakers for each dataset. The resulting clustering
performance for each dataset was the average of these five
combinations.

The speech data from TIMIT and CSJ are not corrupted by
noise. In additional experiments, we used noisy speech data,
which we created by overlapping each utterance with four
types of non-stationary noise (crowd, street, party, and station)
selected from the noise database of the Japan Electronic
Industry Development Association [28]. These noises were
overlapped with each utterance at a signal-to-noise ratio of
about 10 dB. Speech data were sampled at 16 kHz and quan-
tized into 16-bit data. We used 26-dimensional acoustic feature

parameters, which comprised 12-dimensional mel-frequency
cepstral coefficients (MFCCs) with log energy and their A
parameters. The frame length and frame shift were 25 ms and
10 ms, respectively.

2) Measurement: We employed the average cluster purity
(ACP), average speaker purity (ASP), and their geometric
means (K value) as the speaker clustering evaluation crite-
ria [29]. In this experiment, the correct speaker label was
manually annotated for each utterance. Let St be the correct
number of speakers; S is the estimated number of speakers;
n;; is the estimated number of utterances assigned to speaker
cluster 4 in all utterances by speaker j; m; is the estimated



TABLE I
DETAILS OF TEST SET.

Test set | Number of | Number of Average total
Speakers Utterances | Duration [min.]
Tl 24 192 9.7
T2 144 1152 58.8
Al 5 25 2.8
A2 5 50 5.6
A3 5 100 11.1
Bl 10 50 5.6
B2 10 100 11.3
B3 10 200 22.5
Cl1 15 75 13.0
C2 15 150 26.0
C3 15 300 51.8
TABLE II

K VALUE FOR CLEAN TEST SETS.
[ n-Gibbs | Gibbs | VB | HAC-GMM

Evaluation data

T1 (spkr:24  utt:192) 0.96 084 | 0.74 0.88
T2 (spkr:144 utt:1152) 0.74 0.52 0.41 0.73
Al (spkr:5  utt:25) 1.00 090 | 0.92 0.93
A2 (spkr:5  utt:50) 0.99 0.96 0.97 0.99
A3 (spkr:5  utt:100) 0.98 0.97 0.99 0.97
B1 (spkr:10 utt:50) 0.98 0.93 0.85 0.95
B2 (spkr:10 utt:100) 0.98 0.90 0.90 0.96
B3 (spkr:10 utt:200) 0.98 0.91 0.96 0.96
C1 (spkr:15 utt:75) 0.97 0.92 0.81 0.95
C2 (spkr:15 utt:150) 0.93 0.91 0.90 0.96
C3 (spkr:15 utt:300) 0.92 091 091 0.95

number of utterances of speaker j; n; is the estimated number
of utterances assigned to speaker cluster ¢; and U is the number
of all utterances. The cluster purity p; and speaker purity q;
were then calculated as follows.

(34)

The cluster purity is the ratio of utterances derived from the
same speaker relative to the utterances assigned to each cluster.
The speaker purity is the ratio of utterances assigned to the
same cluster relative to the utterances spoken by each speaker.
Thus, ACP and ASP are calculated as follows.

1 S 1 ST
Vace = 37 ;p” Vasp = 3 ]szoanj (35)

The K value is obtained as the geometric mean between ACP
and ASP as follows.

K = /Vacp - Vasp

(36)

3) Evaluation conditions: The number of iterations was
set to 100 in the MCMC-based method, which was sufficient
for convergence in both the conventional and proposed Gibbs
sampling in all of the following experimental conditions. We
conducted the same speaker clustering experiment eight times
using different seeds each time. We evaluated the marginalized
likelihood described in Eq. (26) for each result and selected the
result with the highest likelihood from those obtained during
the 100 iterations of eight experiments.

The hyper-parameters in Eq. (22) were set as follows:

w® = {p ... p} for all components; h° = p and
h® = {p ... p} for all clusters; n(®) = 1 and ¢©) = p;
p©® = pu(0) and O = °(0) where u(O) and =(0)

were the mean vectors and covariance matrices estimated from
the whole dataset, respectively. The value range for p was
{1,10,100,1000}. These parameters were determined using
the development data set obtained from the CSJ dataset. We
initialized both the sLVs and fLVs randomly.

B. Experimental results

1) Comparison with the conventional Gibbs sampler:
We evaluated conventional Gibbs sampling and the proposed
nested Gibbs sampling method with different numbers of
mixture components using both clean and noisy datasets.
Figure 5 shows the K values obtained using the Gibbs and n-
Gibbs samplers with different numbers of mixture components
when they were applied to clean data (A1) and noisy data (Al
+ crowd). We can see that the highest K value was obtained
when one or two components were used for both the Gibbs
and n-Gibbs samplers. This indicates that a small number of
Gaussian distributions are sufficient to model each speaker’s
utterances in either sampling method when clean data are used.
However, in the case of noisy data, the nested Gibbs sampler
performed best with eight components of mixtures, but the
conventional Gibbs sampler with eight components achieved
worse results than the proposed method. This suggests that
samples from noisy data follow a multi-modal distribution and
that the proposed sampling method can represent this multi-
modality. By contrast, the conventional Gibbs sampler could
not model these complex data even with a large number of
mixture components. Later, we will discuss the reason why
the conventional Gibbs sampler degraded the K value for the
noisy data set by using diagrams to show the convergence of
the samplers.

Figure 6 shows the logarithmic marginalized likelihoods
of the samples obtained using the conventional Gibbs and
proposed nested Gibbs sampling methods when applied to Al
with different SA temperatures [24]. The eight lines in these
figures represent the results obtained from eight trials with
different seeds. We can see that no trial converged to a unique
distribution without SA (i.e., 5™ = 1) when a conventional
Gibbs sampler was used. Introducing a higher temperature
(B = 30) offered some protection from divergence, but
large variations still remained, as shown in Figures 6 (c) and
(e). These results indicate that the conventional Gibbs sampler
was often trapped by a local optimum. However, in the case of
the nested Gibbs sampler, the likelihoods converged after only
20 iterations at most, and all of the trials converged to almost
the same result, even when we did not use the SA method (i.e.,
B = 1). These results indicate the greater effectiveness of
the proposed sampling method.

Tables II and III list the K values obtained using each
method for clean and noisy speech data, respectively. These
tables demonstrate that the nested Gibbs sampler outperformed
the conventional Gibbs sampler irrespective of the evaluation
sets, under clean and noisy conditions. These results imply



TABLE III
K VALUE FOR NOISY TEST SETS. FOUR TYPES OF NOISE (CROWD, STREET,
PARTY, AND STATION) ARE OVERLAPPED WITH SPEECH OF NINE

DATASETS.
Evaluation data | n-Gibbs | Gibbs | VB | HAC-GMM
Al + crowd (spkr:5 utt:25) 1.00 0.90 0.82 0.95
A2 + crowd (spkr:5 utt:50) 0.99 0.96 0.95 0.97
A3 + crowd (spkr:5 utt:100) 0.99 0.97 0.99 0.95
B1 + crowd (spkr:10 utt:50) 0.97 0.92 0.83 0.93
B2 + crowd (spkr:10 utt:100) 0.97 0.94 0.91 0.92
B3 + crowd (spkr:10 utt:200) 0.93 0.88 0.92 0.89
C1 + crowd (spkr:15 utt:75) 0.99 0.96 0.79 0.96
C2 + crowd (spkr:15 utt:150) 0.99 0.95 0.91 0.94
C3 + crowd (spkr:15 utt:300) 0.96 0.90 0.90 0.92
Al + street (spkr:5 utt:25) 0.86 0.74 0.69 0.79
A2 + street (spkr:5 utt:50) 0.78 0.66 0.69 0.77
A3 + street (spkr:5 utt:100) 0.86 0.72 0.84 0.75
B1 + street (spkr:10 utt:50) 0.84 0.75 0.62 0.79
B2 + street (spkr:10 utt:100) 0.75 0.68 0.66 0.73
B3 + street (spkr:10 utt:200) 0.72 0.62 0.71 0.71
C1 + street (spkr:15 utt:75) 0.77 0.67 0.60 0.75
C2 + street (spkr:15 utt:150) 0.68 0.60 0.61 0.68
C3 + street (spkr:15 utt:300) 0.68 0.62 0.71 0.68
Al + party (spkr:5 utt:25) 0.97 0.87 0.88 0.95
A2 + party (spkr:5 utt:50) 0.99 0.93 1.00 0.87
A3 + party (spkr:5 utt:100) 1.00 0.92 0.99 0.96
B1 + party (spkr:10 utt:50) 0.98 0.88 0.83 0.95
B2 + party (spkr:10 utt:100) 0.96 0.86 | 0.88 0.95
B3 + party (spkr:10 utt:200) 0.96 0.89 0.90 0.92
Cl1 + party (spkr:15 utt:75) 0.98 0.93 0.81 0.94
C2 + party (spkr:15 utt:150) 0.94 0.91 0.87 0.92
C3 + party (spkr:15 utt:300) 0.92 0.90 0.90 0.90
Al + station (spkr:5 utt:25) 0.92 0.86 0.77 0.87
A2 + station (spkr:5 utt:50) 0.86 0.76 0.90 0.85
A3 + station (spkr:5 utt:100) 0.84 0.75 0.86 0.87
B1 + station (spkr:10 utt:50) 0.89 0.79 0.69 0.86
B2 + station (spkr:10 utt:100) 0.84 0.77 0.76 0.86
B3 + station (spkr:10 utt:200) 0.81 0.75 0.81 0.81
C1 + station (spkr:15 utt:75) 0.89 0.79 0.69 0.84
C2 + station (spkr:15 utt:150) 0.89 0.74 0.77 0.80
C3 + station (spkr:15 utt:300) 0.81 0.73 0.83 0.83

that the proposed method can model data drawn from both
single and multi-modal distributions, which the conventional
Gibbs sampler was unable to calculate.

2) Comparison with the VB-based method and agglomer-
ative method: The K values determined using the VB-based
and agglomerative methods are also listed in Tables 2 and
3. The results obtained by the proposed method were equal
or superior to those with the conventional VB-based (VB)
methods using both the clean and noisy datasets. In particular,
the proposed method obtained substantially better performance
when the data were very scarce (e.g. Al, B1, CI, T1, and
T2). This implies that nested Gibbs sampling-based estimation
can adequately estimate the cluster structure from limited
data, which is generally difficult to achieve. In fact, the VB-
based method cannot model such limited data. To evaluate
the effectiveness of a fully Bayesian approach, we also com-
pared the proposed method with the conventional hierarchical
agglomerative method (HAC-GMM). The proposed method
also outperformed the HAC-GMM in most conditions.

3) Computational cost: We now consider the computational
cost based on two features: the number of iterations until
convergence and the computation required for each epoch.
The T-1 dataset (i.e., 24 speakers and 192 utterances; 9.7
minutes in total) was used for this experiment. The VB
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approach required about 14.8 seconds on average for one
epoch and 12 iterations until it converged (i.e., Real-time
factor (RTF) of about 0.0031) when an Intel Xeon 3.00 GHz
processor was used. However, the proposed nested Gibbs
sampling method required about 41.4 seconds on average
for one epoch and about 63 iterations until the maximum
logarithmic marginalized likelihood was obtained (i.e., RTF
of about 0.0450), whereas the conventional Gibbs sampling
method only required about 1.58 seconds and about 17 itera-
tions until the maximum logarithmic marginalized likelihood
was obtained (i.e., RTF of about 0.0005). Figure 6 (a) shows
the logarithmic marginalized likelihood obtained when the
nested Gibbs sampler was applied to dataset Al. We can see
that the chain of samples obtained using the nested Gibbs
sampler converged within 100 iterations at most. Compared
with the conventional Gibbs sampler, the nested Gibbs sampler
required more iterations and computations while it obtains
substantially better performance. In fact, the computational
cost of the nested Gibbs sampler will increase drastically as
the number of utterances increases because many iterations are
needed during the sampling process. However, the sampling of
fLVs can be parallelized, because the posterior distribution of
fLLVs is calculated independently of the utterances. Thus, we
can reduce the computational time by using multi-threading
technology.

VI. CONCLUSION AND FUTURE WORK

In this study, we proposed a novel method for estimating a
mixture-of-mixture model. The proposed nested Gibbs sampler
can efficiently avoid local optimum solutions due to its nested
sampling procedure, where the structure of its elemental
mixture distributions are sampled jointly. We showed that the
proposed method can estimate models accurately for speech
utterances drawn from complex multi-modal distributions,
wheres the results obtained by the conventional Gibbs sampler-
based method were trapped in local optima. The proposed
method also outperformed the conventional agglomerative
approach in most conditions.

The proposed MoGMMs can build a hierarchical model
from multi-level data that comprise frame-wise observations.
Some types of real-world data also has the same kind of
structure, such as images comprising a set of pixels. In future
research, we plan to apply MoGMMs to the image clustering
problem.

Non-parametric Bayesian approaches have recently been
attracting the attention as methods for selecting optimal
model structures. For example, the nested Dirichlet process
mixture model [30] provides a model selection solution for
our MoGMMs. In a previous study, we proposed a non-
parametric Bayesian version of a mixture-of-mixture model
and showed that it was effective in estimating the number of
speakers [31], [32]. However, this model was based on the
conventional Chinese restaurant process and we employed the
conventional Gibbs sampling method, which is readily trapped
by the local optima. In future research, we plan to develop a
nested Gibbs sampling-based method for such non-parametric
Bayesian models.
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APPENDIX is independent from the others, and use the fact that
In this appendix, we provide detailed descriptions of how
to calculate the posterior probabilities for the fLVs and sLVs ¥ OV, N 2wu}) = p(Ovu Vs Z1a) Zp (Ou, Vi, 2u)
in Eqgs. (31) and (33), which are required for nested Gibbs Fu

-level 1 iabl ~ . . C e .
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where iliwijgij, 7ij ;> and 75 4 denote the hyper-parameters

(37) of the marginalized likelihood defined in Eq. (22). We can
also obtain the samples of fLVs from these factorized

To derive the result using Eq. (37), we assume that the distributions as follows:

marginalized likelihood for each complete data {0y, Vyt, 24 }
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where H (¥, ;) H(¥, ;) in Egs. (37) and (40) denote
the logarithmic likelihood of complete data with respect to
{O\t,Z,V\t} and {O\U,Z\H,V\u}, respectively.

To derive the result Eq. (40), we assume that the marginal-
ized likelihood for each complete data {0y, Ve, 2} is 1.4.d.
and we use the fact that
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