MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com

Parameter Learning for Improving Binary Descriptor
Matching

Sankaran, B.; Ramalingam, S.; Taguchi, Y.
TR2016-132  October 2016

Abstract

Binary descriptors allow fast detection and matching algorithms in computer vision problems.
Though binary descriptors can be computed at almost two orders of magnitude faster than
traditional gradient based descriptors, they suffer from poor matching accuracy in challenging
conditions. In this paper we propose three improvements for binary descriptors in their com-
putation and matching that enhance their performance in comparison to traditional binary
and nonbinary descriptors without compromising their speed. This is achieved by learning
some weights and threshold parameters that allow customized matching under some varia-
tions such as lighting and viewpoint. Our suggested improvements can be easily applied to
any binary descriptor. We demonstrate our approach on the ORB (Oriented FAST and Ro-
tated BRIEF) descriptor and compare its performance with the traditional ORB and SIFT
descriptors on a wide variety of datasets. In all instances, our enhancements outperform
standard ORB and is comparable to SIFT.
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Parameter Learning for Improving Binary Descriptor Matching
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Abstract— Binary descriptors allow fast detection and match-
ing algorithms in computer vision problems. Though binary
descriptors can be computed at almost two orders of magnitude
faster than traditional gradient based descriptors, they suffer
from poor matching accuracy in challenging conditions. In
this paper we propose three improvements for binary descrip-
tors in their computation and matching that enhance their
performance in comparison to traditional binary and non-
binary descriptors without compromising their speed. This is
achieved by learning some weights and threshold parameters
that allow customized matching under some variations such as
lighting and viewpoint. Our suggested improvements can be
easily applied to any binary descriptor. We demonstrate our
approach on the ORB (Oriented FAST and Rotated BRIEF)
descriptor and compare its performance with the traditional
ORB and SIFT descriptors on a wide variety of datasets. In all
instances, our enhancements outperform standard ORB and is
comparable to SIFT.

I. INTRODUCTION

Feature matching is a key component in several vi-
sion tasks such as object detection, object recognition, and
structure-from-motion. State-of-the-art approaches to these
problems rely on robustly matching descriptors that are
costly to compute and match. This led to the advent of
binary descriptors that are fast to compute and match. These
are particularly crucial in mapping and localization tasks
for autonomous navigation, where computational speed is
critical. The computational speed and efficiency of binary
descriptors are attributed to the following properties:

o Binary descriptors are computed by pairwise pixel in-
tensity comparisons in a given image patch. Pixel com-
parisons are faster to compute than gradient operations,
which are used in gradient based descriptors such as
SIFT and SURF.

o Binary descriptors are matched using Hamming distance
metrics that are faster to compute than the L2 metric
used for gradient based descriptors.

ORB [1] is one of the binary descriptors that is two
orders of magnitude faster than SIFT [2], without losing
much on the performance with respect to keypoint matching.
We propose several extensions to improve the performance
of ORB descriptor by learning a few parameters, without
making the descriptor computation any slower. Our approach
is readily extensible to any binary descriptor, since all binary
descriptors only vary by the way the pairwise pixels are
sampled from a given image patch. For instance BRIEF [3]
descriptor uses random pairs. In BRISK [4] the sampling
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Fig. 1. The figure shows the relative weights assigned to various binary
comparisons of pixel intensities (shown as end points of line segments) used
in generating the binary feature vectors. Out of the 256 binary comparisons,
only the top 50 and bottom 50 weights are shown for visualization. On the
left, we show the learned weights for a dataset with changes in view point
and rotation. On the right, we show the learned weights for a dataset with
changes in lighting and view point.

pattern is hand crafted, whereas in ORB [1] and FREAK [5]
we use pairs that are learned from data. In order to explain
our approach effectively we provide a brief introduction to
the computation of the ORB descriptor below.

A. The Basic ORB Computation and Matching

Let us consider the problem of matching two keypoints
k1(x1,y1) and ko(22,y2). Consider a small patch of dimen-
sion p x p centered at these keypoints. ORB considers 256
pairs of pixels (p;,q;),i = {1,...,256} in the patch and
performs simple binary tests. An example of pairs selected
for such binary tests are shown in Figure 1. These 256
different pairs are chosen based on a greedy algorithm that
looks for highly informative pairs learned from PASCAL
data set [6]. Let I(p) denote the intensity value of the pixel
p. The binary test performed on the intensity values is

0 otherwise.

The entire 256 x 1 feature vector f; € B2°° for the patch at
keypoint k; is given by fi = [b1, ..., basg]”. Two keypoints
k1 and ko are matched by looking at the Hamming distance
H(f1, f2) between the feature vectors constructed at these
keypoints.

256
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II. RELATED WORK

Fast similarity search has garnered significant attention in
the recent years to enable real-time applications in various
kinds of data like image, video, and audio. In image matching
in particular, the advent of a wide variety of binary descrip-
tors [3], [1], [4], [5] has led to substantial gains in matching
speeds for real-time applications without a huge compromise
on performance. Though binary descriptors perform similar
to traditional descriptors in easy matching cases, they are



sensitive to challenging conditions such as lighting, view
point, and scale variations.

In order to improve the matching accuracy of binary
descriptors there have been earlier approaches that have
proposed the idea of learning weights. The general idea
tries to improve matching accuracy by learning weights such
that the Hamming distance of correct matches is lower in
comparison to wrong matches. Fan et al. [7] demonstrate a
lookup table approach to compute fast weighted Hamming
distances that demonstrate equivalent matching speeds in
comparison to the standard Hamming distance. Similarly,
weighted Hamming approaches have been used for feature
ranking. For instance, Zhang et al. [8] introduce a dynamic
bit level weighting method for ranking binary codes to reduce
the number of instances that receive the same Hamming
distance. This approach to binary code ranking, though more
discriminative than a regular weighted Hamming matcher, is
not computationally efficient. In our approach to weighted
matching of binary descriptors we avoid compromising on
matching speed by performing a forward and reverse con-
sistency check, i.e., a source to target and target to source
match. We later prune these matches to get the final set of
accurate matches.

Comparing single pixels in binary descriptors causes the
representation to be sensitive to noise and minor image
distortions. Patch based approaches have been proposed in
order to be robust. For instance LATCH [9] is a novel
binary descriptor that focuses on comparing mini-patches
in order to increase the spatial support of binary tests. To
construct the descriptor they use triplets of mini-patches
instead of pairs. The set of triplet of patches are learned
from data around a given keypoint. The LATCH descriptor
uses a predefined set of 512 triplets where similarity between
patches are measured with sum of squared differences (SSD).
In contrast, in our approach we let the threshold parameter
handle the variation in noise and image distortion that the
binary descriptor is susceptible to.

Most methods that focus on improving descriptor match-
ing accuracy have primarily focused on learning better
similarity metrics. Apart from weighted matching of de-
scriptors, there are also approaches that focuses on im-
proving the expressiveness of the descriptor. Zagoruyko
and Komodakis [10] train Convolutional Neural Networks
(CNN) for matching image patches. Their network is a 2
channel CNN with the two top layers consisting of single
channel fully connected layers. This architecture was tested
in a siamese, pseudo-siamese, and non-siamese framework.
This approach to image matching was shown to outperform
conventional descriptor based image matching approaches.
Though these approaches have higher matching accuracy,
they have lower computational and matching speeds in
comparison to binary feature matching approaches.

We also show in Section IV that our learned parameters
can generalize to other datasets and still outperform the
current state of the art approaches.

III. PROBLEM FORMULATION

A. Proposed Extensions

Based on the basic binary descriptor computation and
matching framework, we propose three extensions to the

descriptor computation and performance. We demonstrate
these extensions over the standard ORB descriptor, while
using the same pairs as the standard ORB descriptor. In
the first extension we propose to use a weighted Hamming
distance matcher instead of the one that considers uniform
weights for all the 256 different binary tests. We learn a
weight vector w = [wy, ..., wa56]” and match two keypoints
using weighted Hamming distance:
256
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These weights can be learned as shown in Section III-B.

The binary tests are usually performed after smoothing the
images. Despite this, the binary tests are sensitive to lighting
and viewpoint variations. We propose to use a threshold
vector 7 € R in the binary tests as follows:

it~
‘710 otherwise.

Learning this threshold is more involved than learning
weights. We explain this second extension in Section III-
C. Then as the third extension, we propose to learn both the
weights and threshold, which is explained in Section III-D.

B. Learning The Weights

Given some training data D = {z;,y;},i = {1,...,n},
we would like to learn some weights so that the weighted
Hamming distance for correct matches is smaller than the
distance for the incorrect matches. Here, x; and y; are 256 x 1
binary vectors for n correct keypoint matches. We formulate
the problem of learning the weights using the standard max-
margin network learning [11] in the following manner:

1 -

min ~w'w + C E €;

w,b,e 2 1
1=

S.t.

Hu(Tiyi) +0< —1+¢
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Here ¢; is the slack variable and C is the soft margin
parameter in standard max-margin network learning algo-
rithms. w is the set of weights that we learn and b is the
bias term. To learn the weights we use two negative cases
of H(x;,y;) for every positive case of H,(x;,y;). The
positive case of H,,(z;,y;) is the correct match between
source and target descriptor, x; and y;. This is given from
ground truth data. The two negative cases used for learning
are the target descriptors which have the smallest and second
smallest Hamming distance to the source descriptor, where
J# i

C. Learning The Threshold

The optimization problem for threshold learning can be
formulated as follows. Given some training data D =
{di1,di2},i={1,...,n}, we would like to learn a threshold
T € R. Here, d;; an d;y refer to 256 x 2 matrices storing



the intensity values for 256 pairs of pixels used for building
the binary descriptors at two different matching keypoints.
We formulate the learning problem as shown below:

S.t.
H(ml,yz) +b< —1+¢
H(wi,yj) +b0>1—¢,Vj#1

l‘,(k)) = arg min l‘l(k) (dd(k‘, 1) — dil (k}, 2) - T)
z;(k)e{0,1}

yl(k‘) = arg min yl(k) (dlz(k‘, 1) — dig(k}, 2) - T)
vi(k)€{0,1}

T > —256.0

T <256.0

The threshold 7 takes only integer values, because the error
does not change for any intermediate real values. We can do
a brute-force search for different threshold values.

D. Combined Weight and Threshold Learning

To combine both the weight and threshold learning we
formulate the optimization as follows. Given some training
data D = {d;1,di2},7 = {1,...,n}, we would like to learn
the weight vector w € R2?% and the threshold 7 € R.
Here, d;; an d;o refer to 256 x 2 matrices storing the
intensity values for 256 pairs of pixels used for building the
binary descriptors at two different matching keypoints. We
formulate the learning problem as shown below:

1 n

: T
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x;(k) = arg min x;(k)(d; (k,1) —di1(k,2) = T)
xi(k})e{o,l}

yl(k) = arg min yz(k) (dzz(k‘, 1) — dig(k, 2) - T)
yi(k)€{0,1}

T > —256.0

T <256.0

The above problem is non-convex and it is difficult to get an
optimal solution. We can fix the threshold 7 to different
integer values and this makes the optimization problem
convex, similar to the weight learning method explained in
section III-B. The constraint involving arg min leads to the
non-convexity. Exploiting the integer nature of the threshold
values, it can be learned via a brute force search.

IV. EXPERIMENTS AND OBSERVATIONS

We evaluated the descriptor matching accuracy of our
method and other approaches on four different datasets:

Fig. 2. Oxford dataset. This dataset consists of several groups, where each
group consist of images taken under certain variations such as scale, lighting,
viewpoint, etc. The top row shows images from the graffiti subgroup
which has both scale and viewpoint changes.The middle row shows images
from the light subgroup that has images with lighting variations. The last
row shows images from the boat subset that contains images with scale,
viewpoint and rotation variations.

the oxford affine covariant regions dataset! first introduced
in [12], the AMOS (Archive of Many Outdoor Scenes)
dataset? [13], the KITTI stereo dataset® [14], and the CAVE
dataset* [15]. We evaluated our approach by comparing the
RANSAC refined inlier ratio with other descriptors in the
Oxford, AMOS and CAVE datasets. For oxford and AMOS
datasets we also evaluate our approach with models trained
on other datasets like Cornell Multiview dataset® [16] and the
KITTI stereo dataset. For CAVE we only evaluate SIFT and
ORB against a model trained on the KITTI stereo dataset.
Finally for KITTI, we only compare our approach against
the standard ORB.

A. Datasets

1) Oxford dataset: The oxford dataset has images with
scale, viewpoint and lighting variations. A few examples
from this dataset are shown in Figure 2. In the oxford
dataset, the ground truth homographies between a single
source image and multiple target images are provided along
with the dataset. We use this information to find all matching
keypoint pairs in source and target images across the dataset.

http://www.robots.ox.ac.uk/-vgg/data/data-aff.
html

2http://amos.cse.wustl.edu/dataset

3nttp://www.cvlibs.net/datasets/kitti/eval_
stereo_flow.php

‘http://www.cs.columbia.edu/CAVE/databases/
multispectral/

Shttp://www.cs.cornell.edu/projects/p2f/



From these keypoint pairs, we extract the threshold optimized
descriptor differences and use this information to train our
max-margin model to learn the weights as discussed in
Section III-D. During the testing phase, we independently
detect 500 keypoints in source and target images (without
using the ground truth homography). There is no special
reason for chosing 500 keypoints in our experiments, except
that feature detectors like ORB are very efficient in extracting
500 keypoints from VGA images in many real-time appli-
cations. We match these keypoints using our algorithm and
report the RANSAC refined inlier ratio. To compare with
other methods, we compare our results with other descriptors
like SIFT and vanilla ORB. We also train models on other
datasets like KITTI and Cornell and test them on the oxford
dataset.

2) The AMOS dataset: The AMOS dataset is a publicly
available archive of outdoor scenes taken from fixed cameras
over multiple days. From this dataset we assembled an
illumination variant dataset with images taken from the same
camera position over multiple times of the day over multiple
days of the month. An example of such a sequence of a
single day is shown in Figure 3. We use models trained on
the oxford lighting data subset, the KITTI dataset and the
Cornell 3D dataset to evaluate our approach on the AMOS
dataset.

Similar to the oxford evaluation, for AMOS we indepen-
dently detect 500 keypoints in the source and target image
and match them using SIFT, ORB and our approach. We
compute the RANSAC refined inlier ratio for comparison
with other approaches like SIFT and ORB.

3) The KITTI dataset: The KITTI dataset is an au-
tonomous driving platform dataset [14] that was introduced
as a standard benchmark for computer vision problems like
stereo, optical flow, visual odometry, 3D object detection and
3D tracking. A sample stereo pair from the dataset is show in
Figure 4. The KITTI dataset provides a standard train and test
set. Ground truth disparity for all stereo pairs are provided
with the dataset. In the training phase we extract threshold

Fig. 4. KITTI dataset. The left and right image of a stereo pair are shown
in the sample images above.

optimized descriptors from matching keypoint pairs in stereo
images using the disparity information provided with the
dataset. For evaluation we compare the RANSAC refined
inlier ratio for stereo matches computed using ORB and our
approach.

4) CAVE dataset: The CAVE dataset contains multispec-
tral images that are used to emulate a GAP camera. The
images are a wide variety of real-world materials and objects.
Examples are shown in Figure 5. We only evaluate some
subsets of the CAVE dataset where ORB keypoints could be
detected in both source and target images.

5) The Cornell multiview dataset: The Cornell dataset is a
multiview city scale dataset that contains images taken from
different viewpoints, different locations and different cam-
eras. The dataset was first introduced in [16]. The training

Fig. 5.
arranged according to the following subsets from the top to the bottom row:
chart and stuffed toy (CST), cloth (CL), jelly beans (JB), oil painting (OP),
and water color (WC).

CAVE dataset. Images from the multispectral CAVE dataset are

data comes with ground truth bundler [17] data that can be
used to get the pixel location of 3D points seen by multiple
cameras. We use this information to learn a model on points
extracted from multiple image/pixel pair combinations across
the dataset. In our experiments we specifically train a model
on the Dubrovnik dataset. We use the model trained on
this dataset to evaluate matching on the Oxford and AMOS
dataset.

B. Matching results with threshold learning and parameter
learning - Oxford dataset

In this evaluation we detect the same number of keypoints
in SIFT, the threshold and the non-threshold version of
the ORB detector. The inlier percentage is the mean inlier
percentage across all target images from the Oxford dataset.
Each subset of the Oxford dataset has 5 target images.
Hw(xi,y;) is ORB matched with the weighted Hamming
distance without any threshold optimizations. H,(z;,y;)
is the threshold optimized ORB, matched with a vanilla
Hamming distance matcher. H.,,(2;,y;) is the model that
was trained on the threshold optimized ORB with the
weighted Hamming distance matcher. H.,(x;,y;) trained
on data from the Oxford dataset, the Cornell dataset and the
KITTI dataset are denoted as Oxford #H.,(x;,y;), Cornell
Huwr(xi,y;) and KITTI Hr(x;,y;) respectively. The best
results are boldfaced and the second best results are bold-
faced in blue color. We show the accuracy in Table I. The
weighted Hamming distance provides better accuracy com-
pared to naive Hamming distance. In general, the weighted
Hamming distance along with the threshold provides the
best accuracy. The Cornell and KITTI datasets are larger
than the Oxford dataset. The weights and thresholds learned
using these datasets also provide good accuracy on the oxford
dataset.

From our experiments we can see that our learned model
outperforms the vanilla ORB descriptor in all datasets and



Fig. 3. AMOS dataset. The images show the progression of an entire day from a single view point. The leftmost image in the first row is the first image
taken at the start of the day. The rightmost image in the second row is the last image taken at night.

TABLE I
OXFORD DATASET EVALUATION RESULTS

Graffiti | Boat Light
SIFT 66.2% 58.52% | 71.56%
ORB 55.43% | 47.28% | 66.83%
ORB (Huw(i,y;)) 61.14% | 52.93% | 76.91%
ORB (H(xi,y;)) 55.43% | 47.28% | 66.83%
ORB (Oxford Hur(xi,y;)) | 59.55% | 53.64% | 82.89%
ORB (Cornell Hur(x4,y5)) | 63.31% | 54.24% | 77.57%
ORB (KITTI Huwr(24,y;)) | 60.77% | 55.10% | 82.04%

performs comparably (and sometimes much better) than the
SIFT descriptor.

C. Matching results with threshold learning and parameter
learning - AMOS Lighting dataset

Similar to the Oxford evaluation, we independently detect
500 keypoints in the source and target images and match
them. We evaluate our approach, i.e., learning the threshold
optimized weighted Hamming matcher H,,-(z;,y;) against
SIFT and ORB. We trained three independent models trained
on the Oxford dataset, Cornell dataset and KITTI dataset
respectively. These are the same models used in the Oxford
evaluation. The inlier percentage is the mean inlier percent-
age across all target images from the AMOS dataset. The
AMOS dataset has 20 target images. As we can once again
see, our approach outperforms both SIFT and ORB. We
show the results of our approach in Table II. The images
are captured from the same camera position. By learning
weights and thesholds from large datasets such as Cornell
and KITTI, we observe an improvement in the accuracy of
the matching algorithm.

D. Matching results with threshold learning and parameter
learning - Kitti Stereo dataset

For the KITTI evaluation we independently detect 1500
keypoints on source and target images and match them. We
evaluate our approach against the vanilla ORB descriptor and
matcher. We perform the evaluation on the test set provided
along with the dataset.The result of the model evaluation
for descriptor matching is shown in Table III below. The
inlier percentage is the mean inlier percentage across all

TABLE 11
AMOS DATASET EVALUATION RESULTS

AMOS dataset
SIFT 45.01%
ORB 45.03%
Oxford Hor (z4,y;) | 45.86%
Cornell Hyr(25,y;) | 46.29%
Kitti Hopr(24,95) 46.97%

stereo pairs from the KITTI test set. The KITTI test set
has 200 stereo pairs. We observe that by learning weights
and thesholds, we achieve an increase in the accuracy of the
matching.

TABLE III
KITTI STEREO DATASET EVALUATION RESULTS

Stereo dataset (H-(xi,y;))
56.21%
59.68%

ORB
Kitti Hor (.’L‘Z ,yj>

As it can be noted our approach outperforms the regular
ORB descriptor. In our evaluation we also noticed that our
threshold optimized approach, does comparably to ORB on
the simple cases and considerably much better on the harder
cases.

E. Matching results with threshold learning and parameter
learning - CAVE Multispectral dataset

Similar to the Oxford evaluation, we independently detect
500 keypoints in the source and target images and match
them. We evaluate our threshold optimized weighted Ham-
ming matcher H,,-(z;,y;) against SIFT and ORB. We use
the model trained on the KITTI dataset for our evaluation.
The inlier percentage is the mean inlier percentage across all
target images from the CAVE dataset. The CAVE dataset has
30 target images per subset. The best results are boldfaced
and the second best results are boldfaced in blue color.

We show the results in Table IV. In the multispectral
dataset we observe that the model trained on the KITTI



TABLE IV
CAVE DATASET EVALUATION RESULTS

CST CL OP JB WwC
SIFT 94.51% | 90.71% | 72.34% | 84.73 84.75%
ORB 96.99% | 80.45% | 71.83 75.06% | 77.90%
Hur(x5,y;) | 99.32% | 81.47% | 81.08% | 75.96% | 77.18%

dataset either significantly outperforms both SIFT and ORB
or matches the performance of vanilla ORB.

F. Discussion

Through our experiments we made the following obser-
vations about the characteristics of our threshold optimized
weighted Hamming matcher.

e Our matcher had fewer false positives as compared to
the traditional ORB descriptor and matcher. This led to
a lower number of overall matches but a higher number
of accurate matches. Hence the RANSAC refined inlier
ratio was higher.

o Our results show that the weights can be easily learned
on a large publicly available dataset to allow better
generalization.

Finally, since our approach is applicable to any binary
descriptor, our approach can also be applied other binary
descriptors like FREAK, BRISK and BRIEF.

V. IMPLEMENTATION DETAILS

We implemented our algorithms using OpenCV. The
weights for the weighted Hamming distance matcher were
learned with a linear SVM using the LIBSVM library [18].

We exploit the integer nature of the threshold values by
using brute force search to solve for the threshold values.
The threshold adjusted descriptors are computed using a
speed optimized implementation similar to the OpenCV ORB
implementation.

VI. CONCLUSION AND FUTURE WORK

We have demonstrated an approach to learn weights and
thresholds to improve descriptor matching performance for
binary descriptors. We demonstrated our approach on the
ORB descriptor, but our method is readily applicable to other
binary descriptors. For the threshold optimization, we present
a search algorithm by exploiting the fact that we only need to
consider the integer threshold values. In the future, we plan
to develop an automatic algorithm to optimize and solve the
non-convex threshold learning problem. The threshold based
Hamming distance without the weights runs at the same
speed as traditional ORB, since there are no added compu-
tations other than bit comparisons. The weighted Hamming
distance (under it’s current non-optimized implementation)
is at least 15x slower than the regular Hamming distance.
However, there are approaches to make it as fast as regular
Hamming distance using a lookup table. Given that our
current implementation is in OpenCV, we intend to make
our code available.
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