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Abstract

Segmentation of moving objects in a scene is difficult for non-stationary cameras, and espe-
cially challenging in the presence of fast and unstable egomotion, e.g., as encountered with
car-mounted cameras or wearable devices. Based on an analysis of motion vanishing points of
the scene and estimated depth, a geometric model that relates extracted 2D motion to a 3D
motion field relative to the camera is derived. Observing that the 3D motion field is piece-
wise smooth, a constrained optimization problem that considers group sparsity is formulated
to recover the 3D motion field from the 2D motion. The recovered 3D motion field is then
clustered to provide the segmentation of moving objects. Experiments are performed using
the KITTI Vision Benchmark Suite and demonstrate that the proposed framework provides
a dense segmentation of moving objects that is robust to the challenging conditions inherent
with car driving sequences.
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ABSTRACT

Segmentation of moving objects in a scene is difficult for non-
stationary cameras, and especially challenging in the presence of fast
and unstable egomotion, e.g., as encountered with car-mounted cam-
eras or wearable devices. Based on an analysis of motion vanishing
points of the scene and estimated depth, a geometric model that re-
lates extracted 2D motion to a 3D motion field relative to the camera
is derived. Observing that the 3D motion field is piece-wise smooth,
a constrained optimization problem that considers group sparsity is
formulated to recover the 3D motion field from the 2D motion. The
recovered 3D motion field is then clustered to provide the segmenta-
tion of moving objects. Experiments are performed using the KITTI
Vision Benchmark Suite and demonstrate that the proposed frame-
work provides a dense segmentation of moving objects that is robust
to the challenging conditions inherent with car driving sequences.

Index Terms— Motion segmentation, foreground / background
separation, freely moving cameras, pixel-wise foreground labeling,
3D motion reconstruction

1. INTRODUCTION

Detecting or segmenting moving objects from videos is an essential
step for video analysis and understanding and thus there is abundant
literature dealing with this problem. Due to the large variety in the
video types and contents, an effective algorithm is not always guar-
anteed for all types of videos. When the videos are captured via
static cameras, traditional background subtraction techniques usu-
ally provide quite effective solutions to the detection and segmen-
tation of targets. However, more and more of today’s videos are
captured from moving platforms, e.g., cameras mounted on vehicles
or drones, where the traditional background subtraction algorithms
are not applicable.

When the camera motion is known or the scene geometry is re-
stricted, such as pan-tilt-zoom cameras, then some extensions of the
traditional background subtraction methods via motion compensa-
tion can be effective. For example, if a planar scene is monitored,
a geometric transformation between images of a plane can be char-
acterized as a homography, which includes 8 parameters. Applying
RANSAC [1] or its variants can perform robust estimation for the
homography with matches of points and can thereby establish an
extended background map. Then adopting any traditional methods
such as Gaussian models or mixture of Gaussians can statistically
model the pixel process and furthermore detecting the objects.

*This work was done when Jiun-Yu Kao worked at MERL.

However, when the cameras are freely moving, motion com-
pensation based methods cannot robustly estimate the image mosaic
and thereby are not applicable. Instead, recently proposed methods
mostly use motion segmentation approaches as the building blocks.
Motion segmentation methods can be roughly categorized into four
categories: statistical, factorization-based, algebraic decomposition
and spectral clustering techniques. Statistical approaches alternate
between assigning trajectories to subspaces and refitting subspaces
to their assigned points; this may be achieved using the EM al-
gorithm in [2]. Factorization-based approaches such as [3][4] di-
rectly factorize the matrix of trajectories. Algebraic decomposition
approaches such as GPCA [5] formulate motion segmentation as a
problem of subspace separation. Another alternative is robust PCA
where the background scene is modeled as a low-dimensional sub-
space. The foreground objects can be segmented from the back-
ground in [6][7] when the camera is stationary. Finally, spectral
clustering based approaches first utilize local information to com-
pute pairwise similarity between keypoint trajectories, from which
an affinity matrix is generated and followed by clustering the trajec-
tories into separate subspaces as described in [8]. One such exam-
ple is sparse subspace clustering (SSC) [9] where the affinity ma-
trix is constructed by the coefficients when attempting to represent
each trajectory as a sparse linear combination of others. Some of the
above mentioned motion segmentation approaches, such as SSC, can
handle the situation when small camera movement exists, e.g., with
a hand-held camera.

Unfortunately, all the above motion segmentation approaches
are not directly applicable to the challenging situation when the cam-
eras are freely and fast moving, such as in the car driving sequences.
However, these approaches have been used as fundamental building
blocks in recent works which attempt to tackle the motion segmenta-
tion problem for this more difficult case. One example is [10], which
first utilizes RANSAC to robustly estimate a compact trajectory ba-
sis to model the background, so that the background is subtracted by
removing those trajectories lying in the subspace spanned with the
estimated basis. An optimization problem to maximize a posterior
function is then solved for a pixel-wise foreground/background la-
beling. Their method works with freely moving camera but fails in
car driving sequences since it highly deviates from the orthographic
projection assumption. A more recent work by Elqursh and Elgam-
mal [11] also maintains representations for both the background and
the foreground by formulating motion segmentation as a manifold
separation problem. Long term trajectories and a Bayesian filter-
ing framework are utilized to include both the motion dependencies
and pixel-level appearance. Although moving objects can be suc-
cessfully segmented with their method, long term trajectories are re-
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Fig. 1. Nllustration of motion vanishing point in 3D world coordinate
system and image coordinate system. [12]

quired in their algorithm, which may lead to issues in high memory
consumption and large latency.

Our proposed approach is also based on motion segmentation
method. In contrast to [11], our method only requires pixel-wise
motion vectors rather than long-term trajectories. Besides, we as-
sume the pixel-wise disparity can also be provided or estimated. We
first derive a model to relate the given 2D motion field to the 3D
motion relative to the camera associated with each pixel, which is
what we would like to solve for. As the model only provides an
under-determined set of equations, we further include two desired
properties to restrict the solution set to what is desired. After solv-
ing for the pixel-wise 3D motions, standard spectral clustering [8] is
utilized to provide the final labeling.

The rest of the paper is organized as follows. Section 2 illus-
trates the insights and derivation of the geometric model between
two motion fields. Section 3 explains the desired properties in the
solved 3D motions and thereby the formulation of the optimization
problem, along with the algorithm to solve it. Section 4 provides
the experimental results on KITTI benchmark along with briefly ex-
plaining the segmentation process. Section 5 concludes this paper.

2. 3D MOTION ANALYSIS

2.1. Motion Vanishing Point

Strong perspective effects appear all the time for outdoor sequences,
especially for car driving sequences, captured by a camera mounted
on a moving car. According to [12], the concept of motion vanishing
point (MVP) originates from the observation on how 3D motions
in the scene project to the image plane as described in Figure 1.
Due to the perspective effect, a pair of parallel 3D motion vectors,
P, — P{ and P, — P5, will intersect at point V' at infinity in the
3D coordinate system. When instead looking at their projections to
the image plane of a camera centered at C|, the corresponding pair of
2D motion vectors, p1 — p} and p2 — ph, will intersect at a motion
vanishing point v. In fact, the 2D motion vectors of all points on
the same object will share the same motion vanishing point v in the
image plane once if they exhibit the same motion in the 3D world.
From the above observations, we notice that there should be a rela-
tionship between 2D and 3D motion vectors. Having a clearer idea
about this relationship can provide a way to recover/estimate the 3D
motions out of the 2D motion vectors. In the following section, this
relationship is mathematically derived and stated. We also demon-
strates how a motion vanishing point is represented, which was not
provided in [12].
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Fig. 2. Illustration of the relationship between 2D and 3D motion
vectors.

2.2. Motion Field Model

In order to derive the model between 2D motions in the image plane
and the 3D motions in the scene, we have P(¢) as a function of
time which denotes the coordinates of a moving 3D point. The ve-
locity of this point will be V. = dﬁit) = (Va, V4, V.). Further,
p(t) = (x(t),y(t), f) denotes the projection of P(¢) onto the im-
age plane in a 3D coordinate system, where f is a constant for the
focal length. Consequently, the velocity of p(¢) in the image plane
can be represented as v, = 92 4, = di’i(:), and v = (vg, vy, 0)
of each point is the 2D motion field of the image. The relationship
between 2D and 3D motion field is illustrated in Figure 2.
When perspective projection is assumed, we have,

p(t) = L - P0) (1)

where Z is the depth of 3D point from the camera center. Then
we can derive the motion vector v by differentiating p(¢) with re-
spect to ¢ as follows,
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Writing the expressions for v, and v, respectively leads to the
following,

fVa:_Vz-T fo—sz
Vg = ? ’Uy = JT (3)
Furthermore, (2) can be reorganized as
1
v= (Vo= V.p(1) @

where vo = (fVz, fVy).

From (4) we can see that, for a group of points exhibiting the
same 3D motion, i.e., having constant V' = (V,,V,, V.), will also
have the same vo. When the 3D motion is parallel to the plane,
ie. V, = 0, all the motion vectors of this group of points will be
parallel to each other as v = %vo. When V. # 0, all the motion
vectors belonging to this group will point towards or away from a
common motion vanishing point, where at this point the 2D motion
field is zero. And the image plane coordinate of the MVP will be
P= V%VO = (f“f—’zC ,f“%), as derived from (4).

‘We observe that the model given in (4) provides a rigorous ex-
planation of the MVP concept and could be used to recover the 3D
motion from the 2D motion vector field with knowledge of the scene
depths Z. In next section, we will first show how to formulate the
motion segmentation problem and then present a solution to the pro-
posed formulation.



3. MOTION SEGMENTATION BASED ON 3D MOTION
CLASSIFICATION

3.1. 3D Motion Structures

Once the 3D motions are estimated, it would build a foundation to
segment the scene into regions with different motions. However, this
model could only provide an under-determined set of equations, and
hence the solutions, i.e., the recovered 3D motions, are not uniquely
determined. Therefore, additional properties of the motion structure
need to be utilized in order for the solution to be consistent with
constraints impose by the physical world.

According to the observations on the real-world car driving se-
quences, there are two properties in the structure of 3D motions rel-
ative to the camera. Firstly, the reconstructed 3D motions V are de-
sired to have piece-wise smoothness property because the motions
should be smooth and near-constant within each object. Secondly,
the 3D motions V in a scene are typically distributed sparsely in
terms of /;-norm assuming that there are only a few dominant mo-
tions in the scene at each time. Furthermore, group sparsity in terms
of [ 1-norm may be utilized considering that there are only a quite
limited number of moving objects in the scene, which was utilized in
2D motion in [13]. It is proposed to utilize the two types of proper-
ties by integrating two new constraints when solving the 3D motions
out of a given 2D motion field, which is to be described in Sec-
tion 3.2.

3.2. 3D Motion Segmentation Problem Formulation

In order to overcome the under-determined problem in the geometric
model in (3) or equivalently in the motion vanishing analysis in (4),
we propose to formulate the problem as an energy minimization task
after considering the two additional properties: piece-wise smooth-
ness and group sparsity of V. The first energy functional E, tries
to satisfy the geometric model in (3). For the purpose of piece-wise
smoothness, a total variation regularizer E,, is included in the objec-
tive function. Furthermore, an l2 ;-norm regularizer E; is added in
order to achieve group sparsity. Therefore, the optimization problem
is formulated as follows.

minimize E, + AE, + pE; %)
Va:i 7Vyi 7Vzi )
i=1,--,N

where the energy functionals E4, E,, and E; are given by
E, = AV — b]|3
E, =TV (V) (6)
Es = [G(V)ll5,1

Here, N is the number of pixels in the frame and

T
V= (fvxl"'waNnyl"'nyNVZl"'VZN) >
b = (vml e Ug Uy vt vyN)T as the given 2D motion field, and
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A, =diag(Z, -, 7). and Ay = diag(4-, -+, 4).

TV, (x) represents the sum of 2-dimensional total variation of
V2,V and V, separately. And the group l2 i-norm is defined as
1G(x)[l5, = >25—1 lIxgll, Where x4 is the component belonging
to group g, g = 1,---,s. A pixel with disparity value d will be
classified into group g = |d/23¢ | + 1, assuming that the disparity
ranges from 0 to 255.

In order to solve (5), we develop an alternating direction method
of multipliers (ADMM) algorithm [14]. The energy minimization is
first recast as the following constrained optimization problem

Juin 5IIAV = b|l3 + AlISl2,1 + #lIG(V)]21
subjectto S = DZ, @)

V=27

where D : R™'™2 — R271™2 g the two dimensional finite differ-
ence operator that acts on V., V,,, and V. separately, and n1 X ng is
the video frame size.

We then reformulate (7) into an unconstrained problem by form-
ing the following augmented Lagrangian

max min LAV — b3 + A[IS|lz + ][ V]2
y1,¥y2V,8,Z
+2-|S = DZ +y1/p1]3 ®)

+2||V = Z +y2/p2|3

where we introduced the Lagrange dual variables y; and y2. The
algorithm proceeds by alternating between minimizing the objective
in (8) with respect to each of the variables V, S, Z separately.

4. EXPERIMENTS AND DISCUSSIONS

4.1. Experimental setup

We apply the proposed framework to the dataset provided in the
KITTI Vision Benchmark Suite [15]. The dataset was recorded from
a moving vehicle while driving in and around a city, which includes
color and gray scale images from left and right cameras, Velodyne
laser scans and GPS measurements. To generate the input 2D mo-
tion vectors, the software package provided in [16] is applied to ev-
ery two consecutive frames recorded by a color camera on the left,
which leads to the estimated optical flows indicating the 2D motion
at each pixel. Under the proposed framework, the estimated depth
at each pixel is also required. We therefore apply the approach pro-
posed in [17] to recover the depth map from a single camera image
and the Velodyne data, both provided in the dataset.

With the 2D motion vectors and depth map prepared, we solve
the optimization problem as described in Section 3 for the 3D mo-
tions corresponding to each pixel. It’s worth to note that a series
of parameters must be defined to solve the optimization problem:
s(number of groups for the l2 1-norm), A(weight of total variation
regularizer), ptz, fby, (tz(Weights of sparsity regularizer on V,,V,,,V,
respectively), cluster Method and numCluster. Three types of
cluster Method are applied to the solved 3D motions: simple k-
means clustering, spectral clustering with 4-connected graph and
spectral clustering with fully connected graph.

4.2. Experimental results and discussions

Figure 3 and Figure 4 shows the experimental results on two se-
quences recorded under city environment, drive_0059 and drive_0018
with parameters as s = 10,A = 0.01,pu, = py = 5, . =
0.01, numCluster = 5, and cluster M ethod as simple k-means
clustering. The intermediate results of solved V., show that by solv-
ing the optimization problem stated in Section 3, the scene can be
clearly separated into regions with different moving directions and
speeds, which is why clustering on the estimated V,V,, V. can
provide promising results. Comparison between the segmentation
results using our proposed method and using the method utilizing
robust PCA and label propagation [18] shows that our algorithm
provides more robust detection for the foreground moving objects.



Fig. 3. Result on drive_0059. From top to bottom: Original images from left color camera, intermediate results of solved V., our segmenta-
tion results, and the benchmark provided with RPCA. From left to right: Frame #152, #174, #254 and #300.

Fig. 4. Result on drive_0018. From top to bottom: Original images from left color camera, intermediate results of solved V., our segmenta-
tion results, and the benchmark provided with RPCA. From left to right: Frame #13, #20, #73 and #114.

Fig. 5. Result on frame #300 of drive_0059. From left to right: Parameters set as in Fig. 3, only X changed to 0.1, only p. changed to 5, and

only s changed to 50.

Near to the picture boundaries (Figure 3) or for objects close
to the camera (Figure 4), sometimes we could observe large motion
away from the camera, which are likely to be segmented as a mov-
ing foreground. The reason behind is that the motion vectors toward
the camera provided by the optical flow in those area are not large
enough to reflect their actual motion; and hence those objects appear
a motion away from the camera in the V., domain. Providing an esti-
mated optical flow with better quality will be able to resolve this type
of mislabeling. Alternatively, the problem could be alleviated if the
optical flow is allowed to be refined together with the segmentation
procedure, which is subject to future improvements.

As for how to choose an appropriate set of parameters to use,
an experiment to analyze the effect of tuning each parameter is per-
formed and the result is shown in Figure 5. First can we observe
that, when enlarging A, which strengthen the regularization on total
variation, the solved segmentation attempts to be more piece-wise
smooth. On the other hand, when enlarging p, the regularization
on the group sparsity is strengthened and will lead to preference for
smaller values of solved V;, V,, V.. Thus, it is obvious that an ade-
quate choice for pta, fty, pt- should highly correspond to the under-
standing about the amplitude distribution between V., V,,, V..

5. CONCLUSION

In this paper, we first attempt solving for the 3D motions at each
pixel in the scene from the given 2D motion field and estimated
depth map. Specifically, we derive a motion field model to relate
3D motions to the 2D motion vectors taken depth into consideration.

An optimization problem solving for the 3D motions is furthermore
formulated, which aligns with the presented motion field model and
the imposed piece-wise smoothness and group sparsity constraints.
Once the 3D motions are solved, several clustering schemes are
applied to them in order to provide the final segmentation results.
Our experiments on car driving sequences in the well-known KITTI
Dataset demonstrate the ability of this approach to correctly estimate
the 3D motions and further achieve a more accurate motion segmen-
tation result.
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