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Abstract

This paper proposes an unscented Kalman filter (UKF) based dynamic state estimation (DSE)
method for distribution systems by incorporating very short-term load and distributed gen-
eration (DG) forecasting. Instead of fitting state variables into unrealistic state transition
models for the prediction step in UKF, this work forecasts and transforms nodal power in-
jections from both load and DG into state predictions through load flow computation. The
impact of bad data and irrational sigma points are mitigated through the sanity check and
adjustment to the power injections. The test results on a modified IEEE 123-node test feeder
are given to demonstrate the effectiveness of the proposed method.
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Abstract--This paper proposes an unscented Kalman filter
(UKF) based dynamic state estimation (DSE) method for
distribution systems by incorporating very short-term load
and distributed generation (DG) forecasting. Instead of
fitting state variables into unrealistic state transition models
for the prediction step in UKF, this work forecasts and
transforms nodal power injections from both load and DG
into state predictions through load flow computation. The
impact of bad data and irrational sigma points are mitigated
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I. INTRODUCTION

Dynamic state estimation (DSE) differs with static state
estimation in that it uses memory of previous state and state
transition model to predict the next state and then filters it
with the measurement model. Earlier works on DSE [1]—
[3] have applied the extended Kalman filter (EKF), which
tackles nonlinear systems through first order linear
approximation. The iterated Kalman filter (IKF) improves
the accuracy of EKF by iteratively updating the state
variables [4], while significantly increasing computational
burden. For high-order non-linear systems, EKF might
introduce large approximation errors. This issue is
addressed by usage of the unscented Kalman filter (UKF)
which can approximate the posterior mean and covariance
accurately to the 3rd order Taylor series expansion [5].
UKF has been introduced to the area of DSE for power
systems by [6]-[7] and is getting increased attention.

The implementation of Kalman filters, however, requires
a state transition model in addition to measurement model
to be available. The state transition model is necessary for
the prediction step in Kalman filters. Depending on how
the state transition model is built or the state is predicted,
there are roughly three kinds of DSE methods: the ones
creating explicit state equations from discretized
differential equations of generators [7]-[9], the ones
directly approximating state transition models with various
assumptions [6], [10]-[12], and the ones transforming load
forecasts into state forecasts through load flow computation
(1], [2], [13].

With the increasing deployment of advanced
measurement systems, such as PMUs in power systems, the
estimation of electromagnetic dynamics of generators such
as rotor speeds and angles becomes feasible. The works in
[7]1-[9] assume fast update rate in the level of milliseconds
and use numerical integration or Runga-Kutta method to
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transform the differential equations of generators to state
space equations. Those kind of methods, however, is hard
to be regarded as general purpose state estimators since
they have to assume known models of loads as well as
other complex components, furthermore, the scale of their
state equations will grow significantly in the cases of
realistic large power systems.

As for the DSE methods estimating bus voltage phasor,
in the earliest DSE work [10], the authors used EKF and
represented the state update by the over-simplified random
walk model. The work in [11] improved the EKF based
DSE by forecasting the state through exponential
smoothing techniques, to be more specific, the Holt’s
double exponential smoothing method. A detailed
comparison of several state prediction methods can be
found in [3]. The application of UKF in DSE was proposed
in [6] where the authors also used exponential smoothing
method as in [11] for predicting state variables.

Nevertheless, the fitting of state transition model suffers
from lack of physical meaning and often neglects the
dependence between state variables [3]. A comparatively
more realistic approach is to model the more inter-
independent variation of nodal power injections that
actually drive the system dynamics. The authors of [1]
introduced ANN based load forecasting to EKF based
DSE. In [13], IKF is used to gain better accuracy over
EKF, and actual injections based on load profile is used as
“load forecasts” for predicting the state variables. So far,
no practice has been found incorporating load forecasting
into UKF based DSE.

In this paper, an UKF based dynamic state estimation
method is proposed for distribution systems by
incorporating very short-term power injection forecasting.
Instead of fitting state variables into unrealistic state
transition models, the proposed method forecasts and
transforms nodal power injections from both load and DG
into state predictions through load flow computation.
Through integrating UKF based DSE with DG and load
forecasting, the power injections that drive the changes of
system states can be predicted more precisely, and
accordingly more accurate state estimation can be obtained.
The trade-off of power injection forecasting aided DSE is
the increased computation burden caused by the load flow
evaluation after each injection forecast. Considered the
radial configuration of most distribution systems, the
increased computation can be effectively reduced by using
more efficient load flow algorithms such as the
backward/forward sweep methods [14]-[15]. Meanwhile,
the estimation accuracy is further improved by mitigating
the impacts of bad data and irrational sigma points through
the sanity check and adjustment of nodal injections.



The rest of this paper is organized as follows: section 11
briefly describes the technical background, i.e., procedures
for UKF based DSE and exponential smoothing methods
for load and DG injection forecasting; section III explains
in detail how load and DG injection forecasting is
embedded to the estimation procedure, and section IV
discusses the special consideration for distribution systems;
then section V demonstrates the estimation results for test
systems under fluctuating load and DG injections. Finally
section VI presents the conclusions of this work.

II. PRELIMINARIES ON UKF BASED DSE AND
EXPONENTIAL SMOOTHING ALGORITHMS

For a distribution system, its state transition model and
measurement model can be described as follows:

X, =f(x,_,k-D+q,, (D
 =h(x, . k) +r,, 2)
where, X, and Yy, are the vectors of states and

measurements at time interval k, q,and r, are the

Gaussian noises for states and measurements at time
interval &, with zero means and diagonal covariance
matrices Q; and R, respectively. This work only studies

the dynamic state estimation for network states, i.e.
voltage phasors, and the generator states, e.g. rotor angles
and frequencies, are not in the scope of this work.

A. UKF based DSE

For each time interval k, the UKF based DSE can be
implemented through three major steps, including sigma
point calculation, state prediction and state correction [6].

The sigma-point calculation step uses the estimate of
state variables at interval (k-1),X,_,; and the corresponding
covariance matrix, P, to create a set of (27, +1) sigma
points, X, _; according to:

Xk—l:[ﬁk—l . ﬁk—l]+\/(ns+ﬂ')[0 \/E _\/ﬁ] )
where,n ;is the dimension of state variables,
A=al(n,+x)—n,, a,and xare the parameters that
determine the spread of the sigma points around. The
square root of the covariance matrix P,_; can be solved
using the Cholesky factorization method.

In the step of state prediction, the sigma points X, _,
are propagated column by column through the state
transition model in (1) to generate Xk so as to predict the

next state X, and covariance matrix, P, according to:
2n,

X =Y WX, )
1=0

2n, A A
P = ]:zow,“[(Xi e R I R
X, =f(X!_.k-1), (6)
where, X!  and Xk are the /-th columns of X,_, and )A(k
respectively, =Aln,+A)+1-a+ B, W, =
Al(n,+2), W' =W, = 0.5/(n, + 1), p,is a parameter to

incorporate prior knowledge of the distribution of state
variable. The state correction step uses the predicted state,

X, and covariance matrix,P; to calculate the

corresponding sigma points, X; :

xk]+ (n+ﬂ[ \/_ \/_}

Then sigma points X; are propagated column by column
through the measurement equation in (2) to compute the
Kalman filter gain K, by which the predicted state and
covariance matrix are corrected to generate the estimated
state X, and P, according to:

X; =[x;

R =% +K,ly, -9, ®)

P, =P -K,P,, K}, )

K, =P, P, (10)

Vi =12:i;w,”7Y;’ , (11

Y, =h(X_,k), (12)

P, —ZWC[( o\ yk)T]+Rk, (13)

) =/§WC[(X;’—&;)(Y,:1—9;)T], (14)
where, Y, is the /-th column of Y, .

As shown in (6), the evaluation of the sigma points
involves transforming each column in X, to a column at

the same location in Xk through the function

f(x,_;,k—1) which is a time-varying implicit non-linear
function. The conventional UKF estimation procedures
commonly use direct/explicit state transition models.
Instead, this work uses an indirect state transition model to
predict state variables through injection forecasting and
load flow computation.

B.  Exponential Smoothing Algorithms

When the historical data and related information such as
weather data are available, the future loads and distributed
generations can be forecasted through a suitable forecasting
technique. The survey in [16] reveals that for very short
term (less than 5 minutes) load forecasting, it is
unnecessary to adopt complicated forecasting techniques
such as the ones considering multiple seasonalities. In this
work, the exponential smoothing techniques [17] that
commonly used for very short-term load forecasting are
employed to determine the nodal power injections
contributed by loads and DGs. Due to the short intervals of
load and DG forecasting, only single and double
exponential smoothing algorithms are used.

1) Single Exponential Smoothing: The single exponential
smoothing (SES) has only one smoothing constant as
shown in below:

S

k+1

—aS, +(-a,B;, 0<a, <1,  (15)
where, S;,, is the injection forecast at interval k for the
next interval (k + 1), and ék is the measured/forecasted

injection at step k or calculated injection based on the
estimated state at step k, @, is the smoothing factor. As

shown in (15), the new forecast for time interval (k + 1) is
determined as a weighted linear combination of previous

forecast S, and new observation at time interval &, S -



2) Double Exponential Smoothing: If there is a trend in
the time series data, double exponential smoothing (DES)
is used to include an additional parameter representing the
trend in the data. The Holt-Winters double exponential
smoothing is used in this work, and its formulas are:

S;H =Lk+Tk7 (16)
L, =a,S, +(1-a,)L,_+T_), 0<a, <1,

Tk=ﬁf(Lk _Lk—1)+(l_ﬂf‘)Tk—170Sﬂf <1, (17
where, L, and T, represent the level and trend of the data
at time interval k, a, and ,B , are the first and second
smoothing constants. The initial vales for levels and trends

aresetas: L, =S,, T, =S, -S,.

I11. PROPSED PROCEDURE FOR UKF-BASED DSE
INTEGRATING INJECTION FORECASTING AND LOAD FLOW

This work proposes jointly using UKF and very short-
term power injection forecasting to implement DSE for
three-phase distribution systems. The state transitions are
indirectly modelled through load and DG forecasting and
load flow computation. In addition, the sanity check and
adjustment of injections is used to mitigate the impacts of
bad data or irrational sigma points on the estimation
accuracy.

For an arbitrary time interval £, the proposed dynamic
state estimation method can be illustrated by the following
procedure:

1) Calculate sigma points X;_; based on the
estimated state and covariance matrix at time
interval (k-1), X,_, and P,_, using (3).

2) Set the sigma point counter / as 1, i.e. /=1.

3) Based on the /-th column of X, ,, Xi,,

determine a calculated injection vector §,’H using
nodal power injection equations.
4) Use S;_, and historical injection data to forecast a

calculated injection at time interval &, §§€

according to (18) if SES is used, or (19) if DES is
used.

Si=a,8 +l-a 0, (18)
gllc = f‘lk—l +TI£—I s
f‘lk—l = afsllc-l (- )Ly, +T,,),
TIZ—I = ﬂ/' (L L)+ _ﬁf)Tk—Z . (19
5) Check the sanity of the calculated injections at
time interval k, S, against a set of upper and
lower bounds, S and Sk defined based on the
injection forecasts at interval (k-1), éH and
associated standard deviations, ¢,_; :
Sk=8;,+15,.,,

S, =S, -1, (20)
where, y is a pre-determined parameter that
determines the reasonable ranges of power
injection variations caused by forecasting errors
and injection changes between intervals. The
calculated injections will be adjusted to be within

the corresponding bounds if their values are
beyond the upper or lower bounds according to:

g;f =Sk ,ifgf( >Si ,

S! =S, ,ifS! <§,. 1)
6) Run load flow program to determine a
corresponding state estimation for interval £, X/k

by taken the determined power injection §f€ as the
nodal power injections.

7) Check whether all sigma points are propagated,
ie. [ =(2n,+1), if yes, go to 8); otherwise, set
[=[+1, and go to 3).

8) Predict state and covariance for time interval &,

X, and P, based on )A(k according to (4) and (5),
and then determine their corresponding sigma
points X using (7).

9) Propagate X; with the measurement function to

determine the Kalman gain K, according to (10)-
(14).
10) Read the measurements at time interval %, y, and

correct predicted X, and covariance matrix P,

with K, to generate the estimated X, andP;
using (8)-(9).

11) Read the load and distributed generation forecasts
or measurements at time interval &, and determine

corresponding nodal power injections, ék , if the
load and distributed generation forecasts are
available. Otherwise, based on X, , determine the

calculated nodal power injections, ék using nodal

power flow equations.
12) Determine the predicted nodal power injections

for time interval (k+1), S;,, according to (15) if
SES is used, or update the smoothing levels and
trends, L,andT, according to (17) if DES is

used;
13) Set k=k+1,and go to 1).

V. SPECIAL CONSIDERATION FOR DISTRIBUTION
SYSTEMS

Different than transmission systems, a distribution
system is typically an unbalanced one [18]. Its bus voltages
or power flows on three phases are not balanced either.
Therefore, for any bus, each phase needs to be modeled
separately during its operation and control. The distributed
generations and loads may be connected to a bus through
either a DELTA-connection or a WYE-connection. Each
load may contain constant-power components, constant-
current components, and constant-impedance components.
In this work, all load components and distributed
generations are treated as constant powers. This may
introduces some inaccuracy to the state estimation, but is
acceptable for practical applications. More accurate and
complicated models will be investigated in our future
work.

The DELTA-connected generations, or loads [14] are
converted to equivalent WYE-connected ones. The
equivalent power injection at corresponding phase is
determined based on the current between phases and the
phase voltage at the phase. For example, a generation/load



between phase x and phase y, S, _ can be converted into

Lx—y
two equivalent generations/loads at phase x and phase y,
X y : .
S/, ,and S/ _ according to:
/0,
, V. e
S.x _ i,x S
ix—y = Jbi. jo,, i,x—y >
Vie =V, e
0,
) _ I/,-,yej iy
Sixy =70, T Sie (22)
Ve =V, e

where, V, and 6, are the magnitude and phase angle of
voltage at bus i on phase x ; V; and 6, , are the magnitude

and phase angle of voltage at bus i on phase y. The
equivalent generation/load for any phase x that is connected
with both WYE-connected and DELTA-connected

. E .
generations/loads, S”Q can be determined as
" ;
V- el ix V e x
EQ _ i,x _ ix
Si =St S T i i
iﬁxe - i,ye

(23)
where, §; is the WYE-connected generation/load at
phase x, V;_and 6, are the magnitude and phase angle of
is the DELTA-connected

generation/load between phases z and x. If assumed that
voltages are balanced at the bus i, (22) and (23) can be
further simplified as:

\/geﬂo"

J3e '

voltage at bus i on phase z, S,

i,z—x

Si),cxfy = Tsi,xfy s Si,.\'fy = T Si,xfy ’ (24)
—j30° 730°
SFe=S + ‘/563 5. o de (25)

i,x—y i,z—x °
3

For any phase m of a bus i, its power injection can be
determined according to:

S =S§§—S§§j, me PH', (26)

im

where, S,

im

is the power injection at phase m of bus i,

S¢is the equivalent generation output of generators at

m

phase m of bus i, S gQ is the equivalent power demands of

loads at phase m of bus i, and PH' is the set of energized
phases at bus i.

In the proposed method, the required power injection
predictions for each phase of buses are determined based
on the forecasts of equivalent distributed generation
outputs and load demands that connected to the bus on the
phase. After the power injections are determined, the
backward-forward sweep algorithm can be employed to
determine the voltages for all buses and the power flows
for all branches. The algorithm consists of two basic steps,
backward sweep and forward sweep, which are repeated
until convergence is achieved. The backward sweep is
primarily a process of power flow summation, and during
the process, the voltages held constant and only branch
power flows are updated. The forward sweep is primarily
a process of voltage drop calculation, and during the
process, the branch power flows held constant and only
bus voltages are updated. The load flow computation can
be achieved by two stages. In the first stage, (24)-(25) are
used to get an initial solution. Then, (22) and (23) are used
in the second stage to get the final solution.

The state variables for a distribution system are the
voltage magnitudes and phase angles on each energized

phase of buses in the system. The nodal power injections
can be related to system state variables through the
following nodal power flow equations:

5. =V[ > (Yv)} e

JjeBUS,nePH’

where, S;, is the power injection at bus i on phase m.

BUS is the bus set of the system, PH’ is the energized
phase set at bus j; V,, and &, are the voltage magnitude

and phase angle at bus i on phase m ; V, ,and 6, are the
voltage magnitude and phase angle at bus j on phase n;
Y% is the element of system admittance matrix at the

i,m—j,n
row corresponding to bus i and phase m, and the column
corresponding to bus j and phase n. The system admittance

matrix Y*” can be determined according to the branch
connections in the system, and corresponding admittance
matrices for each branch.

In addition to the bus voltage and power injections, a
distribution system typically measures power flows on
some branches as well. For a two-terminal branch with
impedance, the power flows at any phase of the branch can
be determined according to the phase voltages at its
terminal buses, and the admittance matrix for the branch:

+
_ JOim ij JOin ij JOjn
Sij,m - V;,me |: Z (Yi,mfi,n I/[,ne + Y;,mfj,n ij,ne ?

nePH’
S.ii,m = Vj,mejgm|: Z (ij:,im—i,nVi,nejgw + Yl/ v e’fg"" )A:|’(28)

Jsm=j.n" j.n
nePH"’

ym and S
towards bus j , and from bus j towards bus i on phase m of
the branch respectively. V,, and 6, are the voltage

in

where, S are the powers flowing from bus i

Jim

magnitude and phase angle at bus i on phase n. V,, and
7

J.m

are the voltage magnitude and phase angle at bus j on

phase m. PH" is the energized phase set for the branch
Y Y’ . and

im—j.n o~ jm—in

between bus i and bus j. Y’

Y /"m_ ;. are the elements of admittance matrix for the
branch, Y” at the row and column given by the subscript
letters, in which the first twos give the corresponding bus

and phase of the row, and last twos give the corresponding

bus and phase of the column. The admittance matrix Y” is
used to define the relationship between the injected
currents and voltages at each phase of terminals buses on
the branch. The formulation of admittance matrix can be
different for different types of branches. For a line
segment, its admittance matrix is defined by its series
impedances and shunt admittances. For a transformer, its
admittance matrix is defined by its winding connections,
tap positions, and impedances.

V. NUMERICAL EXAMPLES

To verify the effectiveness of the proposed method,
multiple tests with different focus have been conducted.
The test system used is modified from the IEEE 123-node
test feeder [19]. As shown in Fig. 1, seven buses in the
system have been modified to connect with photovoltaic
(PV) generations, including bus 13, bus 35, bus 47, bus 57,
bus 64, bus 76 and bus 101.

The tests were conducted based on simulation data. Fig.
2 gives the daily load and generation profile for the test
system on a 3-minutes interval basis, thus for the tests



shown afterwards, the estimation interval is also set to be 3
minutes. In Fig. 2, the horizontal represents the
accumulated number of time intervals, and the vertical axis
represents the corresponding scaling factors for loads and
generations at each time interval with respect to the base
generation and base load. The base power output for each
PV generation is (20.0 + j 15.0) kVA per phase, and the
loads for each bus given in [19] are treated as its base
loads. The test results were obtained based on the data sets
at intervals between 139 and 200, in which the data sets at
intervals 139 and 140 are used to set the initial levels and
trends for exponential smoothing algorithms. The
parameters of exponential smoothing algorithms are set as:

a,=03,and p,=0.2. The parameters for unscented

Kalman filters are set as [20]: a,=1.0,x=0, and

B.,=2.0. The simulated data for load and generation

forecast are determined as true load and generation profiles
plus white noises. Meanwhile, the measurements are
created through load flow calculations with true load and
generation profiles plus white noises. The measurements
used include active and reactive power injections at 56
buses, active and reactive power flows on 106 line
segments, and voltage magnitudes on 20 buses. It is
assumed that all measurements are provided by a SCADA

system.
350

Fig. 1. A modified IEEE 123-node test feeder
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Fig. 2. Daily load and PV generation profile

The proposed method has been tested against different
scenarios defined based on the levels of forecasting errors
and state/measurement noises. Table I lists the standard
deviation settings for three different testing scenarios. The
standard deviations are defined at absolute values for phase
angles and voltage magnitudes, but relative values for
power injections or power flows. In Table I, the standard
deviations of white noises for voltage magnitudes (per unit)
and phase angles (radians) are set to be 0.01, 0.02 and 0.03,
and for active and reactive powers are set to be 1%, 2% and
3% of their actual values respectively. Besides used for
generating simulated data with noises for measurement and
load and generation forecasting, the standard deviations of

voltage magnitude and powers are also used to set the
measurement covariance matrix, and the standard
deviations of voltage magnitude and phase angles are used
to set the state covariance for states. The state and
measurement covariance matrices are diagonals.

Table I. Test Cases

Standard Deviations
Test Voltage Phase . .
Scenario Magnitude Angle I/"‘ ctive l;eactwe
(per unit) (radians) owers owers
1 0.01 0.01 1% 1%
11 0.02 0.02 2% 2%
11 0.03 0.03 3% 3%

A. Improvement over State Forecasting based DSE

Firstly, the accuracy of the proposed method is
compared against the ones using direct state forecasting.
Four approaches using respectively SES and DES, direct
state forecasting (marked by “-SF”) and power injection
forecasting (marked by “-PF”) are compared using the
mean absolute error (MAE) for state variables. The tests
were run on an 8-core 3.20GHZ processor, and all
algorithms were implemented using C language. Table II
gives the average MAEs of estimated phase angles and
voltage magnitudes for each approach. Table II also
provides the average computation time for each approach
to complete a single-interval state estimation. Fig. 3 and
Fig. 4 show the variations of MAEs of estimated phase
angles and voltage magnitudes across intervals between
140 and 200 for state forecasting based approaches and
power injection forecasting based approaches, respectively.
The test scenario I was applied to all approaches.

TABLE II. ESTIMATION ACCURACY COMPARISON OF FOUR APPRAOCHES

Test Average MAE Computation
Approach . Phase Voltt_lg ¢ Time
Scenario Angle Magnitude (Seconds)
(radians) (per unit)
SF-SES I 0.01349 0.25545 15.9981
SF-DES I 0.02559 0.29021 16.0526
PF-SES I 0.00354 0.00344 22.2948
PF-DES I 0.00310 0.00357 22.4363
——SFSES ——SF.DES ——SF.SES ——SF-DES
0.08 04
0.06 03 — — — =
0.04 02 y 4
002 e 01 -
p = 0
140 160 180 200 140 160 180 200
(a).Phase Angle Errors (b). Voltage Magnitude Errors

Fig. 3. MAEs of state estimations for direct state forecasting methods
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i AP 0
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(a).Phase Angle Errors (b). Voltage Magnitude Errors
Fig. 4. MAEs of state estimations for power injection forecasting
methods

It can be seen that the ones with power injection
forecasting outperforms the other two. Compared with
direct state forecasting ones, the computation time for
power injection forecasting based approaches increased



around 28.45%, but the estimation accuracy has been
improved at least 4 times accurate than the direct
forecasting ones. As for power injection forecasting
approaches, the estimation accuracies achieved by DES-
based forecasting and SES-based forecasting are almost at
the same level.

B.  Accuracy of the Proposed Method

The accuracy of the proposed method is compared
under different testing scenarios using different types of
exponential smoothing techniques. The results are given in
Table III. The average MAESs of all state variables are used
as the indicator to be compared.

TABLE III. COMPARISON OF AVERAGE MAES

Test Average MAE
A h es .
pproac Scenario Phase Angle Voltage Magnitude
(radians) (per unit)
I 0.00354 0.00344
PF-SES 11 0.03264 0.02301
11 0.07068 0.08500
I 0.00310 0.00357
PF-DES II 0.01207 0.01666
1T 0.07895 0.13249

As demonstrated in Table III, the estimation accuracy is
heavily affected by the accuracy levels of state modeling,
measurement and forecasting. The larger the errors of state
modeling, measurement and forecasting, the less accurate
results the estimation can get. Under three different testing
scenarios, the SES-based approaches still got results with
comparable accuracy with DES-based ones. This can be
explained by examining the load and generation profiles
given in Fig. 2. As shown in Fig. 2, there are no distinct
increasing/decreasing trends existing among time intervals.
Therefore, the trend components used in DES-based
approaches should not have big contributions to the
accuracy of estimation.

C. Effects of Sanity Check and Adjustment for Power
Injections

Table IV gives the test results obtained by using same
scenarios as Table III, but the power injections were
adjusted according to the results of sanity check. The
ranges of rational power injection variations are set based
on six times the standard deviations of injection noises.
Comparing with Table III, it can be seen that the accuracy
of state estimation for scenarios with larger standard
deviations such as Scenario II, and Scenario III has been
significantly improved when applying the sanity check and
adjustment to the power injection forecasting.

Table IV. AVERAGE MAES WITH SANITY ADJUSTMENTS

Test Average MAE
Approach Scenario Phase Angle Voltage Magnitude
(radians) (per unit)
I 0.00251 0.00393
PF-SES I 0.00267 0.00495
I 0.00288 0.00602
I 0.00216 0.00353
PF-DES I 0.00240 0.00463
1 0.00270 0.00578

VI CONCLUSIONS

This paper introduces very-short term load and DG
injection forecasting into UKF-based DSE to improve the
estimation accuracy of dynamic state estimation for
distribution systems. The nodal power injections from load
and DG are forecasted and transformed into state

predictions through load flow computation. In addition,
the sanity check and adjustment for power injections are
used to mitigate the impacts of bad data and irrational
sigma points on the estimation accuracy.

Future and ongoing research includes the investigation
the impacts of the variability of reactive powers on the
nodal power injection forecasts, load and distribution
generation modeling, as well as the observability
requirement analysis.
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