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Abstract
This article is devoted to nonlinear state and parameter estimation problems where the system
is represented in the state-space framework. This article comprises of two parts where the
first part provides a tutorial on prevailing nonlinear stochastic estimation techniques, and
the second part presents a self-contained description of estimation problems and solutions in
rechargeable Lithium-ion batteries.
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Revisiting the State of Charge Estimation for
Lithium-Ion Batteries

A Methodical Investigation of the EKF Approach

Yebin Wang, Huazhen Fang, Lei Zhou, and Toshihiro Wada

With high energy/power density, flexible and lightweight design, low self-discharge rates
and long lifespan, Lithium-ion (Li*) batteries have experienced a surging growth since being
commercialized in early 1990s [1]. They have established a dominance today in the consumer
electronics sector, with several billions of them being used to power cellphones, cameras, laptops
and tablets. Due to continually declining manufacturing costs, they are also rapidly penetrating
into sectors such as grid, renewable energy, automotive and aerospace, where large-scale energy
storage is needed. Looking into the future, the role of Li* batteries will be further strengthened
as a key energy-storage technology to support the progression of the world into the green-
energy era. However, their vulnerability to overcharging, overdischarging and overheating can
easily expose them to performance degradation, shortened cycle life, and even fire and explosion,
thus raising many concerns about their application. This challenge has been driving a massive
solution-seeking effort in various research fields. Associated with this trend is the advancement

of battery management systems (BMSs).



A BMS monitors the states and parameters of batteries, regulates the charging/discharging
processes, and performs balancing across battery cells in order to meet the power demands,
enhance safety and performance, and extend the lifespan. Among the tasks, the state of charge
(SoC) monitoring is particularly important. The SoC, representing the amount of remaining
charge in a battery, cannot be directly measured but is crucial for eliminating the threats of
overcharging and overdischarging. This fact has thus stimulated an ongoing quest for high-
caliber estimation strategies. Nevertheless, the evolution of SoC through time is based on complex
nonlinear dynamic processes corresponding to thermodynamics, electrode kinetics, and transport
phenomena. As a result, SoC monitoring involves, at its core, solving nonlinear estimation
problems and has been very actively researched in the last decade. An overview of the state

of the art is presented in Sidebar 1 “A survey of state of charge estimation”.

This article presents a self-contained study of the SoC estimation problem for Li* batteries
and solutions based on the extended Kalman filter (EKF). The EKF is arguably the most
celebrated nonlinear estimation approach, and in recent years, its popularity has extended to
battery management research. Now it is widely acknowledged in the literature as among the
most competent techniques for SoC estimation. Its application to this subject, however, is not
conclusive yet. The present literature has focused more on the use of the EKF technique, with
less emphasis on the observability and sensitivity analysis critical for a successful estimation.
The consequence is that some potential problems or pitfalls can escape notice—for instance,
some unknown and weakly observable parameters can potentially compromise the accuracy of
the full state estimation without any awareness. To remedy this issue, this study systematically
demonstrates how the nonlinear estimation theory can be effectively exploited to understand

the risks and challenges underlying accurate SoC estimation and build insights into improving
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the prevailing estimation methods. With a brief description of Li* battery fundamentals and
modeling, a thorough observability and sensitivity analysis is performed to illustrate the potential
pitfalls that may fundamentally undermine the effectiveness of SoC estimation. Specifically, it
is found that adaptive SoC estimation can be susceptible to a fundamental limitation plaguing
adaptive systems: weak observability due to over-parametrized models and poorly informative
data. Rooted in the observability/sensitivity analysis, the notion of parameter subset selection
is leveraged to single out the most identifiable parameters, thus having the weak observability
issue circumvented. Correspondingly, a new enhanced adaptive SoC estimator, consisting of
two reduced-order EKFs running in the cascade mode, is developed. Additionally, a two-stage
EKEF is presented to reduce the computational cost of the joint EKF-based SoC estimator. All
estimators are validated by synthetic and/or experimental data. The validation results agree with
the outcomes drawn from the analysis. This article is concluded by a summary and an outlook

to future work.

Li* Batteries and the Modeling

Preliminaries of Li* Batteries

A schematic description of a Li* battery cell is shown in Fig. 1. A cell is composed
of four main elements: the positive electrode, negative electrode, electrolyte and separator. The
positive electrode is typically made from Li* compounds, for instance, Li,Mn,O, and Li,CoO,.
Small solid particles of the compounds are compressed together, yielding a porous structure. The

negative electrode is porous as well but usually made of graphite particles. The interstitial pores



at both electrodes create intercalation space, where the Li* ions can be moved in and out and
stored. The electrolyte contains free ions and is electrically conductive, in which the Li* ions
can be transported easily. The separator, separating the electrodes apart, allows the migration of
Li* ions from one side to the other, but prevents electrons from passing through. The electrons
are thus forced to flow through the external circuit. During the charging process, Li* ions are
extracted from particles at the positive electrode into the electrolyte and then transported to the
negative electrode absorb Li* ions through the electrolyte. This process not only generates an
influx of Li* ions within the battery, but also builds up a potential difference between the positive
and negative electrodes. Discharging is based on the reversed process. The following equations

exemplify the chemical reactions in the positive and negative electrodes:
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The above working mechanism has been naturally abstracted into a diversity of spatially
two-dimensional (2D) electrochemical models, among which are the Doyle-Fuller-Newman
(DFN) model and its variants [2]-[4]. The 2D electrochemical models provide a high fidelity
characterization of underlying physical and chemical processes, which makes them suitable for
battery design and analysis. Though providing excellent physical insights, the 2D electrochemical
models are hardly adopted in real-time BMSs, largely due to the prohibitive computation and
onerous calibration. This weakness has been significantly relaxed by the single particle model
(SPM) and its extensions [5]—[8], which simplify the 2D electrochemical models to one spatial
dimension. Specifically, the SPM is derived by neglecting the electrolyte dynamics and treating
each electrode as a spherical particle which stores Li*. The SPM is valid for low to medium
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charge/discharge currents (up to 1 C-rate) [6], [7]. While the SPM enjoys remarkable reduction
of computation and calibration efforts in contrast to the 2D electrochemical models, it remains
computationally expensive for real-time battery management with a representation based on

partial differential equations (PDEs).

Instead of focusing on the electrochemical principles, many other threads of battery
models have been developed according to different needs. In particular, equivalent circuit models
(ECMs) have gained wide popularity among control engineers, representing a model class most
useful for BMS design and implementation [9]-[13]. ECMs are intended to replicate the battery’s
input-output characteristics or in other words, emulate how charge/discharge currents influence
the terminal voltage. A straightforward tool to understand and deduce the ECMs is the Thévenin’s
Theorem in circuit theory. The resultant Thévenin-based model consists of a series resistor, an
RC circuit, and a voltage source, and is found capable of accurately predicting the transient
response of the battery. Readers are referred to [11]-[13] for comparative studies of various
ECMs. Overall, ECMs are among the most advantageous for embedded BMS development and

will serve as a basis for SoC estimation in this article.

This article defines the terminology from a user perspective: treating the battery as an
electric power source. The battery is considered to be fully charged and discharged when,
with small charge and discharge currents, its terminal voltage reaches certain upper and lower
thresholds. For the LiFePO,-type cell used in the authors’ experiment (to be presented later), it
reaches full charge or discharge if its terminal voltage crosses 4.2Volt and 2.4Volt. A battery’s
nominal capacity is the amount of charge that it can take when brand new. The maximum

capacity is the amount of charge that can be extracted from a fully charged battery. The state of



charge (SoC) represents energy available in a battery. Typically quantified by the ratio between
the remaining amount of charge and the maximum capacity, the SoC takes values in [0, 1].
The state of health (SoH) indicates the capacity fading as a battery’s maximum capacity will
decrease gradually throughout the charge and discharge cycles. In general understanding, the
capacity fading is attributed to unwanted side reactions including electrolyte decomposition,
active material dissolution, and passive film formation. Accordingly, the SoH can be associated
with or represented by different quantities, such as the ratio of the maximum capacity to the
nominal capacity or the battery impedance indicating the film formation. The open circuit voltage
(OCV), is the terminal voltage of the battery when it is cut off from the load. The OCV is uniquely
determined by the SoC because the OCV corresponds to the difference between electrostatic
potentials of the negative and positive electrodes, and the electrostatic potential of an electrode
is determined by the quantities of Li* ions stored in the electrode [7]. The red dash dot line in

Fig. 2 shows the OCV curve of the battery cell used in the experiments.

Batteries have many interesting but complicated phenomena: capacity fading, self-
discharge, relaxation, hysteresis, the SOC-OCV curve, current-voltage characteristics, etc. Self-
discharge represents the fact that the remaining charge stored in a battery will deplete over time.
Depending on the cell chemistry, self-discharge could take up to years [14]. Relaxation is the
change of the terminal voltage after the battery is disconnected from the load. The relaxation
effect results from the Li* diffusion that continues even after the cell is cut off from the external
circuit and can take up to hours. The hysteresis is generally referred to the phenomenon that:
during a discharge, the battery terminal voltage always relaxes to a value less than the true OCV,
and during a charge, the battery terminal voltage always relaxes to a value greater than the true

OCV [9]. Fig. 2 shows the hysteresis effect of the battery cell used in the experiment. Note that



batteries with different chemistry could have these characteristics at different levels.

An Equivalent Circuit Model

This article considers a battery model shown in Fig. 3. It combines the Thévenin-based
ECMs [11] with the hysteresis voltage dynamics [9]. The former offers a grasp of dynamic
current-voltage characteristics, and the latter compensates the static current-voltage property.

The model, striking an adequate balance between fidelity and simplicity, is given by

X =—-al,

1 1
2 2, b
X° = RdCdx +Cd,

(1
x3 — _fyl]l [sign(I)Vhs(xl) +x3:| P

y=h(x")—x* 4+ x> — Ry,
where x! is the SoC, x? the voltage cross the RC circuit, x> the hysteresis voltage, I the current
in discharging (I > 0) or charging (I < 0), y the terminal voltage, Vj(x') the equilibrium of
the hysteresis voltage dynamics, and h(x!) represents the SoC-OCV relationship. The model
(1) includes parameters o, Ry, C;, Ry and 7y, where a = 1/(3600C,) with Cy the maximum
capacity, Y is the inverse of the hysteresis voltage dynamics time constant, and R, R; and Cy
are as defined in Fig. 3. The function sign(/) =1 for I > 0 and —1 otherwise. Here, the self-
discharge phenomenon is not considered, because it is very slow for Li* batteries and has a
negligible influence on state. The capacity fading can be reflected by the change in o. However,
it is also a slow process, at rates several orders smaller than the battery state evolution. This
implies that & can be treated as a constant during the SoC estimation. The thermal effects are
not explicitly included in the battery model (1), but their effects can arguably be compensated
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by adjusting model parameters.

In sequel, the following notation will be adopted for a vector . Its i-th element is denoted
by {'. At the k-th time step, the i-th element is represented by {/, and the j-th power of ! is

denoted as ({})/.

Offline Model Calibration

The battery model (1) must be calibrated prior to SoC estimation due to the presence of
Vis(x1), h(x') and unknown parameters. Calibration of & can be achieved by depleting and then
fully charging the battery with small currents. Impedance parameters R;,C;, Ry can be calibrated
by: 1) injecting zero-mean current signal into the battery and collecting the input and output data;
2) linearizing the model (1) around a certain equilibrium x, = [x},0,0]" to obtain a linear time-
invariant (LTT) model with linear parametrizations; 3) following standard procedures to identify
parameters [11], [15], [16]. While offline adaptation is straightforward to understand and execute,
online adaptation of all parameters is usually preferred. This is true for a because its offline
calibration can be rather time-consuming and even unrealistic for some practical applications.
The same observation extends to the other parameters as they vary with the current, SoC, and

temperature indeed.

Specifically, when small constant charge and discharge currents are applied to the battery
model (1), the voltage across the RC circuit and the hysteresis dynamics will both reach equilibria.
According to the state equation of the battery model (1), these equilibria can be described as
odd functions of the current. Therefore, the true SoC-OCV data can be derived as the average

of the charge and discharge SoC-OCV curves.



Next is to parametrize the functions i(x!) and Vj(x'), which has been studied by many
researchers and often relies on a battery’s energy storage dynamics. As an example, work
[11] proposes A(x!) = agexp (a1x!) + ap + azx! + as(x")? + as(x!)?, where a; for 0 < j <5
are unknown parameters; in work [17], A(x') is parametrized by aglog(x' +a) +as; work [9]
takes the Nernst parametrization h(x!) = ag+aj log(x;) 4 aslog(1 —x!). Parametrization of h(x!)
ought to be determined in a way such that it can predict the true SoC-OCV curve and give rise
to a simple expression of the hysteresis voltage Vj,(x!). Ideally, the equilibrium of Vj,(x!) can
be represented as a constant so as to allow for a decoupling from x!' [9]. However, this is not the
case for the battery used in the experiment according to the SoC-Vj,(x!) plot shown in Fig. 2.
Figs. 4-5 illustrate how to choose the parametrization of 4(x'). As shown in Fig. 4, with a fixed
x! and the parametrization #1, Vj, (xl) is not an odd function of /. With the parametrization #I,
it necessitates two individual functions of Vj,(x') for the charge and discharge processes. On the
contrary, with the parametrization #2, Vj,;(x') is virtually an odd function of 1, and thus can be
represented by one simple function, V,(x!) = s(1—x!), for both charge and discharge processes.
Fig. 5 verifies that the Vj,(x'), if parameterized by s(1 —x!) with s = 0.0755, fits the measured

data to a high precision.

State of Charge Estimation in Batteries

A BMS achieves a safe and efficient utilization of batteries only when it maintains
accurate estimation of the battery state and parameters including the SoC and SoH. Given
the nonlinear battery model and measurements, the SoC and SoH estimation problems can be

formulated as nonlinear state and parameter estimation, respectively. The rest of this article will



focus its scope the SoC estimation. This is because state and parameter estimation will be mingled
and can be addressed in the same framework or through similar estimation techniques [15], [18].
As such, a focus on the SoC estimation will still put SoH estimation in perspective, without

compromising the value and contribution of this article.

In this section, both non-adaptive and adaptive SoC estimation problems will be examined
on the basis of a thorough observability and sensitivity analysis. Baseline and new EKF-based
SoC estimators will be provided and validated by using both simulation and experimental data.
Synthetic data for simulation are generated from the battery model (1) with parameters: Cy =
4.9302Ah, R; =3 x 10730hm, C; =9 x 10°F, y=2.47 x 1073, s = 0.0755, Ry = 5 x 10~>ohm.
Experimental data are collected from a 18650-type Li* battery cell run on a battery tester located
in the Advanced Technology R&D Center, Mitsubishi Electric Corporation. The battery has a
nominal capacity of 4.9302Ah. The sampling period is 7y = Isec. During the experiment, the
ambient temperature in the chamber was maintained at 25.8°C. Throughout this section, the
default units for voltages and currents are Volt and A, respectively. The battery capacity is given
in the unit ampere-hour Ah. While the performance of estimators can be assessed on multiple
criteria including the root-mean-square error and the c-norm of the estimation error signal, it is
known that all norms are equivalent in some sense, so the co-norm of the SoC estimation error

is adopted as the single criterion here for the sake of simplicity.

Non-Adaptive State of Charge Estimation

Dynamic model-based non-adaptive SoC estimation is to reconstruct the SoC without

parameter adaptation, based on the battery model (1) and the current and voltage measurements.
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Observability analysis of the battery model (1) establishes that (i) the battery model (1) is not
uniformly observable; (ii) with a constant control, the battery model (1) is observable almost
over the entire range of the SoC. Subsequently, the EKF is applied to solve the non-adaptive SoC
estimation problem. Validation using the synthetic and experimental data reveals that the EKF
estimator performs well with exact model knowledge, but fails to provide accurate estimation in

the presence of the model-plant mismatch.

Uniform Observability Analysis

Uniform observability is of great importance as a prerequisite for applying diverse
nonlinear observer design tools [19], [20]. It also often comes as a critical condition to establish
the convergence of estimation error dynamics. Readers are referred to Sidebar 4 for details on
uniform observability for nonlinear single input and single output affine control systems. The

state equation of the battery model (1) admits the form

x = f(x) +g(x,sign(N))1,

where x = [x',x>,x*]T, a smooth vector field f(x) = [0,—x?/1,4,0]" with ©; = R;C,, and a
non-smooth vector field g(x,sign(!)) = [—oa,1/C4,—¥{(1 —xl)s+sign(1)x3]]T. With 1 = 0, the

battery model (1) is reduced to the following uncontrolled form

x= f(x),
(2)
y=h(x")—x*+x°.

A necessity for the model (1) to be uniformly observable is that the uncontrolled model (2) is

observable. For the latter, the observable coordinates ¢ (x) = [y,L¢y, L%y]T are expressed by

y=h(x") —x* 423,
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Liy =21,

sz‘y = _XZ/T57
where Lrk(x) is the Lie derivative of the smooth function x(x) along the vector field f. The
Jacobian of the observable coordinates, also referred to as the observability matrix Q,(x), is

singular. The uncontrolled model (2) is not state observable, and thus the battery model (1) is

not uniformly observable.

An interpretation of the unobservable space can be acquired by considering the following

LTI system
0 0 0
X=10 —I/Td 0f%
3)
0 0 0
)7:[017_171])?7

1
where ¥ = x —x,, x, = [x},0,0]T with x! €[0,1], and ¢; = %’J&' The system (3) is derived
from the linearization of the uncontrolled model (2) around x,. For an n-dimensional LTI system

CZACC-FBCM,
“4)
y:CCC7

where { € R”, the state observability can be examined by verifying the rank condition:
rank([AL, —A},C;/]") = n for all eigenvalues A of A;. Note that I, is the n x n identity
matrix. Regarding system (3), the rank condition is violated for the eigenvalue A = 0. Hence,

the unobservable space constitutes an eigenvector corresponding to the eigenvalue A = 0.

The observable subspace of the uncontrolled model (2) can also be established. According
to [21, Def. 3.29], the observable space is the linear space (over R) of functions A(x!) —x? +x°
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and x2. Similarly, based on [21, Prop. 3.34], the unobservable submanifold is derived as Sy =
{x|h(x") —x*4x*> = 0,x*> = 0}. Physical interpretation of the unobservable submanifold is evident:
with 1 = 0, both the hysteresis voltage x> and the OCV stay constant, but only their sum can be

inferred from the output. Hence, x' and x* are indistinguishable.

Observability Analysis: Constant Control Case

In demonstrating the basis procedure for observability analysis, the above shows that
zero control input will render the battery model (1) unobservable. However, this does not imply
the infeasibility of SoC estimation. Since the SoC estimation is meaningful during the battery
operation, it is more relevant to investigate whether the battery model (1) is observable when
practical control inputs exist. Similar problems have been studied for general non-affine control
systems [22]. Observability analysis can be performed when the battery model (1) is subject to

a specific form of control inputs.

For illustration purposes, this section demonstrates the observability analysis when the
battery model (1) is subject to constant control inputs. Without loss of generality, assume / =
Ip > 0 with Iy constant. The battery model (1) is rewritten as x = f(x),y = h(x') —x*> + x> — Ryl

with f(x) = [—aly, —x* /14 +1o/Ca,—YIo[(1 —xl)s+x3]]T. The observable coordinates are

Ly =—ol, - — 1—xh+x°
y=—ah G+ = 21—+,
2h(x") x Iy
Ly = aly | al — S — 1—x") 44
A 050 9(x1)2 } 2 + 7,C, +7 [s(1=x")+x7],




and the observability matrix is given by

In(x")
3 —1 1

Qo To) = | ys— azﬁ(l)lz)alo Ly
3n(x!
12 (h()g) yzs _%5 ¥

The determinant of the observability matrix is det(Q,) = 1/72p (x')(yts — 1), where

3 2 xl xl
p(x') = aagc()3)a Talg — alo%(mﬂw%yws-

The observability matrix is singular if and only if one of the following facts holds:

(i) yty; = 1. This fact holds only if the RC circuit and the hysteresis voltage dynamics have

exactly the same time constant, which is unlikely in practice.

92h(x")
9 a(x1)2

Shix
d(x')?

0, %j;) > 0 for almost all x! € [0,1], as shown in Fig. 6, one immediately has p(x') > 0.

(ii) p(x') = 0. This fact imposes conditions on the function h(x!). with 220 5 g <

The battery model (1) with non-zero constant controls is therefore observable for almost
all x! € [0, 1]. The non-singular observability matrix is however not enough to guarantee accurate
state estimation, because the state estimation performance can be compromised by the existence
of weakly observable modes [23], [24]. A linear system is weakly observable if the observability
matrix is ill-conditioned. Similar criteria have been used for nonlinear systems [25]. Unlike
linear systems, the observability matrix of a nonlinear system often depends on control inputs.
A common practice is to check the observability matrix for a given control input. As an example,
the observability matrix of the battery model (1) is checked for a constant current input / = 2C-
rates, with the condition number plotted in Fig. 7. The observability matrix has the condition
number at the order of 10*. Despite a possible issue for a high dimensional matrix, the condition
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number of around 10 is not a problem for a 3 x 3 matrix [26]. The non-adaptive SoC estimation

problem is therefore well-posed.

Observability analysis of the battery model (1) can be alternatively conducted in
nonlinear switched system setting, since the model (1) can be reformulated as a switched
system with g(x,sign(l)) = [—Oc,l/Cd,—}/[(l—x')s+x3]]T for 1 >0 and g(x,sign(l)) =

[—at,1/Cq,—y[(1 —x")s —x7]] " otherwise. Interested readers are referred to [27] for details.

Applicability of the Extended Kalman Filter

The aforementioned observability analysis manifests that the battery model (1) is not
transformable to special structures as required by normal form-based observer designs [19], [22],
[28]-[36]. In addiiton, deficiency of uniform observability defies a large portion of nonlinear
observer designs. On the contrary, nonlinear stochastic estimation techniques do not impose such
restrictions on the system structure. The incentive to explore the SoC estimation in the stochastic
framework is further strengthened by the necessity to accommodate sensor and actuator noises.
Thus in this regard, nonlinear stochastic estimators such as the EKF, the unscented Kalman filter
(UKF) [37], [38], the Ensemble Kalman Filter (EnKF) [39]-[41], and the particle filter [42]
are preferable thanks to the capability of dealing with noises and quantifying uncertainties
and confidence intervals of the estimates. Compared with the particle filter and the moving
horizon estimator [43], the EKF and its variants, the UKF and the EnKF, are attractive for the
relatively easy design and implementation and moderate computational expenses for low-order
systems. This technique also suffers from several shortcomings such as performance degradation

due to linearization-induced errors or non-Gaussian noises, lack of stability results, and hefty
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computational costs for high-dimensional systems. Yet the advantages outweigh the disadvantages
when low-dimensional stochastic systems as in many real-world applications are concerned, so
the EKF is still a highly appealing tool, if not the most popular, among industrial practitioners.
As such, the EKF is a competent solution to non-adaptive SoC estimation problem. A look at

the noises and lineariziation error in the case of SoC estimation below corroborates this point.

Noises in sensors and actuators of the BMS mainly come from quantization errors,
constant offsets, and noises due to power electronics. The constant offsets in sensors and actuators
can be readily dealt with by introducing constant bias parameters in the estimator [23], [44].
Noises in power electronics are typically at much higher frequencies than the sampling frequency
and the bandwidth of the battery dynamics, and thus are negligible. Concerning the quantization
error, a plethora of research work towards analyzing the stochastic properties, and mitigating
the adverse effects on feedback control systems. For instance, work [45] establishes necessary
and sufficient conditions to ensure that the quantization error is white and additive. Work [46]
establishes that the uniform quantization often leads to additive quantization errors with white
spectrum. In work [47], effects of different quantization schemes on Kalman filter-based state
estimation for LTI systems are analyzed; and demonstrates that certain quantization schemes
render the output error y —y asymptotic Gaussian process, and thus validate Kalman filter-based
state estimation. Thus it will not cause a loss of generality to assume that the quantizers have been
designed to produce white and additive quantization errors. Last but not least, the detrimental
effects of the linearization-induced error on the EKF-based SoC estimation are insignificant

because

(i) the battery model (1) does not possess strong nonlinearity. Specifically, the state equation
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is linear in the state; as shown in Fig. 6, the nonlinearity in the output equation has a

gradient bounded by [0.75,3];

(i) the model mismatch due to linearizing the output equation can be effectively alleviated

by setting the initial SoC of the EKF estimator close to the true value. This is possible

because the output y is dominated by the OCV and thus can be used to generate a good

initial guess of the SoC.

Extended Kalman Filter-based State of Charge Estimation

To facilitate the EKF-based non-adaptive SoC estimation, the battery model (1) is

discretized to give the following discrete-time model

X1 = Ar(0, up)xx + By (0, ug ) uy +wy,

yi = h(x}) —xg +x; — 01 + vy,

where 0 = [0!,---,0°]T, k is the time index, ux = [I;1]", w} = [w

&)

,lc, ... ,wi]T are process

noises, and v is the measurement noise. The noise covariances are W = E[wi(w})'] =

diag{W,',...,W?}, and Vi = E[(v)?]. Matrices in (5) are given by

Ar(6) =
__91

Bi(6)= | @3
I 0

where 8! = aTy, 8% = exp(—T;/14),6°

1

0

0

0

((64) — 1)sign(7;)s |

0

92

(1—(6h)*)sign(z)s 0

0

Ry(1—62),0* =exp(—7T;),0° =Ry, s = 0.0755, and

Ty = 1sec the sampling period. For ease of presentation, x,l is treated as a constant during the
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discretization of the hysteresis voltage dynamics.

The sampling period is determined by the battery dynamics, the sensor resolution and
computation resources. Given that the time constant of battery dynamics is typically longer than
ten seconds [9], [11]-[13], the sampling period can be a few seconds. On the other hand,
the sampling period should be long enough such that the data acquisition hardware in the
BMS can produce accurate readings. This is primarily constrained by the sensor resolution,
the impact of which can be exemplified by the voltage sensor. Based on the specification of
the battery terminal voltage, the voltage sensor range can be selected as [0,5]Volt. With a 12-
bit A/D converter, the resolution of the voltage sensor is 5/2'2 = 0.0012Volt. As pointed out
in [48], typical electric vehicles and hybrid electric vehicles are ideally discharged at 1 C-rate
and 3 C-rates. Assume that the battery is charged at 3 C-rates. The SoC increases at a rate
of 0.084% //sec. Considering the gradient plot in Fig. 6, the terminal voltage increases at the
rate ranging [0.00063,0.00252]Volt/sec. The changes of the terminal voltage within a sampling
period 7; = 1sec can be barely detected by the voltage sensor. A sampling period shorter than

Isec will be unnecessary.

Given the discretized model (5), the EKF design for the full state estimation is
a straightforward exercise of results in Sidebar 2 and thus omitted. The EKF-based non-
adaptive SoC estimator is first validated by synthetic data, which are generated by exciting the
discretized model (5) with two current profiles: pulses and urban dynamometer driving schedule
(UDDS). The initial conditions (ICs) of the battery model and the EKF estimator are taken as
xp = [0.95,0.1,1073] T and %y = x/2, respectively. Tuning parameters of the EKF are taken as:

Q° = 107*13,R = 10~*, Py = 0.5I3. The EKF estimator is fairly robust to changes of Q,R, and
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the tuning is straightforward. Simulation results for both the pulse and the UDDS current profiles
are shown in Figs. 8-9. When both the model (5) and the EKF use the same values of model
parameters, the SoC estimates converge to the true states. With model parameters 20% off the

true values, the EKF could not give convergent SoC estimates.

The EKF-based non-adaptive SoC estimator is further validated by experimental data,
with results shown in Fig. 10. It reveals that the SoC estimation is unsatisfactory. This is because
the values assigned to the parameters may differ from the truth. Since no parameter adaption
is exploited here, the model mismatch remains throughout the entire estimation process. This
implies the necessity of integrating a parameter adaption mechanism in order to improve the

SoC estimation accuracy.

Adaptive State of Charge Estimation

As shown above, non-adaptive SoC estimation is near a failure in the experimental
validation. This does not come as a surprise, because the simulation is premised on accurate
parameters, and by contrast, an exact knowledge about battery parameters is absent in practice.
Even worse, the battery’s parameters can fluctuate with the input current, the SoC, and the battery
temperature. Adaptive SoC estimation, hence, is of considerable importance in the real-world
battery use, with its capability of updating the parameter values in real time to provide a better
model. This section offers a series of EKF-based adaptive SoC estimators. For self-completeness
and comparison purposes, a baseline joint EKF estimator is first presented to expose its weakness:
the relatively high computational cost and tremendous tuning efforts. The high computation cost

is alleviated by leveraging a two-stage EKF described in Sidebar 3. The tuning difficulty is
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addressed by sensitivity analysis which singles out a set of most identifiable parameters to
exclude weakly observable modes. Based on the sensitivity analysis, an enhanced adaptive SoC
estimator is developed. Finally, simulation and experiments demonstrate the effectiveness of both

the enhanced adaptive SoC estimator and the two-stage EKF design.

Joint Extended Kalman Filter Approach

Joint EKF frequently appears as a viable solution to many applications involving state and
parameter estimation. A comprehensive description of its application to adaptive SoC estimation
is presented in [49]. The joint EKF-based adaptive SoC estimator is based on the following
augmented battery model

A (Ok, ui)xx =+ By (O, g ) uye Wy

xz—i— 1= + )
Qk W]? (6)

Ve = h(x}) =3+ — T+ v,

where x¢ = [x],6,']" € R is the augmented state, and w? = [w¢,...,w}]" with the covariance

matrix W2 = Ew?(w?)'] = diag{W}*,...,W2}. The augmented battery model (6) is derived
from treating battery parameters constant. Such a treatment is arguably valid when battery
parameters vary much slower than the sampling period. Fluctuations of the temperature and
SoC are typically slow, and thus their influences on battery parameters can be characterized by
the term w,?. The covariance of w,? should reflect how fast parameters change over time. The
charge rate might change faster than the sampling rate, and the resultant parameter variations
cannot be captured by the model (6). This limitation however can be addressed by considering
rate-dependent parameter models as in [11]. It is not theoretically justifiable to assume a diagonal
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Wke, because the components of w,? are induced by the temperature variation and thus correlated.
Non-diagonal Wke might be addressed by adaptive EKFs that estimate the noise covariances along
with the state, though the adaptive EKFs may suffer from weak observability in this case because

of more unknown variables to estimate [50].

Given the augmented model (6), the joint EKF-based adaptive SoC estimator can be
acquired according to Sidebar 2 and thus omitted here. While simulating the joint EKF-based

adaptive SoC estimator with the synthetic data, its ICs and tuning parameters are given by

£ =10.75x7,0.86, ] ",
Q =diag{107%,1073,1078,5 x 1071, 107%,1071°, 107,107},
R=10"*%,

Py = diag{0.0625,0.01,107%,1071°,0.0625,1077,0.0625,10 73},

where xp = [0.95,0.1,1073]T is the true state, and 6y = [6.94 x 107>,0.989,3.31 x
1074,0.998,0.08] " the true parameter values, computed according to true values of
Rg,R;,C4,Rs,Cy. Simulation results are given in Fig. 11 for the pulse current, and Fig. 12 for the

UDDS current. Simulation results for both current profiles lead to the following observations:

(i) Unlike the non-adaptive case, the joint EKF-based adaptive SoC estimator can provide
accurate SoC estimation.

(1) Significant efforts are required to tune the Q, Py to ensure the convergence of the state and
parameter estimation. With slight changes of Q, Py, the joint EKF might fail to converge.
Parameters 62,0% are much more difficult to estimate than other parameters. This is
consistent with the sensitivity analysis to be offered below.
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(111) The adaptive SoC estimator takes longer to converge than the non-adaptive case. This is

as expected due to the additional parameter identification process.

The joint EKF is also verified by the experimental data, as shown in Fig. 17. Both
simulation and experimental studies confirm that the adaptive SoC estimation outperforms the
non-adaptive case in terms of the estimation accuracy, though it should be noted that tuning of

the joint EKF for adaptive SoC estimation iS more time-consuming.

Fig. 7 plots the condition number of the observability matrix when the eighth order
augmented model (6) is excited by a constant current. The observability matrix is nonsingular
but ill-conditioned, which implies that the eighth order augmented model (6) is only weakly
observable. The tuning difficulty of the joint EKF can be explained by the known result: the
full state estimation performance can be dramatically compromised by the existence of weakly
observable modes [23], [51]. Even for a strongly observable nonlinear system, the EKF tuning
remains a challenging problem. Meanwhile, adaptive EKFs, aimed to alleviate the tuning efforts
by online identification of noise covariance matrices, have been intensively investigated [50]-
[52]. Such methods however can incur a significantly increased computation load, and thus their

adoption to the BMS remains uncertain.

Performance of the EKF heavily depends on matrices Q, R and Py. For linear systems,
ideally, Q,R, Py are the covariances of the process noise, measurement noise, and initial state
error. For nonlinear systems, the tuning of Q, R, Py is not straightforward and typically resorts to
the trial-and-error approach, though existing work does establish some useful insights [53], [54].
A common tuning guideline is that Q,R should take into account linearization errors as well
as noises [53]. Next shown is the tuning practice followed in the simulation. Denote a constant
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matrix Q = diag{q',---,¢®}. Guidelines to determine Q and R are illustrated by exemplifying
the determination of ¢!, ¢%, R from the first state equation, the eighth state equation, and the
output equation of the battery model (6). Assume that the noise covariance of the current source

is W = 10~*. Considering
’e/hk = ﬁli|k—1 + Kk = 1) = =G 11l + V@' + K (e — 1)
with Kk1 the gain, and the true dynamics x,i = —oy(Iy +w,1), one will have

xli _%k _ _KI: (Vi —yAk|k—1) —\[((Xk — &k_1|k_1)1k+ Ockwll]/— Vq'.

Vv
1
dk

Let ¢' = E[(d})?] to compensate linearization errors and noises such that the estimation error
dynamics are dominated by the term —K}! (y; — Vifk—1)- Considering that (o — O _jjx—1) ~ 1073,
w,l ~ 1072, I; ~ 10, the covariance of d,l is in the order of 1078, Hence, ¢! should be taken a
value around 10~%. Conditions on ¢?,4> can also be similarly derived. Differently, ¢*,...,4% are
associated with parameter dynamics 9,2 = 9,§ +w§'€, which is not subject to a linearization error.
For 4 < <8, qi depends on the nominal value of the parameter 6!, and how fast the parameter
changes. Taking 6> as an example, its nominal value is around 1073, Assume that parameter 6°
changes at a time constant of about one hundred seconds. Given the sampling period 7y = 1sec,
one would like to tune ¢® such that the EKF can track the parameter within its time constant.

That is to say, ¢® should be at the order of 1019, Similar idea is applicable to tune ¢*,....q’.

The matrix R accounts for uncertainties in yx — yx—1: the linearization error and noises.
Assume that the voltage sensor has a noise covariance 10~°. With the Taylor series expansion
of h(x"), yx — Jilk—1 s approximated as

d%h(x")

I | (% = Eep1)” = Roewg +vi+ O (o — Fp 1))
X
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The first term is approximately at the same order as (x,i —)%k_l)z or 1072, Given R, ~ 1073,
w,lC ~ 1072, and Vi ~ 1073, the second and third terms are at the order of 107> and 1073,
respectively. Overall, the order of the linearization error is 1072, This implies that R should be
around 104, Note that the above selection for Q and R is a worst-case design. In fact, as the
EKF estimator converges, the linearization error decreases, which calls for a decline of Q and R
accordingly. In the simulation, the matrices Q, R are set to be constant for simplicity. A similar

tuning technique has been developed and applied to tune the EKF for chemical processes [55].

Two-stage Extended Kalman Filter Approach

A two-stage EKF based on the optimal two-stage Kalman filter (OTSKF) [56], [57] is
designed and validated for the adaptive SoC estimation, aiming at balancing the computation
complexity and estimation performance. The two-stage EKF is applied to the augmented battery
model (6). Readers are referred to Sidebar 3 where a detailed design of the two-stage EKF for

a nonlinear system is provided.

With the same ICs and tuning parameters, both the two-stage EKF and the joint EKF
are validated by experimental data. The SoC estimation results are plotted in Fig. 14, where the
two-stage EKF produces comparable performance as the joint EKF. The computational burden of
the two-stage EKF and the joint EKF for the adaptive SoC estimation problem can be evaluated
as in [56] and [57]. Given that the dimensions of the state, parameter, input, and output are
ny =3, ng =5, n, =1, and ny, = 1, respectively, the two-stage EKF takes 558 fewer arithmetic

operations per sample time than the joint EKF.
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Sensitivity Analysis

When addressing an adaptive estimation problem, two important questions to ask are
whether adaptive estimation is possible and how difficult it is. These questions can be answered
by rigorous observability/identifiability analysis, which has been carried out in different ways. As
a standard approach, the observability analysis can be performed on the augmented model (6).
Provided that the observability matrix is non-singular and well-conditioned, the stable adaptive
SoC estimation is possible [58, Lem. 2.2.4]. When the augmented model (6) is subject to a
constant current input, the observability matrix Q, is nonsingular. Analysis however demonstrates
that Q, is ill-conditioned, as shown in Fig. 7. In order to determine which parameter causes the
ill-conditioning of Q,, one augments the battery model (1) with different parameters and then
examines the condition numbers of the augmented battery models. This procedure is tedious
because it requires an exhaustive enumeration of all possible parameter sets, and the matrix
Q, is rather intricate. See [59] for an example of applying rigorous algebraic identifiability

conditions to an HIV/AIDS model.

Another approach makes use of the sensitivity analysis to determine whether parameter
variations can propagate to the output y. Sensitivity analysis is the study of how uncertainty in
the model output can be apportioned to different sources of uncertainty in the model input [60].
Sensitivity analysis has been successfully applied to miscellaneous engineering problems: identify
critical regions in the parameter space [60], determine the most identifiable subset of parameters
to facilitate model reduction and parameter estimation, etc. Particularly, a multitude of recent
works report how sensitivity analysis is exploited to choose the most significant parameters

for diverse engineering systems, for instance, waste water treatment processes [61]-[63], the
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activated sludge model [64], synchronous generators [65], [66], to name a few. Interested readers
are referred to [60] for more information about sensitivity theory and applications. Compared
with the observability analysis, sensitivity analysis is straightforward to troubleshoot an ill-posed

estimation problem and thus is instructive in practice.

Sensitivity analysis can be employed to establish that the adaptive SoC estimation based
on the augmented model (6) suffers from the fundamental limitation caused by the over-
parametrized battery model and the limited data. It can further provide guidelines to bypass the
limitation. For simplicity, local sensitivity analysis is performed, where small perturbations of
parameters at specified nominal values are first assumed, and then the impact of the perturbations
on the output is quantified [60], [63]. Regarding the augmented model (6), the sensitivity of y

w.r.t. parameters can be derived

dy oh dx! dh

90T~ axlogl ~ lgn

062 962

dy ox?

205~ 9er = " @
3

% = % = | (94)|I|_1 [x3+sign(l)(1 —xl)s} ,

dy

ﬁ _I.

Provided that x* < l,x3 < 1, 6% ~ 1, and s = 0.0755, 6% and 6+ barely affect y and are difficult
to identify. This qualitative reasoning is affirmed by simulation results, which are shown in Fig.
13. Since the sensitivities of y w.r.t. 8 and 6> are equal to —I, Fig. 13 only plots dy/d6!,

dy/d6?, and dy/d0*, when the battery model (1) is subject to the pulse and the UDDS currents.

The aforementioned sensitivity analysis result can be nicely interpreted in adaptive
framework [15]. Considering that the gain from the control input to x! is 1/(3600C)) < 1,
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the state x! can be treated as a constant for a reasonably long time interval. Additionally, states
x? and x® always stay in a small neighborhood of the origin. Within a reasonably long time
interval, the battery state barely changes, and thus the battery model (6) can be treated as an
LTI system. With this in mind, one can establish the strong connection between the sensitivity
analysis result and the persistent excitation condition [15]. This is elucidated by studying a
single input and single output LTI system (4), where A, By and C¢ are unknown matrices. It

is understood that system (4) can be transformed into another special form

X = Kx+ Byy+ Byu,
(®)
y=Cx,

where both K and C are known and in special structures [15]. Unknown parameters of system
(8) only appear in B, and B,. With (8), a set of filters can be constructed to generate known

signals y(¢) such that y takes a linear parametrization [15]

where 6 = [B)T ,BI1" and w(t) = [w!(¢),...,w?"]. Applying local sensitivity analysis gives
dy(t)/d60" = y'(t), and concludes: a parameter ' is deemed critical only if the auxiliary
signal W(¢) has a relatively large magnitude over ¢ € [0,00). On the other hand, the persistent

excitation condition requires there exist constants 0 < T < oo, 0 < & < B < o such that

ol < [Ty (D) w()dr < Bl

Sensitivity Analysis-based Extended Kalman Filter Approach

An enhanced adaptive SoC estimation scheme is provided to cut back the tuning work
associated with the joint EKF. As a direct application of the sensitivity analysis, one selects a
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subset of parameters to which the output is strongly sensitive, and augments the battery model (1)
with the selected parameters instead of the entire set of parameters. Considering the demonstrated
similarity between the sensitivity analysis result and the persistent excitation condition, such
a scheme can find support from the adaptive theory: adaptive estimation of a higher order
system requires richer excitation signals [15]. With the most identifiable parameters to estimate,
conditions result from the sensitivity analysis are more likely satisfied. The scheme is also
validated by performing the observability analysis on the fourth order battery model, which is
obtained from augmenting the battery model (1) with an additional state o. With a constant
current applied to the fourth order battery model, the condition number of the observability
matrix is shown in Fig. 7. Compared with the eighth order augmented model, the observability

matrix is significantly conditioned.

The aforementioned scheme is validated by conducting two studies based on experimental
data. In the first study, a reduced order EKF-A is implemented to estimate the battery state x
and two parameters: 0',0°. Results are shown in Fig.15. As anticipated, tuning of the EKF-A

is a lot more straightforward. Several statements can be made from this study:

(1) The SoC estimation produced by the EKF-A is less accurate than the joint EKF case.

(1i1)) The EKF-A provides more consistent estimation of 6! and 6 than the joint EKF.

With an averaging window size of 1000 time steps, the EKF-A outputs parameter estimates:

6, =5.719x 1075 and 65 = 7.634 x 1074,

In the second study, a reduced order EKF-B is utilized to estimate the battery state and
parameters 62,03, 0. Experimental results of the EKF-B are given in Fig. 16, from which the
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following facts are observed:

(i) The SoC estimation from the EKF-B is not satisfactory. This is associated with the use of
the incorrect maximum capacity value.

(i1) The SoC estimation accuracy of the EKF-B is dominated by the error between the o value
used in the EKF-B and the true value.

(iii) The unknown parameters 62, 63 and 6* are still difficult to identify. This phenomenon is

caused by their weak identifiability and agrees with the sensitivity analysis results.

With the aforementioned analysis and validation, the sensitivity analysis-based enhanced

adaptive SoC estimation scheme is given as follows

(i) In the beginning, the EKF-A estimates the battery state and two parameters: 8! and 6°.
(i) After the EKF-A produces convergent parameter estimation, the EKF-B estimates the
battery state and the rest parameters, using ' and 6> from the EKF-A. The SoC produced
by the EKF-B constitutes the final SoC estimate.
(iii) Both the EKF-A and EKF-B run in the cascade mode. Specifically, the EKF-B runs with
the sampling period Ty = 1sec, and the EKF-A runs at a much slower time scale compared
with the EKF-B. This arrangement is justified by the fact that both 8! and the parameter

63 change at a pace much smaller than 7j.

Experimental data are applied to validate the enhanced adaptive SoC estimation scheme, and
results are compared with the joint EKF case. As shown in Fig. 17, the SoC estimation error of
the enhanced adaptive scheme is about +1% versus +2% for the joint EKF case. Additionally,
the enhanced adaptive scheme enjoys advantages such as a reduced level of efforts in tuning the
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resultant EKFs, and a lower computational burden.

One of challenges that a real BMS faces is how to mitigate adverse effects that result
from variations of the ambient temperature. This is important because the ambient temperature
change the noise properties, and the battery model parameters. An ideal SoC estimator can
either adapt to or reject the fluctuation of the ambient temperature. Improving the enhanced
EKF by adapting Q and R to the ambient temperature can be part of the future work. Next two
preliminary studies examine whether the enhanced EKF is robust against mismatches between
true noise properties and tuning parameters Q and R. In the first study, with the matrices Q
and R tuned simultaneously, the enhanced EKF is validated against experimental data. Fig. 18
compares the SoC estimation for four cases: the Q,R are 0.1, 1, 10, 100 times of the nominal
values. Results in Fig. 18 demonstrate that with increased Q and R, the performance of the
enhanced EKF barely changes; reduced Q and R do incur noticeable performance degradation. In
the second study, only ¢*,...,¢% are changed, and the enhanced EKF is verified by experimental
data. For four cases, where q4, e ,q8 are set to 0.5, 1, 1.5 and 2 times of the nominal values,
the enhanced EKF produces almost the same SoC estimation, as shown in Fig. 19. This study
offers some confidence about the robustness of the enhanced EKF estimator with respect to the

noise covariance mismatch, which can be caused by the fluctuation of the ambient temperature.

Conclusion and Future Work

This article offered an in-depth case study of nonlinear SoC estimation for Li* battery
management. SOC monitoring is at the heart of an advanced BMS to ensure safe and high-

performing operation of Li* batteries. This article demonstrated how the celebrated EKF
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technique can be effectively applied to solve the SoC estimation problem and how fundamental
concepts in nonlinear estimation theory can be readily utilized to enable the estimator design

and interpret the estimation results.

This article performed a thorough observability and sensitivity analysis with a simple
ECM battery model, which serves as a backbone for developing effective solutions to SoC
estimation. An existing joint EKF-based adaptive SoC estimator, which performs simultaneous
state and parameter estimation, is capable of producing accurate SoC estimation, albeit suffering
from tuning difficulty and a relatively high computational cost. The tuning difficulty is in large
due to fundamental limitations originating from the over-parametrized battery model and the
limited data. Inspired by this analysis, this article further presented two custom-built EKFs, an
enhanced EKF and a two-stage EKF, for adaptive SoC estimation. Compared with the joint EKF,
the enhanced EKF enjoys advantages such as improved estimation accuracy, reduced tuning
efforts, and a lower computational burden. The two-stage EKF shows comparable estimation
performance but requires considerably less computation. Compared to the literature, this article
builds the results on a systematic observability and sensitivity analysis, revealing and overcoming

the potential pitfalls that can undermine a successful application of EKF to SoC estimation.

Despite the success of KF-based techniques in the SoC estimation, many questions
remain open, which may represent opportunities for further investigation. First, how to prove
the convergence properties of the SoC estimators? While there exist some results about the
convergence of EKF, they have not been effectively transitioned to SoC estimation yet. Most
nonlinear SoC observers also find themselves in a severe shortage of convergence analysis,

because the battery models usually do not admit special structures often needed for relevant
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proofs. Second, the full state estimation pursued in the existing works is indeed unnecessary as not
every state or parameter will be of interest or use to the BMS, so how to construct reduced-order
estimators or functional observers for higher computational accuracy? Third, going beyond the
cell level, how to perform SoC monitoring and tracking for Li* battery packs? SoC estimation at
the pack level is rendered more challenging and interesting by the increased system sophistication
and mutual cell-to-cell influence. Along this line, an intriguing quest will be whether and how
one can make the best use of the battery dynamics to reduce the number of voltage and current

sensors without much sacrifice of estimation accuracy, please see Page 2.
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Figure 1. A schematic for the work mechanism of a Li* battery (source: Argonne National
Laboratory). A Li* battery cell consists of four components: two electrodes including an
anode and a cathode, the electrolyte, and an insulation separator. Both electrodes constitute
small particles filled with active material. During charging or discharging, a reduction-oxidation
reaction occurs at particles of one electrode and leads to release of Li* ions into the electrolyte;

the Li* ions are transported to another electrode, where Li* ions are absorbed into particles.
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Figure 2. The state of charge versus terminal voltage curves during discharge and charge
processes. (a) terminal voltages while the battery is charged and discharged with a current
0.235A. Blue solid: the terminal voltage during the charge process (the charge curve); green
solid: the terminal voltage during the discharge process (the discharge curve); red dash: the SoC-
OCYV curve obtained by averaging the discharge and charge curves. (b) the hysteresis between the
charge and discharge curves. In the battery model (1), the hysteresis in the charge and discharge
curves is captured by the series resistance, the RC circuit, and the hysteresis voltage x°. Since
the resistances are in the order of milliohm and the amplitude of currents is small, the voltages
across the series resistor and the RC circuit are negligible, compared with x>. The influence
of temperature on the hysteresis is also suppressed by maintaining ambient temperature during
the test. The SoC is obtained from the Coulomb counting method. The hysteresis voltage is

SoC-dependent.
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Both the hysteresis voltage and the OCV are SoC-dependent. The OCV is parameterized by a

static function i(x!). I > 0 during discharge, a1 <0 during charge.
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Figure 4. The hysteresis voltage Vj; as a function of the SoC. Blue: the difference between
the charge curve and the average curve predicted by different parameterizations of A(x!);
red: the difference between the discharge curve and the average curve predicted by different
parameterizations of A(x!). (a) Vj with parametrization #1: h(x!) = aglog(x' +a1) +az; (b) Vs

with parametrization #2: h(x') = agexp (x') +a; +axx' +a3(x")2.
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red dash: Vj, predicted by (1 —x')s with s = 0.0755. (b) the prediction error Vj,; — V.
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Figure 8. Validation of the EKF-based non-adaptive SoC estimator using synthetic data - pulse
current case. (a) current. (b) blue solid: true SoC; red dash: SoC estimated by using true values
of model parameters; green dash: SoC estimated where model parameters are 20% off true
values. (c) red dash: SoC estimation error with true values of model parameters; green dash:

SoC estimation error where model parameters are 20% off true values.
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Figure 9. Validation of the EKF-based non-adaptive SoC estimator using synthetic data - UDDS
current case. (a) current. (b) blue solid: true SoC; red dash: SoC estimated by using true values
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SoC estimation error where model parameters are 20% off true values.
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Figure 10. Validation of the EKF-based non-adaptive SoC estimator by experimental data. (a)
current. (b) blue solid: true SoC from the Coulomb counting; red dash: estimated by the EKF.

(c) the SoC estimation error.

51



10 0.25
0.2
5
g 5 0.15
R < 04
: 2
S ” 0.05
-5
0
-10 0.2 -0.05
0 1000 2000 3000 4000 0 1000 2000 3000 4000 0 1000 2000 3000 4000
Time (sec) Time (sec) Time (sec)
(@) (b) (©
%107 107
7 . » ; 3%
6 S NP Neee anol 095 7rmmmmomTToTmTT I 2r .
R 5 P e
51 09} ! "
= 4 s | 3 |
44 0.85f 0
3p 0.8 S
2 0.75 -2
0 1000 2000 3000 4000 0 1000 2000 3000 4000 0 1000 2000 3000 4000
Time (sec) Time (sec) Time (sec)
(d) ©) ®
-3
141 5><1‘O S
1 I :
h U
; h :
oor | L :
ES | T S -5 !
0.8} :
e hoa
| 10p
0.7 | .
0.6 -15
0 1000 2000 3000 4000 0 1000 2000 3000 4000
Time (sec) Time (sec)
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to make the estimate of 62, 8% converge.
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to make the estimate of 62, 0% converge.
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Figure 13. Simulation results of sensitivity analysis: dy/d8', dy/d6?, and dy/d6* when the

battery model (1) is subject to the pulse current and the UDDS current, respectively. (a)-(c):

pulse current; (d)-(f): UDDS current. (a) dy/d60!. (b) dy/d6>. (c) dy/d6*. (d) dy/db!. (e)

dy/d62%. (f) dy/de*.
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Figure 14. Comparison of the two-stage EKF and the joint EKF using experimental data. (a)
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Figure 16. Validation of the EKF-B using experimental data. (a) blue: true SoC from the
Coulomb counting; red dash: estimated. (b) the SoC estimation error. (c) blue: nominal 62; red
dash: estimated. (d) blue: nominal 63; red dash: estimated 6°. (e) blue: nominal 6*; red dash:

estimated 6%.
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Figure 19. Robustness of the enhanced EKF with different ¢*,...,¢%, and experimental data.
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Figure S1. A schematic of the EKF structure, modified from [S52]. The EKF comprises two
steps sequentially executed through time, prediction and update. For prediction, one looks to
x¢ at time k—1 and predicts x;. The forecast is denoted as £;;_; and subject to uncertainty
quantified by the prediction error covariance Py;_. The update step occurs upon the arrival of
the new measurement yy. In this step, yi is leveraged to correct X, and produce the updated
estimate Xy Meanwhile, P,y is updated to generate Py to quantify the uncertainty imposed

on )?k|k.
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Sidebar 1: A Survey of State of Charge Estimation

Li* batteries are widely recognized as a key enabler for the worldwide migration
toward clean and sustainable energy supply, with tremendous application in the sectors of
transportation, aerospace, buildings, renewables and smart grid. Due to the materials used and
the electrochemistries, they, however, are vulnerable to overcharging and overdischarging, which
can cause fast aging and even trigger fire and explosion in extreme cases. An accurate SoC
estimation thus becomes a necessity to avoid such issues and furthermore, provide a foundation
of support for other higher-level battery management tasks. Depending on the explicit use of a
battery model or not, the existing SoC estimation methods can be divided into two categories,

non-model-based and model-based, an update-to-date review of which is offered below.

Conventional model-free methods are based on measuring or calculating certain pa-
rameters directly linked with the SoC. Two straightforward yet representative methods in this
regard are voltage translation and Coulomb counting [S1]. The former infers the SoC from
the predetermined OCV-SoC lookup table using the OCV measurement. Despite the reliability,
it requires the battery to rest for a long period with cutting off from the external circuit in
order to measure the OCV. Coulomb counting is based on numerical integration of the current
over time. It is easy to implement but can suffer from a ‘drift’ from the true values due
to cumulative integration errors and noise corruption. These methods have still gained much
popularity because of their simplicity and convenience. They are also integrated with model-
based methods in some recent developments for improved SoC estimation, see [S2], [S3]. Another
class of model-free SoC estimation methods are based on machine learning. Without requiring

an equivalent-circuit or electrochemical model, they train the battery data sets to build an abstract

63



mathematical description to approximate the battery behavior and then estimate the SoC. The
main tools that have been investigated include artificial neural networks [S4]-[S7] and support
vector machine [S8]-[S11]. With sights set on data-driven inference and reasoning, machine
learning offers a useful means of mining the battery operation data collected through time for
SoC monitoring and more tasks. The training, however, can be complex and may imply much
preparatory work before the algorithm deployment. In addition, the neural-network computation

can be costly and thus unsuitable for onboard application.

Given the availability of a diverse range of battery models, recent years have seen a shift
of attention toward model-based SoC estimation methods, which can promise improved accuracy
while allowing real-time execution. This research front, at the nexus of Li* battery systems and
estimation theory, is expanding rapidly, with a large body of work published. Results based on
both equivalent-circuit and electrochemical models have been widely reported. The equivalent-
circuit-based models generally offers a low-complexity description of the Li* battery dynamics
with fewer states and parameters, thus conducive to fast SoC estimation. The electrochemical
models, in the form of PDEs, represent a more sophisticated view of the battery dynamics while
often requiring more computational or model reduction effort. From the perspective of estimation,
the existing literature puts two types of approaches into use, namely, stochastic estimation and
nonlinear observer. For the former type, the KF is in a leading position. Many KF techniques,
including EKEF, iterated EKF, and sigma-point KF, have been applied to different SoC problem
settings or battery models [S12]-[S19], [S19]-[S29]. Another avenue builds on particle filtering
(PF), which is capable of handling severe nonlinearities and non-Gaussian noise and has led to
a few research works [S30]—[S33]. The stochastic estimation approach has emerged as a natural

choice primarily for its ability to suppress the noise affecting a battery system. Its appeal is
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further enhanced by the applicability to general nonlinear systems and thus almost every battery
model, working to the advantage of the developer. When it comes to computational efficiency,
the KFs are competitive, especially when used for a low-dimensional battery model, as needed
to be successful with real-world implementation, and the PFs, by contrast, will demand more
computational resources. Although the convergence properties of these methods are difficult to
analyze due to nonlinearities and noise, the above merits have still made them among the most
favored choices in practice. The second type of model-based methods, called nonlinear SoC
observers, have also drawn much interest in the past several years. The present literature now
covers a broad range of design techniques, including Luenberger observer [S1], [S34], adaptive
observer [S35]-[S40], sliding mode observer [S41]-[S44], output-injection PDE observer [S45]-
[S47], backstepping PDE observer [S48], and robust nonlinear observer [S49]. The SoC observers
proceed on the premise that the battery system is at least approximately deterministic. Though
restrictive to some extent, the deterministic assumption eliminates the need for maintaining
covariance matrices and thus enables higher efficiency of SoC estimation. The observer approach,
while enjoying application to equivalent-circuit models, is also suitable for some PDE-based

battery models such as the SPM.
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Sidebar 2: Extended Kalman Filter

A dynamic system subjected to the effects of noise is referred to as a stochastic dynamic
system [S50], which is present in almost every engineering field. With the inclusion of noise, a
stochastic system can have a behavior significantly differing from its deterministic counterpart. A
significant research effort has thus been stimulated, since the seminal work by Einstein in [S51],
to investigate such systems, including their behavior characterization, control and estimation.
Because of the practical infeasibility to measure each state of a stochastic system, unknown
state estimation has been undergoing several decades of active research and development. In
this research field, the Kalman filtering techniques has established a lead, and in particular, the
extended Kalman filter (EKF) has emerged as the most popular estimation tool for nonlinear

dynamic systems. A brief overview of this technique is offered below.

Consider

X1 = f (k) +wi,
(S1)

Yie = h(xe) + Vi,
where x; € R™ is the unknown system state, y; € R™ the output, and {wy} and {v;} noise
sequences assumed to be Gaussian white with covariances of Q and R, respectively. The nonlinear
mappings f:R™ — R and h: R™ — R" represent, respectively, the process and measurement
models. The EKF produces the estimate of x; sequentially through time when the measurement
vk becomes available. It consists of two steps, prediction and update. The one-step-forward
prediction yields the estimate of x, denoted as £, using the measurements collected up to
time k — 1. Then upon the arrival of yj, £;_; will be updated to £;; leveraging the information
conveyed by y; about x;. In the meantime, the estimation error covariances associated with both
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estimates are computed accordingly.

When the state estimate £;_1;_ is generated, consider the first-order Taylor expansion
of f(xx_1) at this point:

of

Sa—) = fRiipet) + Fret (-1 —fe_1ji—1) » Feo1 = P : (52)
Ee—1jk—1
Then one can make the one-step-forward prediction through
Bk—1 = Bec1jx—1) » (S3)
Pi—1 = Fie1P_ip1 B + 0, (S4)

where Py, 1s the prediction error covariance quantifying the uncertainty of £; ;. After £,
is produced, it will be of next interest to investigate the updated state estimate. When the new
measurement y;, becomes available, the update step can be performed as follows:
~1
n ~ T T ~
Rk = Rrpe—1 + Prpe—1Hy <HkPk\k71Hk +R> k=R (Zep—1) ] (S5)

~

Kalman gain

1
Pok = P—1 — Pop—1 HY <HkPk|k—1H1;r +R> Hi P15 (S6)

where Hj is obtained by linearization of &(x), that is,

dh
Ho= =

X |~
Xklk—1

From above, the EKF consists of (S3)-(S4) for prediction and (S5)-(S6) for update. It addresses
the nonlinearities through linearization of the system functions and then adapt the linear KF to

the linearization. A schematic diagram of the EKF is shown in Fig. S1.

Since 1960s the EKF has gained wide use in the areas of aerospace, robotics, and
biomedical, chemical, electrical and civil engineering, achieving great success in numerous
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real-world applications. This is often ascribed to its conceptual straightforwardness as an
extension of the linear KF and consequently, its relative easiness of design and execution.
Another important reason is its good convergence from a theoretical viewpoint. In spite of
the linearization-induced errors, the EKF has provable stability, see [S53]-[S56], under some
conditions that can be satisfied by many practical systems. However, the EKF also suffers from
some shortcomings. The foremost one is the inadequacy of its first-order accuracy for highly
nonlinear systems. In addition, the need for explicit derivative matrices not only renders the
EKF futile for discontinuous or other non-differentiable systems, but sometimes also pulls it
away from convenient use in view of programming and debugging, especially when nonlinear
functions of complex structure are faced. This factor, together with the computational complexity
at O(nfc) limits the application of EKF mostly to low-dimensional systems. It should be pointed
out, however, that many practical systems are not complicated in terms of both dimensions and
nonlinearities or can be simplified without much loss of model integrity. As a result, the EKF
can be applied effectively to a large number of estimation problems and thus is widely regarded

as the most popular estimation technique.

Some modified EKFs have also been developed for improved accuracy or efficiency in
the past years. In this regard, a natural extension is through the second-order Taylor expansion,
which will lead to the second-order EKF with more accurate estimation [S57]-[S59]. Another
important variant, named iterated EKF (IEKF), iteratively refines the state estimate around the
current point at each time instant [S60], [S61]. Though coming at the expense of an increased
computational cost, it can achieve higher estimation accuracy even in the presence of severe

nonlinearities ingrained in systems.
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Sidebar 3: Two-Stage Extended Kalman Filter

The two-stage EKF aims to reduce the computational cost of the joint EKF while
maintaining comparable performance. The basic idea is that the computational complexity can be
reduced by decomposing the high-order joint EKF into multiple low-order filters. This notion has
been employed to develop a two-stage Kalman filter (KF) in [S62], where the KF is decomposed
into two parallel but coupled reduced-order filters. Due to its ad-hoc decomposition, the two-
stage KF is not exactly equivalent to the KF and therefore sub-optimality arises. An optimal
two-stage KF (OTSKEF) is developed and mathematically equivalent to the KF [S63]. The OTSKF
applies linear state transformations to diagonalize the estimation error covariance matrices, and
achieves a complete decoupling of two reduced-order filters. The state transformation-based
diagonalization and decoupling stimulate extensions of the OTSKEF, such as the OTSKF for
time-varying and disturbance-driven systems [S64], [S65], the multi-stage KF [S66], the optimal
two-stage EKF (OTSEKF) for nonlinear systems [S67], and the optimal two-stage EKF for
linear parametric-varying systems [S68]. It is noteworthy that the OTSEKF involves nonlinear

state transformations, and thus incurs a relatively high computation burden.

Consider a nonlinear discrete-time system
X1 = f (X, O, uk) +w,
Vi = h(xx, Ok, ur) + Vi, (S7)

ek-l-l = g(ek) +W/?7

where x; € R™ is the system state, 6, € R"® the parameter, y, € R"™ the output, u; € R™ the
input, f: R™ x R" x R™ — R™*_ h:R"™ x R" x R™ — R™ and g: R"® — R"6. The sequences
{wi}, {w?} and {v;} are zero-mean Gaussian random processes with covariance matrices of Q,

77



09 and Ry, respectively, and {w}}, {w?} and {v;} are independent of each other. System (S7) is
also referred as the augmented system with the augmented state x{ = [xk ,GT] . The joint EKF

for the augmented system can be designed as described in Sidebar 2.

Assume that the two-stage EKF has state estimates £Z|k>£2|k—1’ covariance matrices

A
Pk\k’ klk—1>

and the gain matrix K;'. Next is to derive formula of the two-stage EKF. Different
from the OTSEKE, the two-stage EKF adopts linear state transformations i Kk—1 T(—Uk))ﬁz| 1

and f,f| = T(_Vk))% . to block-diagonalize covariance matrices P/?| , and P,

t_1> Tespectively. As

in [S63], the transformation matrices take the form of

Inxxnx M
T(M) = )

0 Ine Xng
where M € R™>"6 is the argument matrix to be determined. Note that T~ (M) = T(—M). In

Pa

the transformed state coordinates, P¢ e

» .
kk—1° and K;' are given by

Pl?|k—1 - T(_Uk)P/jqu(—Uk)i
Pl = T(=V)PGT (Vi)'

K¢ =T(-Vy)K{.
Matrices P k1 and P, k| . become block-diagonal, and thus two reduced-order filters are decoupled.

The two-stage EKF estimation for the augmented system can be performed in the new

state coordinates. Fig. S2 shows the two-stage EKF scheme, which is summarized as follows.

Initialization: given the initial conditions (ICs) £5, = [£7,07]" and P%., the ICs

0[0°

for the two-stage EKF in the transformed coordinates can be obtained as: P9 = P9

0l0 0/0° Vo=

x6 1. _A4 = s YD px __ px __ 6 v T :
P0|0( OIO) » 800 = 80/0,%0j0 = £o|0 V090\07P0|0 = Fjjo = VoFpoVo - Matrices P |0 and P ‘0 are the
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initial error covariance matrices of the state and parameter, respectively, and POIO is the initial

error cross-covariance matrix between the state and parameter.

State and parameter prediction: by linearization of f and g at (xk|k,9k|k,uk) and h at

dh DG dh

()Ekﬂ‘k, 9k+1|k> uy), compute matrices Ay = EI 20,

df po _ I9f _9f _ 9dg
8xk B 8_ Bll/Ct_ uk’Gk_ C

Di = 5*, and
Tkt = Fetpk—1> - 1jk—1, k1) + (Ae—1Vi1 — UkGr) O 11,
ék|k—1 :g(ék—l|k—l):
Pl :Ak—lp/f—l\k—lAl—cr—l + 0%
ch =01~ Uk(QI?—I)Tv
U= Uka( k|k— 1)_17
O =(Ax—1Vi1 +BY_ )G,

560
|k 1 =GBy (Gl +0

State and parameter update:

K; :_k\k—lclj(ckpx‘k G+ R)

Tk =T + K 0k — h(Fgg—1, Ot > i)

Plf|k :Plf\k—l - klfckplf\k—h

Ok =Ok—1 + K (yi— h(Fgk—1, Ok, k) — SkOli—1,

K =P8, ST(CPy, G +Ri+SEPY, (ST)™!
k =Pei—15k (Celye—1Cr + R klk—19k ) s

>0
Pk|k —Pk\k 1 KkSkP|k g

79



St =Cr U +D,?,

Vi =Ui — KISk

The state estimate £ can be recovered by the inverse two-stage state transformation as:

’EZ\k—l - T(Uk)’%k—l v%k - T(Vk)XZ\k'
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Sidebar 4: Observability for Nonlinear Systems

Observability, a fundamental system property, determines whether the system state can be
reconstructed from measurements. Its precise characterization relies on the state indistinguish-

ablility, which is defined as follows

Definition 0.1 (State Indistinguishablility): [S69] Consider a nonlinear control system

é = f(gvu)>
(S8)

y=nh({),

where { € R" is the system state, u € R™ the control input, y € R? the output, and f,h are
smooth. Two states ¢ and { are indistinguishable if for every input u € [0, T], the system outputs

corresponding to two pairs (&, u) and (£, u) are exactly the same.

A system carries the observability, or is observable, if it does not have indistinguishable
states. Regarding a single output uncontrolled system, the observability verification is reduced

to performing a simple algebraic test, which induces the following observability definition.

Definition 0.2 (Observability): [S70] The system

C=/(), CeR",
(S9)
y=h(C), yeR,
is said to be locally observable in Up, a neighborhood of the origin, if
rank{da(¢),...,d(Ls 'h(E)} =n, el (S10)

where the function Lyh({) = ag_(cg) f(&) is the Lie derivative of h({) along f({), and repeated
Lie derivatives L5h(8) = Le(L'h(0)), k> 1 with LY2({) = k(). If (S10) holds for every
{ € R", we say that the system is observable.
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For a nonlinear control system (S8), the observability does not imply that every
input distinguishes arbitrary system states, and thus is input-dependent. The input-dependent
observability is mathematically rigorous, but provides little guidance in observer synthesis.
Practically, people are interested in finding out: whether the system is observable for a given
control input [S71], or whether the observability is input-independent [S70]. Given a control
input, the verification of observability for system (S8) is straightforward by following Definition
0.2. The input-independent observability, named after uniform observability, is important and
interesting because it enables a fruitful of observer designs for bilinear systems [S72], affine
control systems [S70], non-affine control systems [S71], etc. For a single input and single
output (SISO) nonlinear system subject to an affine control input, it adopts the following uniform

observability.

Definition 0.3 (Uniform Observability): [S70, Def. 2] The SISO controlled nonlinear

system

(S11)

is uniformly observable, if the system (S9) is observable, and the system (S11) is observable for
any input, i.e., on any finite time interval [0, 7], for any measurable bounded input u(¢) defined

on [0,7], the initial state is uniquely determined on the basis of the output y(7) and the input

u(t).

Verifying uniform observability of a generic system is not easy except for certain special
cases. For instance work [S70], [S73] establishes necessary and sufficient condition to guarantee
a system (S8) with affine control inputs is uniformly observability.
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