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Abstract
Automatic speech recognition (ASR) is being deployed successfully more and more in products
such as voice search applications for mobile devices. However, it remains challenging to
perform recognition when the speaker is distant from the microphone, because of the presence
of noise, attenuation, and reverberation. Research on distant ASR has received increased
attention, and has progressed rapidly due to the emergence of 1) deep neural network (DNN)
based ASR systems, 2) the launch of recent challenges such as CHiME series, REVERB,
ASpIRE, and DIRHA, and 3) the development of new products such as the Microsoft Kinect
and the AMAZON Echo. This tutorial will review the recent progresses made in the field
of distant speech recognition in the DNN era, including single and multi-channel speech
enhancement front-ends, and acoustic modeling techniques for robust back-ends. The tutorial
will also introduce practical schemes for building distant ASR systems based on the expertise
acquired from past challenges.
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List of abbreviations
ASR Automatic Speech Recognition

AM Acoustic Model

BF Beamformer

BLSTM Bidirectional LSTM

CMLLR Constrained MLLR (equivalent to fMLLR)

CNN Convolutional Neural Network

CE Cross Entropy

DAE Denoising Autoencoder

DNN Deep Neural Network

DOC Damped Oscillator Coefficients

DSR Distant Speech Recognition

D&S Delay and sum (Beamformer)

fDLR Feature space Discriminative Linear Regression

fMLLR Feature space MLLR (equivalent to CMLLR)

GCC-PHAT Generalized Cross Correlation with Phase Transform

GMM Gaussian Mixture Model

HMM Hidden Markov Model

IRM Ideal Ratio Mask

KL Kullback–Leibler (divergence/distance)

LCMV Linear Constrained Minimum Variance

LDA Linear Discriminant Analysis

LIN Linear Input Network

LHN Linear Hidden Network

LHUC Learning Hidden Unit Contribution

LM Language Model

LP Linear Prediction

LSTM Long Short-Term Memory (network)

MAP Maximum A Posterior

MBR Minimum Bayes Risk

MCWF Multi-Channel Wiener Filter

ML Maximum Likelihood

MLLR Maximum Likelihood Linear Regression

MLLT Maximum Likelihood Linear Transformation

MMeDuSA Modulation of Medium Duration Speech Amplitudes

MMSE Minimum Mean Square Error

MSE Mean Square Error

MVDR Minimum Variance Distortionless  Response 
(Beamformer)

NMF Non-negative Matrix Factorization

PNCC Power-Normalized Cepstral Coefficients 

RNN Recurrent Neural Network

SE Speech Enhancement

sMBR state-level Minimum Bayes Risk

SNR Signal-to-Noise Ratio

SRP-PHAT Steered Response Power with the PHAse Transform

STFT Short Time Fourier Transform

TDNN Time Delayed Neural Network

TDOA Time Difference Of Arrival

TF Time-Frequency

VTLN Vocal Tract Length Normalization

VTS Vector Taylor Series

WER Word Error Rate

WPE Weighted Prediction Error (dereverberation)
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Notations

Basic notation

𝑎 Scalar

𝐚 Vector

𝐀 Matrix

Signal processing

𝐴 Sequence

𝑥[𝑛] Time domain signal at sample 𝑛

𝑋(𝑡, 𝑓) Frequency domain coefficients at frame 𝑡 and frequency bin 𝑓

ASR

𝐨𝑡 Speech feature vector at frame 𝑡

𝑂 ≡ {𝐨𝑡 |𝑡 = 1,… , 𝑇} 𝑇-length sequence of speech features

𝑤𝑛 Word at 𝑛th position

𝑊 ≡ {𝑤𝑛|𝑛 = 1,… ,𝑁} 𝑁-length word sequence
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Notations

operation

𝑎∗ Complex conjugate

𝐀T Transpose

𝐀H Hermitian transpose

𝐚 ∘ 𝐛 or 𝐀 ∘ 𝐁 Elementwise multiplication

𝜎() Sigmoid function

softmax() Softmax function

tanh() Tanh function
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1. Introduction
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1.1 Evolution of ASR
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From pattern matching to probabilistic approaches

• 50s-60s 
– Initial attempts with template matching

– Recognition of digits or few phonemes

• 70s
– Recognition of 1000 words

– First National projects (DARPA)

– Introduction of beam search

• 80s
– Introduction of probabilistic model approaches 

(n-gram language models, GMM-HMM acoustic 
models)

– First attempts with Neural Networks

– Launch of initial dictation systems (Dragon Speech)

(Juang’04)
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From research labs to outside world

• 90s
– Discriminative training for acoustic models, 

MLLR adaptation, VTS

– Development of Common toolkits (HTK)

• 2000s
– Less breakthrough technologies 

– New popular toolkits such as KALDI

– Launch of large scale applications 

(Google Voice search)

• 2010s
– Introduction of DNNs, RNN-LMs

– ASR used in more and more products (e.g. SIRI…)

(Juang’04)
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Evolution of ASR performance

1%

10%

100%

2000 201020051995 2015

Deep learning

Interspeech 2016
(Saon’16)

(Pallett’03, Saon’15, Saon’16)

Switchboard task (Telephone conversation speech)
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Impact of deep learning

• Great performance improvement
– DNNs are more robust to input variations
 bring improvements for all tasks (LVCSR, DSR, …)

• Robustness is still an issue
– Speech enhancement/adaptation improve performance 

Microphone array, fMLLR, … 

• Reshuffling the cards
– Some technologies relying on GMMs became obsolete,

VTS, MLLR …

– Some technologies became less effective, 
VTLN, Single channel speech enhancement, …

– New opportunities, 
• Exploring long context information for recognition/enhancement
• Front-end/back-end joint optimization, …

(Seltzer’14, Delcroix’13)
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Towards distant ASR (DSR)

Distant microphone

e.g., Human-human comm., 

Human-robot comm.

Close-talking microphone

e.g., voice search
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Interest for DSR - Academia

ICSI 
meeting RATS

2005 2010 2015
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Interest for DSR - Industry

Voiced controlled appliances

Robots

Game consoles

Home assistants
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1.2 Challenges of DSR
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Reverberation

Background noise

Interfering

speaker

Distant mic

Challenges of DSR
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Recent achievements

• REVERB 2014 (WER)

• CHiME-3 2015 (WER)

Baseline (GMM)

Multi-mic front-end + robust back-end

Robust back-end

48.9 %

22.2 %

9.0 %

Robust back-end

Multi-mic front-end + robust back-end

33.43 %

15.60 %

7.60 %

Baseline (DNN)



18

1.3 Overview of DSR systems
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DSR system

Feature 
extraction

Recognizer

Acoustic
model

Language
model

Lexicon

My name is …

𝑊𝑂

……

Speech 
enhancement

𝑦𝑗[𝑛]
ො𝑥[𝑛] 𝐨𝑡

Model 
adaptation
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Signal model – Time domain

• Speech captured with a distant microphone array

• Microphone signal at 𝑗th microphone

𝑦𝑗 𝑛 =

𝑙

ℎ𝑗 𝑙 𝑥 𝑛 − 𝑙 + 𝑢𝑗 𝑛 = ℎ𝑗 𝑛 ∗ 𝑥 𝑛 + 𝑢𝑗 𝑛

– 𝑥 𝑛 Target clean speech

– ℎ𝑗 𝑛 Room impulse response

– 𝑢𝑗 𝑛 Additive noise (background noise, …)

– 𝑛 Time index

𝑥 𝑛 ℎ𝑗 𝑛

𝑦𝑗 𝑛𝑢𝑗 𝑛
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Signal model - STFT domain

• Speech captured with a distant microphone array

• Microphone signal at 𝑗𝑡ℎ microphone:

𝑌𝑗 𝑡, 𝑓 ≈

𝑚

𝐻𝑗 𝑚, 𝑓 𝑋 𝑡 − 𝑚, 𝑓 + 𝑈𝑗 𝑡, 𝑓 = 𝐻𝑗 𝑡, 𝑓 ∗ 𝑋 𝑡, 𝑓 + 𝑈𝑗 𝑡, 𝑓

– 𝑋 𝑡, 𝑓 Target clean speech
– 𝐻𝑗 𝑡, 𝑓 Room impulse response

– 𝑈𝑗(𝑡, 𝑓) Additive noise
– (𝑡, 𝑓) time frame index and frequency bin index

Approximate a long-term 
convolution in the time domain 
as a convolution in the STFT 
domain, because ℎ𝑖 𝑛 is longer 
than the STFT analysis window

𝑋(𝑡, 𝑓) 𝐻𝑗 𝑡, 𝑓

𝑌𝑗 𝑡, 𝑓
𝑈𝑗(𝑡, 𝑓)
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Speech enhancement (SE) front-end

• Reduce mismatch between the observed signal and the 
acoustic model caused by noise and reverberation

SE front-end

𝑦𝑗[𝑛] ො𝑥[𝑛]

Multi-channel 
dereverberation

Multi-channel 
noise reduction

Single-channel 
noise reduction
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Feature extraction

• Converts a speech signal to a sequence of speech features 
more suited for ASR, typically log mel filterbank coefficients

• Append left and right context

Feature 
extraction

……

ො𝑥[𝑛]
𝑂 ≡ {𝐨𝑡 |𝑡 = 1,… , 𝑇}

STFT log( ∙ )Mel filtering
Context 

expansion
∙ 2
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Recognition

• Speech recognition
– Bayes decision theory(MAP): 

𝑊 = argmax
𝑊

𝑝(𝑊|𝑂)

= argmax
𝑊

𝑝 𝑂 𝑊 𝑝 𝑊

• Acoustic model
– HMM:

𝑝 𝑂 𝑆 = 𝑝 𝒐1 𝑠1 𝑝 𝑠1 ෑ

𝑡=2

𝑇

𝑝 𝒐𝑡 𝑠𝑡 𝑝 𝑠𝑡 𝑠𝑡−1

Where 𝑠𝑡 is an HMM state index

– HMM state emission probability, 
𝑝 𝒐𝑡 𝑠𝑡 obtained as the output of a 
deep neural network (DNN)

Recognizer

Acoustic
model

Language
model

Lexicon

My name is …

𝑊

Features
 phonemes

Phonemes
 words

Words
 sentences

HMM with DNN
N-gram or RNN

……

𝑂 ≡ {𝐨𝑡 |𝑡 = 1,… , 𝑇}
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• Trained using error back-propagation

• Training criterion, cross entropy, MMSE, State-level MBR, … 

Basics of deep neural networks

Output layer (𝑙 = 𝐿)

Input layer (𝑙 = 0)

Hidden layers (𝑙)

𝐚𝑡
𝑙 = 𝐖𝑙𝐡𝑡

𝑙−1 + 𝐛𝑙

𝐡𝑡
𝑙 = 𝜎 𝐚𝑡

𝑙

Activation function 𝜎 ∙

0

1 1

0

Sigmoid Relu

𝐡𝑡
𝑙

𝑝 𝑠𝑡 = 𝑘 𝐨𝑡 = ℎ𝑡,𝑘
𝐿 = softmax(𝐚𝑡

𝐿) 𝑘
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DNN-based acoustic modeling

• Minimize cross entropy

𝐽(𝜃) = −

𝑡



𝑘

𝜏𝑡,𝑘 log ℎ𝑡,𝑘
𝐿 (𝜃)

– 𝜏𝑡,𝑘 Target label

– ℎ𝑡,𝑘
𝐿 Network output

– 𝜃 Network parameters

• Optimization using error 
backpropagation

• Use large amount of speech training 
data with the associated HMM state 
alignments

Output HMM state

Log mel filterbank 

+ 11 context frames

~
7

h
id

d
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ye
rs

,

2
0

4
8

 u
n

it
s

1,000 ~ 10,000 units

･･････

Input speech features

a i u w N
・・・

(Hinton’12, Mohamed’12)
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Content of the tutorial

Feature 
extraction

Recognizer

Acoustic
model

Language
model

Lexicon

My name is …

𝑊𝑂

……
SE front-end

𝑌𝑗(𝑡, 𝑓)
𝑋(𝑡, 𝑓) 𝐨𝑡

Model 
adaptation

In this tutorial we describe some representative approaches for 
each of the main components of a DSR system
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Topics not covered in this tutorial

• Voice activity detection

• Keyword spotting

• Multi-speaker / Speaker diarization

• Online processing

• Data simulation

• Lexicon, Language modeling and decoding
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1.4 Overview of related tasks
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Robust ASR tasks



31

CHiME 1, 2

• Distant speech recognition in living room
– Acoustic conditions

• Simulated distant speech

• SNR: -6dB to - 9dB

– # mics : 2

– CHiME 1: Command (Grid corpus) 

+ noise (living room)

– CHiME 2 (WSJ): WSJ (5k) + noise (living room)

http://spandh.dcs.shef.ac.uk/chime_challenge

stereo

(Barker’13, Vincent’13)
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CHiME 3, 4

• Noisy speech recognition using a tablet
– Recording conditions

• Noise types: Bus, Café, Street, Pedestrian

• # mics: 6 (CHiME3);  1, 2, 6 (CHiME4) 

• Simulated and real recordings

– Speech

• Read speech (WSJ (5k))

http://spandh.dcs.shef.ac.uk/chime_challenge

(Barker’15)
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REVERB

• Reverberant speech recognition
– Recording conditions

• Reverberation (RT 0.2 to 0.7 s.)

• Noise type: stationary noise (SNR  ~20dB)

• # mics: 1, 2,  8

• Simulated and real recordings (MC-WSJ-AV)

– Speech
• Read speech (WSJ CAM0 (5k))

http://reverb2014.dereverberation.com

(Kinoshita’13, Lincoln’05)
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AMI

• Meeting recognition corpus
– Recording conditions

• Multi-speaker conversations

• Reverberant rooms

• # mics: 8

• Real recordings

– Speech

• Spontaneous meetings (8k)

http://corpus.amiproject.org/

(Carletta’05)
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AURORA

• Aurora 4  
– Recording conditions

• Noise types: car, babble, street, airport, train, restaurant

• SNR: 5-15 dB

• Channel distortion

• # mics: 1

• Simulation

– Speech

• Read speech (WSJ (5k))

http://aurora.hsnr.de/index-2.html

(Parihar’02)



36

ASpIRE

• Large vocabulary reverberant speech
– Recording conditions

• Reverberant speech

• 7 different rooms (classrooms and office rooms) with various shapes, sizes, 
surface properties, and noise sources

• # mics: 1 or 6

– Speech

• Training data: Fisher corpus (2000 h of telephone speech)

https://www.iarpa.gov/index.php/working-with-iarpa/prize-challenges/306-automatic-speech-in-
reverberant-environments-aspire-challenge

(Harper’15)
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DIRHA

• Multi-microphone and 
multi-language database 
– Acoustic conditions

• Noise/reverberation recorded in 
an apartment

• # mics: 40

• Simulation

– Speech

• Multi-language (4 languages)

• Various styles, command, 
keyword, spontaneous, … 

http://dirha.fbk.eu/simcorpora

(Matassoni’14)
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Summary of tasks

Vocab 
size

Amount of 
training data

Real/
Simu

Type of distortions #
mics

Mic-speaker
distance

Ground 
truth

ASpIRE 100K ~ 2000 h Real Reverberation 8/1 N/A N/A

AMI 11K 75 h Real Multi-speaker conversations
Reverberation and noise

8 N/A Headset

Aurora4 5K 7,138 utt. (~ 14 h) Simu Additive noise + channel distortion
(SNR 5-15dB)

1 N/A Clean

CHiME1 50 17,000 utt. Simu Non-stationary noise recorded in a 
living room (SNR -6dB – 9dB)
Reverberation from recorded impulse 
responses

2 2m Clean

CHiME2 
(WSJ)

5K 7138 utt. (~ 15 h) Simu Same as CHiME1 2 2m Clean

CHiME3 5K 8738 utt. (~ 18 h) Simu + 
Real

Non-stationary noise in 4 
environments

6 0.5m Close talk
mic.

CHiME4 5K 8738 utt. (~ 18 h) Simu + 
Real

Non-stationary noise in 4 
environments

6/2/1 0.5m Close talk
mic.

REVERB 5K 7861 utt.. (~ 15 h) Simu + 
Real

Reverberation  in different living rooms 
(RT60 from 0.25 to 0.7 sec.) + 
stationary noise (SNR ~ 20dB)

8/2/1 0.5 m – 2m Clean 
/Headset
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2. Front-end techniques for 
distant ASR
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SE Front-end

Feature 
extraction

Recognizer

Acoustic
model

Language
model

Lexicon

My name is …

𝑊𝑂

……
SE front-end

𝑌𝑗(𝑡, 𝑓)
𝑋(𝑡, 𝑓) 𝐨𝑡

Model 
adaptation

Multi-channel 
dereverberation

Multi-channel 
noise reduction

Single-channel 
noise reduction



42

Speech enhancement (SE)

• Reduce mismatch between observed speech and ASR back-
end due to noise/reverberation

– Single-channel

– Multi-channel
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Type of processing

• Linear processing
– Linear filter constant for long segments

• Non-linear processing
– Linear filter changing for each time-frame

– Non-linear transformation

With 𝐹(∙) Non-linear function
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Categorization of SE front-ends
Single-channel Multi-channel

Linear 
processing

• WPE dereverberation (Nakatani’10) • Beamforming (Van Trees’02)
• WPE dereverberation 

(Nakatani’10)
• Neural network-based 

enhancement (Heymann’15)

Non-linear 
processing

• Spectral subtraction (Boll’79)
• Wiener filter (Lim’79)
• Time-frequency masking(Wang’06)
• NMF (Virtanen’07)
• Neural network-based enhancement 

(Xu’15, Narayanan’13, Weninger’15)

• Time-frequency masking 
(Sawada’04)

• NMF (Ozerov’10)
• Neural network-based 

enhancement (Xiao’16) 
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Categorization of SE front-ends
Single-channel Multi-channel

Linear 
processing

• WPE dereverberation (Nakatani’10) • Beamforming (Van Trees’02)
• WPE dereverberation 

(Nakatani’10)
• Neural network-based 

enhancement (Heymann’15)

Non-linear 
processing

• Spectral subtraction (Boll’79)
• Wiener filter (Lim’79)
• Time-frequency masking(Wang’06)
• NMF (Virtanen’07)
• Neural network-based 

enhancement (Xu’15, Narayanan’13, 
Weninger’15)

• Time-frequency masking 
(Sawada’04)

• NMF (Ozerov’10)
• Neural network-based 

enhancement (Xiao’16) 

Focus on
• Linear processing
• Neural network-based enhancement

Have been shown to interconnect well with ASR back-end
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2.1 Dereverberation

Feature 
extraction

Recognizer

Acoustic
model

Language
model

Lexicon

My name is …

𝑊𝑂

……
SE front-end

𝑌𝑗(𝑡, 𝑓)
𝑋(𝑡, 𝑓) 𝐨𝑡

Model 
adaptation

Multi-channel 
dereverberation

Multi-channel 
noise reduction

Single-channel 
noise reduction
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Room impulse response

• Models the multi-path propagation of sound caused by 
reflections on walls and objects (Kuttruff’09)

– Length 200-1000 ms in typical living rooms

Direct path

time

ℎ𝑗 𝑛

Late 
reverberation 

(100 ms-1000ms)

Early 
reflections 
(=30-50 ms)
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Reverberant speech

𝑌 𝑡, 𝑓 = 𝐻𝑗 𝑡, 𝑓 ∗ 𝑋 𝑡, 𝑓 + 𝑈 𝑡, 𝑓

= σ𝜏=0
𝑑 𝐻 𝜏, 𝑓 𝑋 𝑡 − 𝜏, 𝑓 + σ𝜏=𝑑+1

𝑇 𝐻 𝜏, 𝑓 𝑋 𝑡 − 𝜏, 𝑓 + 𝑈 𝑡, 𝑓

𝑋(𝑡, 𝑓) 𝐻 𝑡, 𝑓

𝑌 𝑡, 𝑓

∗

Direct +    Early 
sound    reflections

𝐷(𝑡, 𝑓)

Late 
reverberation

𝐿(𝑡, 𝑓)

Dereverberation aims at suppressing late reverberation

(Yoshioka’12b)

Neglect noise for the 
derivations
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Dereverberation

• Linear filtering
– Weighted prediction error

• Non-linear filtering
– Spectral subtraction using a statistical model of late reverberation 

(Lebart’01, Tachioka’14)

– Neural network-based dereverberation (Weninger’14)
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Linear prediction (LP) 

• Reverberation: linear filter 

 Can predict reverberation from past observations using linear prediction 

(under some conditions)

Current signal

Prediction

・・・ ・・・・・・ ・・・

Past signals

Predictable

𝐷 𝑡, 𝑓 and 𝐿 𝑡, 𝑓 are both reduced

Dereverberation: 

𝑌 𝑡, 𝑓 = 𝐷 𝑡, 𝑓 + 𝐿 𝑡, 𝑓



𝜏=1

𝐺∗ 𝜏, 𝑓 𝑌 𝑡 − 𝜏, 𝑓

𝐷 𝑡, 𝑓 = 𝑌 𝑡, 𝑓 −

𝜏

𝐺∗ 𝜏, 𝑓 𝑌 𝑡 − 𝜏, 𝑓

(Haykin’96)
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Problem of LP-based speech dereverberation

• LP predicts both early reflections and late reverberation
– Speech signal exhibits short-term correlation (30-50 ms)

 LP suppresses also the short-time correlation of speech 

• LP assumes the target signal follows a stationary Gaussian 
distribution
– Speech is  not stationary Gaussian

 LP destroys the time structure of speech

• Solutions: 
– Introduce a prediction delay (Kinoshita’07)

– Introduce better modeling of speech signals 

(Nakatani’10, Yoshioka’12, Jukic’14)
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Only  reduce 𝐿 𝑡, 𝑓

・・・ ・・・・・・ ・・・

Delayed linear prediction (LP) 

Current signal

Past signals

Unpredictable

Predictable
Delayed LP can only predict 𝐿 𝑡, 𝑓 from past signals

Delay 𝑑 (=30-50 ms)

Prediction

𝑌 𝑡, 𝑓 = 𝐷 𝑡, 𝑓 + 𝐿 𝑡, 𝑓



𝜏=𝑑

𝐺∗ 𝜏, 𝑓 𝑌 𝑡 − 𝜏, 𝑓

(Kinoshita’07)
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Estimation of prediction coefficients

𝐺 𝜏, 𝑓 = argmin
𝐺 𝜏,𝑓


𝑡
𝑌 𝑡, 𝑓 − 

𝜏=𝑑

𝐺∗ 𝜏, 𝑓 𝑌 𝑡 − 𝜏, 𝑓

2

• ML estimation for stationary signal

• For non-stationary signal with time-varying power 𝜙𝐷 𝑡, 𝑓

𝐺 𝜏, 𝑓 = argmin
𝐺 𝜏,𝑓



𝑡

𝑌 𝑡, 𝑓 − σ𝜏=𝑑𝐺
∗ 𝜏, 𝑓 𝑌 𝑡 − 𝜏, 𝑓 2

𝜙𝐷 𝑡, 𝑓

Weighted prediction error (WPE)

Delayed LP: 𝐷 𝑡, 𝑓 = 𝑌 𝑡, 𝑓 −

𝜏=𝑑

𝐺∗ 𝜏, 𝑓 𝑌 𝑡 − 𝜏, 𝑓

(Nakatani’10, Yoshioka’12)
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Multi-channel extension

• Exploit past signals from all microphones to predict current signal at a 
microphone

• Prediction filter obtained as ො𝐠𝑓 = argmin
𝐠𝑓

σ𝑡

𝑌1 𝑡,𝑓 −𝐠𝑓
𝐻𝐲𝑡−𝑑,𝑓

2

𝜙𝐷 𝑡,𝑓

• Can output multi-channel signals

・・・ ・・・・・・ ・・・

・・・ ・・・・・・ ・・・

・・・ ・・・

𝐷 𝑡, 𝑓 = 𝑌1 𝑡, 𝑓 −

𝑗=1

𝐽



𝜏=𝑑

𝐺𝑗
∗ 𝜏, 𝑓 𝑌𝑗 𝑡 − 𝜏, 𝑓

= Y1 𝑡, 𝑓 − 𝐠𝑓
𝐻𝐲𝑡−𝑑,𝑓

𝑌1 𝑡, 𝑓



𝜏=𝑑

𝐺𝑗
∗ 𝜏, 𝑓 𝑌𝑗 𝑡 − 𝜏, 𝑓
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Processing flow of WPE

Dereverberation

Power estimation
Prediction filter 

estimation
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Sound demo from REVERB challenge
Headset

Distant
(RealData)

Derev
+ beamformer

Derev

(Delcroix’14) 
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Results for REVERB and CHiME3

Front-end REVERB 
(8 ch)

CHiME3 
(6 ch)

- 19.2 % 15.6 %

WPE 12.9 % 14.7 %

WPE + MVDR Beamformer 9.3 % 7.6 %

Results for the REVERB task (Real Data, eval set) (Delcroix’15)
- DNN-based acoustic model trained with augmented training data
- Environment adaptation
- Decoding with RNN-LM  

Results for the CHiME 3 task (Real Data, eval set) (Yoshioka’15)
- Deep CNN-based acoustic model trained with 6 channel training data
- No speaker adaptation
- Decoding with RNN-LM  
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Remarks

• Precise speech dereverberation with linear processing 
– Can be shown to cause no distortion to the target speech

 Particularly efficient as an ASR front-end

• Can output multi-channel signals

 Suited for beamformer pre-processing

• Relatively robust to noise

• Efficient implementation in STFT domain

• A few seconds of observation are sufficient to estimate the 
prediction filters

Matlab p-code available at: www.kecl.ntt.co.jp/icl/signal/wpe
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Feature 
extraction

Recognizer

Acoustic
model

Language
model

Lexicon

My name is …

𝑊𝑂

……
SE front-end

𝑌𝑗(𝑡, 𝑓)
𝑋(𝑡, 𝑓) 𝐨𝑡

Model 
adaptation

Multi-channel 
dereverberation

Multi-channel 
noise reduction

Single-channel 
noise reduction

2.2 Beamforming
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Principle

• Pickup signals in the direction of the target speaker

• Attenuate signals in the direction of the noise sources

Beam pattern – microphone array gain 
as a function of the direction of arrival 
of the signal
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Microphone signal model

• Consider room impulse responses only within the STFT 
analysis window
– Late reverberation as diffusive noise and included into the noise term

𝑌𝑗 𝑡, 𝑓 ≈

𝑚

𝐻𝑗 𝑚, 𝑓 𝑋 𝑡 − 𝑚, 𝑓 + 𝑈𝑗 𝑡, 𝑓

= 𝐻𝑗 𝑓 𝑋 𝑡, 𝑓

𝑂𝑗 𝑡,𝑓

+ 𝑈𝑗 𝑡, 𝑓

• Using matrix notations

𝑋(𝑡, 𝑓)
𝐡𝑓

𝐲𝑡,𝑓 =

𝑌1 𝑡, 𝑓
⋮

𝑌𝐽 𝑡, 𝑓
= 𝐡𝑓 𝑋 𝑡, 𝑓

≜𝐨𝑡,𝑓

+ 𝐮𝑡,𝑓

𝐨𝑡,𝑓 Source image at microphones

𝐡𝑓 = 𝐻1 𝑓 ,… ,𝐻𝐽 𝑓
T

Steering vector

𝐮𝑡,𝑓

source image at microphone 𝑗
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Steering vector

• Represents the propagation from the source to the microphones, including
– Propagation delays (information about the source direction)
– Early reflections (reverberation within the analysis window)

• Example of plane wave assumption with free field condition 
(no reverberation and speaker far enough from the microphones)

Steering vector given as :

𝐡𝑓 =
𝑒−2𝜋𝑓Δ𝜏1

⋮
𝑒−2𝜋𝑓Δ𝜏𝐽

Δ𝜏𝑗
𝑌𝑗 𝑡, 𝑓 = 𝑋 𝑡, 𝑓 𝑒−2𝜋𝑓Δ𝜏𝑗 + 𝑈𝑗 𝑡, 𝑓

Reference microphone

Δ𝜏𝑗 time difference of arrival (TDOA)
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Beamformer

• Output of beamformer

𝑋 𝑡, 𝑓 =

𝑗

𝑊𝑗
∗ 𝑓 𝑌𝑗(𝑡, 𝑓)

• Matrix notations
𝑋 𝑡, 𝑓 = 𝐰𝑓

𝐻𝐲𝑡,𝑓

𝐰𝑓 = 𝑊1 𝑓 ,… ,𝑊𝐽 𝑓
𝑇

𝐲𝑡,𝑓 = 𝑌1 𝑡, 𝑓 , … , 𝑌𝐽 𝑡, 𝑓
𝑇

The filters 𝐰𝑓 are designed to remove noise

𝑊1
∗(𝑓)

𝑊2
∗(𝑓)

𝑊𝑗
∗(𝑓)

𝑊𝐽
∗(𝑓)

𝑌𝑗 𝑡, 𝑓 𝑋 𝑡, 𝑓+
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Processing flow

Filter computation

Spatial information 
extraction

– Delay and Sum (DS) 

– Minimum variance distortionless 
response (MVDR)

– Max-SNR 

– Multi-channel Wiener filter (MCWF)

– TDOAs

– Steering vectors

– Spatial correlation matrix

𝑊1
∗(𝑓)

𝑊2
∗(𝑓)

𝑊𝑗
∗(𝑓)

𝑊𝐽
∗(𝑓)

𝑌𝑗 𝑡, 𝑓 𝑋 𝑡, 𝑓+
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2.2.1 Delay and Sum beamformer
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Delay and sum (DS) beamformer

• Align the microphone signals in time
– Emphasize signals coming from the target direction

– Destructive summation for signals coming from the other directions

• Requires estimation of TDOAs Δ𝜏𝑗

𝜏𝑗

1

𝑗

Δ𝜏𝑗

𝑒2𝜋𝑓Δ𝜏1

𝐽

𝑒2𝜋𝑓Δ𝜏𝑖

𝐽

+𝑌𝑗 𝑡, 𝑓

𝑋 𝑡, 𝑓

(Van Veen’88)
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TDOA estimation

• Signal cross correlation peaks when signals are aligned in time
Δ𝜏𝑖𝑗 = argmax

𝜏
𝜓𝑦𝑖𝑦𝑗(𝜏)

𝜓𝑦𝑖𝑦𝑗 𝜏 = 𝐸 𝑦𝑖 𝑡 𝑦𝑗(𝑡 + 𝜏)

• The cross correlation is sensitive to noise and reverberation
– Usually use GCC-PHAT* coefficients that are more robust to 

reverberation

𝜓𝑦𝑖𝑦𝑗
𝑃𝐻𝐴𝑇 𝜏 = 𝐼𝐹𝐹𝑇

𝑌𝑖 𝑓 𝑌𝑗
∗ 𝑓

𝑌𝑖 𝑓 𝑌𝑗
∗ 𝑓

𝜏

𝜓𝑦𝑖𝑦𝑗

Δ𝜏𝑖𝑗
Δ𝜏𝑖𝑗

*Generalized Cross Correlation with Phase Transform (GCC-PHAT)

(Knapp’76, Brutti’08)

𝜓𝑦𝑖𝑦𝑗 𝜏
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BeamformIt – a robust implementation of 
a weighted DS beamformer*

• BeamformIt:

– Used in baseline systems for several tasks, AMI, CHiME 3/4

Beamforming

GCC-PHAT coeff. 
computation

Filtering noisy 
TDOAs

TDOA tracking with 
Viterbi decoding

Reference channel 
selection

Channel weight 
computation

𝐰𝑓 =
𝛼1
𝐽
𝑒2𝜋𝑓Δ𝜏1 , … ,

𝛼𝐽
𝐽
𝑒2𝜋𝑓Δ𝜏𝐽

𝑇

Filter computation

𝛼1, … , 𝛼𝐽

Δ𝜏1, … , Δ𝜏𝐽

Single channel 
noise reduction

(Anguera’07)

Toolkit available : www.xavieranguera.com/beamformit

* Also sometimes called filter-and-sum beamformer
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2.2.2 MVDR beamformer



70

Minimum variance distortionless response 
(MVDR*) beamformer

• Beamformer output:
𝑋 𝑡, 𝑓 = 𝐰𝑓

𝐻𝐲𝑡,𝑓 = 𝐰𝑓
𝐻 𝐡𝑓 𝑋(𝑡, 𝑓) + 𝐰𝑓

𝐻𝐮𝑡,𝑓

⇒ 𝑋 𝑡, 𝑓 = 𝑋 𝑡, 𝑓 + 𝐰𝑓
𝐻𝐮𝑡,𝑓

• Filter is obtained by solving the following:

𝑋(𝑡, 𝑓)
𝐡𝑓

𝐲𝑡,𝑓𝐮𝑡,𝑓

Speech 𝑋(𝑡, 𝑓) is unchanged 

(distortionless):  𝐰𝑓
𝐻𝐡𝑓 = 1

Minimize noise at the 
output of the beamformer

* MVDR beamformer is a special case of the more general linearly constrained minimum variance     
(LCMV) beamformer (Van Veen’88)
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Expression of the MVDR filter

• MVDR filter given by

𝐰𝑓
𝑀𝑉𝐷𝑅 =

𝐑𝑓
𝑛𝑜𝑖𝑠𝑒 −1

𝐡𝑓

𝐡𝑓
𝐻 𝐑𝑓

𝑛𝑜𝑖𝑠𝑒 −1
𝐡𝑓

– Where 𝐑𝑓
𝑛𝑜𝑖𝑠𝑒 is the spatial correlation matrix* of the noise, which 

measures the correlation among noise signals at the different 
microphones

𝐑𝑓
𝑛𝑜𝑖𝑠𝑒 =

𝑡

𝐮𝑡,𝑓𝐮𝑡,𝑓
𝐻 =

1

𝑇


𝑡

𝑇

𝑈1 𝑡, 𝑓 𝑈1
∗ 𝑡, 𝑓 ⋯

1

𝑇


𝑡

𝑇

𝑈1 𝑡, 𝑓 𝑈𝐽
∗ 𝑡, 𝑓

⋮ ⋱ ⋮

1

𝑇


𝑡

𝑇

𝑈𝐽 𝑡, 𝑓 𝑈1
∗ 𝑡, 𝑓 ⋯

1

𝑇


𝑡

𝑇

𝑈𝐽 𝑡, 𝑓 𝑈𝐽
∗ 𝑡, 𝑓

* The spatial correlation matrix is also called cross spectral density
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Steering vector estimation

The steering vector 𝐡𝑓 can be obtained as the principal eigenvector of the spatial 
correlation matrix of the source image signals 𝐑𝑓

𝑠𝑝𝑒𝑒𝑐ℎ

𝐡𝑓 = 𝒫 𝐑𝑓
𝑠𝑝𝑒𝑒𝑐ℎ

Source image 
spatial correlation matrix

𝑀(𝑡, 𝑓)𝑌𝑖(𝑡, 𝑓)

𝐑𝑓
𝑛𝑜𝑖𝑠𝑒 =

σ𝑡𝑀(𝑡, 𝑓)𝐲𝑡,𝑓𝐲𝑡,𝑓
𝐻

σ𝑡𝑀(𝑡, 𝑓)

𝐑𝑓
𝑠𝑝𝑒𝑒𝑐ℎ

= 𝐑𝑓
𝑜𝑏𝑠 − 𝐑𝑓

𝑛𝑜𝑖𝑠𝑒

𝑀(𝑡, 𝑓) = ቊ
1 if noise > speech
0 otherwise

Spectral masks

𝐑𝑓
𝑜𝑏𝑠 =

𝑡

𝐲𝑡,𝑓𝐲𝑡,𝑓
𝐻

Microphone signal (speech + noise)

Noise estimate

(Souden’13, Higuchi’16, 
Yoshioka’15, Heymann’15)
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Spectral mask estimation

• Clustering of spatial features for mask estimation
– Source models

• Watson mixture model (Souden’13) 

• Complex Gaussian mixture model (Higuchi’16)

• Neural network-based approach (Hori'15, Heymann’15)
– See slides 94-96

E-step: update masks M-step: update spatial corr. matrix

𝑀𝑡,𝑓 = 𝑝 𝑛𝑜𝑖𝑠𝑒 𝒚𝑡,𝑓, 𝐑𝑓
𝑛𝑜𝑖𝑠𝑒 , 𝐑𝑓

𝑠𝑝𝑒𝑒𝑐ℎ 𝑀𝑡,𝑓

𝐑𝑓
𝑛𝑜𝑖𝑠𝑒

𝐑𝑓
𝑛𝑜𝑖𝑠𝑒 =

σ𝑡𝑀(𝑡, 𝑓)𝐲𝑡,𝑓𝐲𝑡,𝑓
𝐻

σ𝑡𝑀(𝑡, 𝑓)



74

Processing flow of MVDR beamformer

Beamforming

Filter estimation

Steering vector
estimation

Spatial correlation
matrix estimation

Time-frequency 
mask estimation

𝑀(𝑡, 𝑓) = ቊ
1 if 𝐮𝑡,𝑓 > |𝐨𝑡,𝑓|

0 otherwise

𝑋 𝑡, 𝑓 = 𝐰𝑓
𝐻𝐲𝑡,𝑓

𝐡𝑓 = 𝓟 𝐑𝑓
𝑠𝑝𝑒𝑒𝑐ℎ

𝐑𝑓
𝑠𝑝𝑒𝑒𝑐ℎ

= 𝐑𝑓
𝑜𝑏𝑠 − 𝐑𝑓

𝑛𝑜𝑖𝑠𝑒

𝐰𝑓
𝑀𝑉𝐷𝑅 =

𝐑𝑓
𝑛𝑜𝑖𝑠𝑒 −1

𝐡𝑓

𝐡𝑓
𝐻 𝐑𝑓

𝑛𝑜𝑖𝑠𝑒 −1
𝐡𝑓

𝐑𝑓
𝑛𝑜𝑖𝑠𝑒
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Other beamformers

• Max-SNR beamformer* (VanVeen’88, Araki’07, Waritz’07)

– Optimize the output SNR without the distortionless constraint

𝐰𝑓
𝑚𝑎𝑥𝑆𝑁𝑅 = 𝓟 𝐑𝑓

𝑛𝑜𝑖𝑠𝑒 −1
𝐑𝑓
𝑜𝑏𝑠

• Multi-channel Wiener filter (MCWF) (Doclo’02)

– Preserves spatial information at the output (multi-channel output)

𝐰𝑓
𝑀𝐶𝑊𝐹 = 𝐑𝑓

𝑜𝑏𝑠 −1
𝐑𝑓
𝑠𝑝𝑒𝑒𝑐ℎ

Max-SNR beamformer and MCWF can also be derived from 
the spatial correlation matrices

* Max-SNR beamformer is also called generalized eigenvalue beamformer
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2.2.3 Experiments
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CHiME 3 results

Results for the CHiME 3 task (Real Data, eval set) 
- Deep CNN-based acoustic model trained with 6 channel training data
- No speaker adaptation
- Decoding with RNN-LM  
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Sound demo
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MVDR
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remarks

• Delay-and-sum beamformer
 Simple approach
 Relies on correct TDOA estimation

• Errors in TDOA estimation may result in amplifying noise

 Not optimal for noise reduction in general

• Weighted DS beamformer (BeamformIt)
 Includes weights to compensate for amplitude differences among the microphone signals
 Uses a more robust TDOA estimation than simply GCC-PHAT

• Still potentially affected by noise and reverberation 

 Not optimal for noise reduction

• MVDR beamformer
 Optimized for noise reduction while preserving speech (distortionless)
– Extracting spatial information is a key for success

• From TDOA  Poor performance with noise and reverberation
• From signal statistics More robust to noise and reverberation

More involving in terms of computations compared to DS beamformer
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Remarks

• Beamforming can greatly reduce WER even when using a 
strong ASR back-end
– Beamforming outperforms TF masking for ASR

• TF masking removes more noise

• Linear filtering causes less distortion (especially with the distortionless 
constraint)

 This leads to better ASR performance

• Future directions
– Online extension (source tracking)

– Multiple speakers
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2.3 Deep neural network based 
enhancement

Feature 
extraction

Recognizer

Acoustic
model

Language
model

Lexicon

My name is …

𝑊𝑂

……
SE front-end

𝑌𝑗(𝑡, 𝑓)
𝑋(𝑡, 𝑓) 𝐨𝑡

Model 
adaptation

Multi-channel 
dereverberation

Multi-channel 
noise reduction

Single-channel 
noise reduction
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Deep network based enhancement:
Parallel data processing

• Basic architecture: regression problem

 Train a neural network to map noisy speech to clean speech

• Many variations investigated in terms of
– Objective functions

– Architectures

– Input/output

Deep neural 

network

Input: noisy speech 
𝐲𝑡

Output: clean speech 
𝐱𝑡
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2.3.1 Objective functions
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Regression based DNN

• Train a DNN to directly predict the clean spectrum from 
the noisy speech spectrum

• Objective function: minimum mean square error 
(MMSE) between clean and enhanced signal,

𝐽(𝜃) =

𝑡

𝐱𝑡 − 𝐡𝑡
𝐿(𝜃) 2

– 𝐱𝑡 clean speech feature (output)

• Log power spectrum

– 𝐲𝑡 noisy speech feature (input)

• Log power spectrum + Context

– 𝐡𝑡
𝐿 network output 

• 𝐡𝑡
𝐿 can be unbounded (i.e., 𝐡𝑡

𝐿 ∈ [−∞, ∞], which is 
considered to be difficult

• Normalize the output by [−1, 1]

• Use tanh() as an activation function

– 𝜃 network parameters

• When trained with sufficient data, it can be used to 
enhance speech in unseen noisy conditionsInput: noisy speech 

features 𝐲𝑡

Output: clean speech 
feature 𝐱𝑡

(Xu’15)
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Mask-estimation based DNN (Cross entropy)

• Train a DNN to predict the coefficient of an ideal 
ratio mask (IRM) 

𝑚𝑡,𝑓 =
𝑥𝑡,𝑓

𝑥𝑡,𝑓 + 𝑢𝑡,𝑓
=

𝑐𝑙𝑒𝑎𝑛

𝑐𝑙𝑒𝑎𝑛 + 𝑛𝑜𝑖𝑠𝑒

• Objective function: cross entropy (CE) between 
estimated mask and IRM

𝐽 𝜃 = −

𝑡,𝑓

𝑚𝑡,𝑓 log ℎ𝑡,𝑘
𝐿 (𝜃) − 1 − 𝑚𝑡,𝑓 log 1 − ℎ𝑡,𝑘

𝐿 (𝜃)

– 𝐡𝑡
𝐿 network output (continuous mask)

• Bounded with 𝑚𝑡
𝐿 ∈ [0, 1], using a sigmoid function

• Simplifies learning and tends to perform better than 
directly estimating clean speech

• Enhanced signal obtained as ො𝐱𝑡 = 𝐦𝑡 ∘ 𝒚𝑡Input: noisy speech 
features 𝐲𝑡

Output: time-frequency 
mask 𝐦𝑡

(Narayanan’13, Wang’16)
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Mask estimation based DNN (MMSE)

• Train a DNN to predict the coefficient of a time-
frequency mask 𝐦𝑡 = 𝐡𝑡

𝐿

– Do not restrict the output to the IRM

• Objective function: minimum mean square 
error (MMSE) between clean and enhanced 
signal,

𝐽(𝜃) =

𝑡

𝐱𝑡 −𝐦𝑡 (𝜃) ∘ 𝐲𝑡
2

– 𝐱𝑡 clean speech feature (output)
• Magnitude spectrum

– 𝐲𝑡 noisy speech feature (input)
• Log mel filterbank spectrum (as input to the network)

• Magnitude spectrum to compute the enhanced signal

– 𝐦𝑡 network output (continuous mask)
• Bounded with 𝑚𝑡

𝐿 ∈ [0, 1] using a sigmoid function

Output: clean speech feature 𝐱𝑡

Mask 𝐦𝑡

Input: noisy speech 
features 𝐲𝑡

×

(Weninger ’15)
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Experiments on CHiME 2

Front-end WER

- 16.2 %

Mask-estimation with cross entropy 14.8 %

Results from (Wang’16)

Enhancement DNN
- Predict mask (CE Objective function)
- Features: Log power spectrum
Acoustic model DNN
- Log Mel Filterbanks
- Trained on noisy speech

Can be jointly trained with the ASR back-end
More details in 3.4 Integration of front-end and back-end with deep networks
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2.3.2 Recurrent architectures
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Exploiting recurrent networks

• Neural network based enhancement 
– Exploits only the context seen within its input features

– Noise reduction could benefit from exploiting longer context

 Some investigations for RNN-based approaches (Weninger’14, 
Weninger’15, Erdogan’15, Heymann’15)
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LSTM: Long Short-Term Memory RNN

• Elman RNN

– Vanishing gradient due to recurrent weights 𝐖𝑙

• LSTM

– Avoids recurrent weights in the Elman form by introducing gates 

(𝐠𝑡
𝑓,𝑙

, 𝐠𝑡
𝑖,𝑙, 𝐠𝑡

𝑜,𝑙) and cell states 𝐜𝑡
𝑙

𝐡𝑡
𝑙−1

𝐡𝑡
𝑙

𝐡𝑡−1
𝑙

Cell state:

𝐜𝑡
𝑙 = 𝐠𝑡

𝑓,𝑙
∘ 𝐜𝑡−1

𝑙 +𝐠𝑡
𝑖,𝑙 ∘ tanh 𝐖𝑐,𝑙 𝐡𝑡

𝑙−1

𝐡𝑡−1
𝑙 + 𝐛𝑓𝑐,𝑙

𝐡𝑡
𝑙 = 𝜎 𝐖𝑙 𝐡𝑡

𝑙−1

𝐡𝑡−1
𝑙 + 𝐛𝑙

𝜎𝜎 𝜎 tanhtanh

𝐡𝑡
𝑙−1

𝐡𝑡−1
𝑙

𝐜𝑡−1
𝑙 𝐜𝑡

𝑙

𝐡𝑡
𝑙

× ×

+×

𝐠𝑡
𝑓,𝑙

𝐠𝑡
𝑖,𝑙 𝐠𝑡

𝑜,𝑙

Forget, input and output gates:

𝐠𝑡
𝑓,𝑙

= 𝜎 𝐖𝑓,𝑙

𝐡𝑡
𝑙−1

𝐡𝑡−1
𝑙

𝐜𝑡−1
𝑙

+ 𝐛𝑓,𝑙 , 𝐠𝑡
𝑖,𝑙 = 𝜎 𝐖𝑖,𝑙

𝐡𝑡
𝑙−1

𝐡𝑡−1
𝑙

𝐜𝑡−1
𝑙

+ 𝐛𝑖,𝑙 , 𝐠𝑡
𝑜,𝑙 = 𝜎 𝐖𝑜,𝑙

𝐡𝑡
𝑙−1

𝐡𝑡−1
𝑙

𝐜𝑡
𝑙

+ 𝐛𝑜,𝑙

𝐡𝑡
𝑙 = 𝐠𝑡

𝑜,𝑙 ∘ tanh(𝐜𝑡
𝑙)
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Mask estimation based LSTM

• Minimize Mean Square Error

𝐽(𝜃) =

𝑡

𝐱𝑡 −𝐦𝑡 ∘ 𝐲𝑡
2

• Replace DNN with LSTM-RNN 
to consider long-context 
information

– known to be effective for 
speech modeling

• Several extensions 
(Erdogan‘15)

– Bidirectional LSTM

– Phase sensitive objectives

– Recognition boosted features

Input: noisy speech features

Output: clean speech feature

𝐱𝑡𝐱𝑡−1

𝐲𝑡𝐲𝑡−1
LSTM block

× ×Mask 𝐦𝑡
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Effect of introducing LSTM

Front-end WER

- 31.2 %

DNN based enhancement 29.7 %

LSTM based enhancement 26.1 %

Experiments on CHiME 2 Dev set with DNN back-end
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2.3.3 Multi-channel extensions
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Multi-channel extensions

• Estimate mask for noise 𝑀(𝑡, 𝑓) using neural network
– Use the mask to compute the noise spatial correlation matrix that is used to 

derive the beamformer filters (see slide 74)

𝐑𝑓
𝑁𝑂𝐼𝑆𝐸 =

σ𝑡𝑀(𝑡, 𝑓)𝐲𝑡,𝑓𝐲𝑡,𝑓
𝐻

σ𝑡𝑀(𝑡, 𝑓)

• Beamforming networks or multi-channel deep networks 
– Design a network to perform beamforming

– Can be jointly trained with the acoustic model 

– More details in 3.4 Integration of front-end and back-end with deep networks

HMM state 
posteriors

Beamforming 
network

Acoustic 
modeling 
network
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DN-based mask estimation for beamforming

Beamforming

Filter estimation

Steering vector
estimation

Spatial correlation
matrix estimation

Mask
Combination

𝑀(𝑡, 𝑓)

𝑋 𝑡, 𝑓 = 𝐰𝑓
𝐻𝐲𝑡,𝑓

𝐡𝑓 = 𝓟 𝐑𝑓
𝑠𝑝𝑒𝑒𝑐ℎ

𝐑𝑓
𝑠𝑝𝑒𝑒𝑐ℎ

= 𝐑𝑓
𝑜𝑏𝑠 − 𝐑𝑓

𝑛𝑜𝑖𝑠𝑒

𝐰𝑓
𝑀𝑉𝐷𝑅 =

𝐑𝑓
𝑛𝑜𝑖𝑠𝑒 −1

𝐡𝑓

𝐡𝑓
𝐻 𝐑𝑓

𝑛𝑜𝑖𝑠𝑒 −1
𝐡𝑓

Mask 
estim.
Net*

Mask 
estim.
Net*

Mask 
estim.
Net*

Mask 
estim.
Net*

(Heymann’15, Hori’15, Heymann’16)

* Masks derived from 1ch signals  does not exploit spatial information for mask estimation

𝐑𝑓
𝑛𝑜𝑖𝑠𝑒

http://github.com/fgnt/nn-gev
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CHiME 3 investigations

Front-end WER

- 40.2 %

BeamformIt 22.7 %

DNN mask estimation + MaxSNR BF 17.7 %

BLSTM mask estimation + MaxSNR BF 15.4 %

Avg. results for Real eval sets
ASR back-end
- DNN-based AM
- Retrained on enhanced speech

(Heymann’16)
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Remarks

• Exploit deep-learning for speech enhancement

 Possible to train complex non-linear function for regression

 Exploits long context, extra input features…

 Online mask estimation/enhancement

 Offers the possibility for jointly train the front-end and back-end

• Requirements
– Relatively large amount of training data

– Noisy/Clean parallel corpus

• This requirement can be potentially released if SE front-end and acoustic 
models are jointly trained or when predicting masks (Heymann’16)
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3. Back-end techniques for 
distant ASR
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3.1 Feature extraction

Feature 
extraction

Recognizer

Acoustic
model

Language
model

Lexicon

My name is …

𝑊𝑂

……
SE front-end

𝑌𝑗(𝑡, 𝑓)
𝑋(𝑡, 𝑓) 𝐨𝑡

Model 
adaptation
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Feature extraction

• Log mel filterbank

– Spectrum analysis

– Power extraction (disregard phase)

– Emphasize low-frequency power with perceptual knowledge (Mel scale)

– Dynamic range control 

– Cepstrum Mean and Variance Normalization (CMVN)  

• ETSI Advanced front-end (ETSI707)

– Developed at the Aurora project

– Time domain Wiener-filtering (WF) based noise reduction

STFT ∙ 2 log( ∙ )Mel filtering𝑦[𝑛] 𝐨𝑡

STFT
PSD 

estimation
Mel 

filtering
Wiener Filter

Design
𝑦[𝑛]

VAD

Mel
IDCT

ො𝑦 [𝑛]

Apply
filter

CMVN 𝐨𝑡
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Gammatone Filtering based features

• Human auditory system motivated filter

• Power-Normalized Cepstral Coefficients (PNCC) (Kim’12)

• Replace log ∙ to power ∙ 0.1, frequency-domain Gammatone filtering, Medium-duration 
Power bias subtraction

• Time-domain Gammatone filtering (e.g., Schulter’09, Mitra’14)
– Can combine amplitude modulation based features

– Gammatone filtering and amplitude modulation based features (Damped Oscillator 
Coefficients (DOC), Modulation of Medium Duration Speech Amplitudes (MMeDuSA)) 
showed significant improvement for CHiME3 task

MFCC DOC MMeDuSA

CHiME 3 Real Eval
(MVDR enhanced signal)

8.83 5.91 6.62 (Hori’15)

STFT ∙ 2 Power bias
subtraction

Gammatone
filter (freq.)

∙ 0.1
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(Linear) Feature transformation

• Linear Discriminant Analysis (LDA)
– Concatenate contiguous features, i.e.,  𝐱t = 𝐨𝑡−𝐿

𝑇 , … , 𝐨𝑡 ,
𝑇 … , 𝐨𝑡+𝐿

𝑇 𝑇

– ෝ𝐨𝑡
LDA = 𝐀LDA𝐱𝑡

– Estimate a transformation to reduce the dimension with discriminant 
analysis

→ Capture long-term dependency

• Semi-Tied Covariance (STC)/Maximum Likelihood Linear 
Transformation (MLLT) 

– 𝑁(𝐨𝑡|𝛍𝑘𝑙 , 𝚺𝑘𝑙
diag

) → 𝑁 𝐨𝑡 𝛍𝑘𝑙 , 𝚺𝑘𝑙
full with the following relationship

𝚺𝑘𝑙
full = 𝐀STC𝚺𝑘𝑙

diag
𝐀STC

𝑇

– Estimate 𝐀STC by using maximum likelihood
– During the recognition, we can evaluate the following likelihood function 

with diagonal covariance and feature transformation

𝑁 ෝ𝐨𝑡
STC 𝐀STC𝛍𝑘𝑙 , 𝚺𝑘𝑙

diag
, where ෝ𝐨𝑡

STC = 𝐀STC𝐨𝑡
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(Linear) Feature transformation, Cont’d

• Feature-space Maximum Likelihood Linear Regression (fMLLR)
– Affine transformation: ෝ𝐨𝑡 = 𝐀fM𝐨𝑡 + 𝐛fM

– Estimate transformation parameter𝐀fMand 𝐛fMwith maximum likelihood 
estimation

𝑄 𝐀fM, 𝐛 = σ𝑘,𝑡,𝑙 𝛾𝑡,𝑘,𝑙 (log 𝐀
fM + log𝑁(𝐀fM𝐨𝑡 + 𝐛fM|𝛍𝑘𝑙 , 𝚺k𝑙))

• LDA, STC, fMLLR are cascadely combined, i.e.,

ෝ𝐨𝑡=𝐀
fM(𝐀STC(𝐀LDA 𝐨𝑡−𝐿

𝑇 , … , 𝐨𝑡,
𝑇 … , 𝐨𝑡+𝐿

𝑇 𝑇)) + 𝐛fM

• Effect of feature transformation with distant ASR scenarios GMM

– LDA, STC, and fMLLR are cascadely used, and yield significant improvement
– All are based on GMM-HMM, but still applicable to DNN as feature extraction
– MFCC is more appropriate than Filterbank feature, as MFCC matches GMM 

(Tachioka’13,’14)

MFCC, Δ, ΔΔ LDA, STC, fMLLR

CHiME-2 44.04 33.71

REVERB 39.56 30.88
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3.2 Robust acoustic models

Feature 
extraction

Recognizer

Acoustic
model

Language
model

Lexicon

My name is …

𝑊𝑂

……
SE front-end

𝑌𝑗(𝑡, 𝑓)
𝑋(𝑡, 𝑓) 𝐨𝑡

Model 
adaptation
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DNN acoustic model

• Non-linear transformation of (long) context 
features by concatenating contiguous frames

→ Very powerful for noise robust ASR

• Cross entropy criterion 𝐽ce(𝜃)

𝐽ce(𝜃) = −

𝑡



𝑘

𝜏𝑡,𝑘 log ℎ𝑡,𝑘
𝐿 (𝜃)

• There are several other criteria

･･････

Input speech features

a i u w N
・・・

･･････
𝐨𝑡 = [𝐱𝑡−𝐿, … , 𝐱𝑡, … , 𝐱𝑡+𝐿]

Long context! 

(usually 11 frames)
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• Sequence discriminative criterion 𝐽seq(𝜃)

𝐽seq 𝜃 =

𝑢



𝑊

𝐸 𝑊,𝑊𝑢 𝑝(𝑊|𝑂𝑢)

• 𝐸(𝑊,𝑊𝑢) is a sequence error between 
reference 𝑊𝑢 and hypothesis 𝑊

– State-level Minimum Bayes Risk (sMBR)

･･････

Input speech features

GMM DNN CE DNN sMBR

CHiME3 
baseline v2

23.06 17.89 15.88

･･････
𝐨𝑡 = [𝐱𝑡−𝐿, … , 𝐱𝑡, … , 𝐱𝑡+𝐿]

𝑊 = My name is …. (hypothesis)

LVCSR decoder

𝑊𝑢 = My name was ….  (reference)

Sequence discriminative criterion

Compute sequence level errors
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Multi-task objectives

• Use both MMSE and CE criteria

– 𝑋 as clean speech target

– 𝑇 as transcription

– Network tries to solve both 
enhancement and recognition

– 𝜌 controls the balance between 
the two criteria

･･････

a N
・・・

ℎ𝑡,𝑘
MSE,𝐿

ℎ𝑡,𝑘
CE,𝐿

CE Multi-task
𝝆 = 𝟎. 𝟗𝟏

REVERB RealData 32.12 31.97

(Giri’15)
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Toward further long context

Time Delayed Neural Network (TDNN)

Convolutional Neural Network (CNN)

Recurrent Neural Network (RNN)
• Long Short-Term Memory (LSTM)
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Time delayed neural network (TDNN)

• Deal with “very” long context (e.g., 17 frames)

• Difficult to train the first layer matrix due to vanishing gradient

𝐱𝑡−8 𝐱𝑡 𝐱𝑡+8… …

𝐡𝑡
5

(Waibel’89, Peddinti’15)
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Time delayed neural network (TDNN)

𝐱𝑡−8 𝐱𝑡 𝐱𝑡+8… …

𝐡𝑡
5

(Waibel’89, Peddinti’15)

• Original TDNN

– Consider short context (e.g., [-2, 2]), 
but expand context at each layer

𝐡𝑡
1 = 𝜎(𝐀𝟏 𝐱𝑡−2, 𝐱𝑡−1, 𝐱𝑡, 𝐱𝑡+1, 𝐱𝑡+2 + 𝐛1)

𝐡𝑡
2 = 𝜎 𝐀2 𝐡𝑡−2

1 , 𝐡𝑡−1
1 , 𝐡𝑡,

1 𝐡𝑡+1
1 , 𝐡𝑡+2

1 + 𝐛2

𝐡𝑡
3 = ⋯

Very large computational cost
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Time delayed neural network (TDNN)

• Original TDNN

– Consider short context (e.g., [-2, 2]), 
but expand context at each layer

𝐡𝑡
1 = 𝜎(𝐀𝟏 𝐱𝑡−2, 𝐱𝑡−1, 𝐱𝑡, 𝐱𝑡+1, 𝐱𝑡+2 + 𝐛1)

𝐡𝑡
2 = 𝜎 𝐀2 𝐡𝑡−2

1 , 𝐡𝑡−1
1 , 𝐡𝑡,

1 𝐡𝑡+1
1 , 𝐡𝑡+2

1 + 𝐛2

𝐡𝑡
3 = ⋯

Very large computational cost

• Subsampled TDNN (Peddinti’15)

– Subsample frames in the context 
expansion

𝐡𝑡
2 = 𝜎(𝐀2 𝐡𝑡−2

1 , 𝐡𝑡+2
1 + 𝐛2)

– Efficiently compute long context 
network

DNN TDNN

ASpIRE 33.1 30.8

AMI 53.4 50.7

(Waibel’89, Peddinti’15)

𝐱𝑡−8 𝐱𝑡 𝐱𝑡+8… …

𝐡𝑡
5
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Convolutional Neural Network (CNN)

• Represents the input as time-frequency feature map 𝑜𝑡,𝑝,𝑞 (we can also 

use multiple maps one for static, delta and delta-delta features), where 𝑝
and 𝑞 are indexes along the time and frequency axes of the feature maps

• Time-dimensional feature maps can capture long context information

REVERB: 23.5 (DNN) → 22.4 (CNN-DNN) (Yoshioka’15a)

𝑎𝑡,𝑝,𝑞
(𝑚)

Output map

ℎ𝑡,𝑝,𝑞
(𝑚)

Input map
𝐨𝑡

Filters

𝑤𝑝,𝑞
𝑚
, 𝑏(𝑚)

Pooling map

𝑜𝑡,𝑝,𝑞

𝑎𝑡,𝑝,𝑞
(𝑚)

= 𝑤𝑝,𝑞
(𝑚)

∘ 𝑜𝑡,𝑝,𝑞 + 𝑏(𝑚)

ℎ𝑡,𝑝,𝑞
(𝑚)

= 𝜎 𝑎𝑡,𝑝,𝑞
(𝑚)

ℎ𝑡,𝑞
(𝑚)

= max
𝑝

ℎ𝑡,𝑝,𝑞
𝑚

(max pooling)

𝑞

𝑝
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RNN/LSTM acoustic model

• RNN can alos capture the 
long-term distortion effect 
due to reverberation and 
noise

• RNN/LSTM can be applied as 
an acoustic model for noise 
robust ASR (Weng’14, 
Weninger’14)

Input: noisy speech features

𝒐𝑡𝒐𝑡−1
RNN or LSTM

Output HMM state

a i u w N
・・・

a i u w N
・・・

DNN RNN

Aurora4 13.33 12.74

CHiME2 29.89 27.70
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Practical issues
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The importance of the alignments

• DNN CE training needs frame-level label 𝜏𝑡,𝑘 obtained by Viterbi algorithm

𝐽CE(𝜃) = −

𝑡



𝑘

𝜏𝑡,𝑘 log ℎ𝑡,𝑘
𝐿

• However, it is very difficult to obtain precise label 𝜏𝑡,𝑘 for noisy speech 

• How to deal with the issue?

– Re-alignment after we obtain DNN several times

– Sequence discriminative training can mitigate this issue (however, since we use 
CE as an initial model, it is difficult to recover this degradation)

– Parallel clean data alignment 

if available

sil sil?

Noisy alignment Clean alignment

CHiME2 29.89 24.75

(Weng’14)
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Degradation due to enhanced features

• Which features we should use for training acoustic models?

– Noisy features: 𝐨𝑡
𝑛𝑜𝑖𝑠𝑦

= FE(𝑌)

– Enhanced features: 𝐨𝑡
𝑒𝑛ℎ = FE( 𝑋)

Feature 
extraction

SE front-end

𝑌𝑗(𝑡, 𝑓)

𝑋(𝑡, 𝑓) 𝐨𝑡
𝑒𝑛ℎ

Feature 
extraction

𝑌𝑗(𝑡, 𝑓) 𝐨𝑡
𝑛𝑜𝑖𝑠𝑦

Training Testing WER (%)

Noisy 𝐨𝑡
𝑛𝑜𝑖𝑠𝑦

Noisy 𝐨𝑡
𝑛𝑜𝑖𝑠𝑦 23.66

Noisy 𝐨𝑡
𝑛𝑜𝑖𝑠𝑦 Enhanced 𝐨𝑡

𝑒𝑛ℎ 14.86

Enhanced 𝐨𝑡
𝑒𝑛ℎ Enhanced 𝐨𝑡

𝑒𝑛ℎ ????

CHiME 3 
Real Eval
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Degradation due to enhanced features

• Which features we should use for training acoustic models?

– Noisy features: 𝐨𝑡
𝑛𝑜𝑖𝑠𝑦

= FE(𝑌)

– Enhanced features: 𝐨𝑡
𝑒𝑛ℎ = FE( 𝑋)

Training Testing WER (%)

Noisy 𝐨𝑡
𝑛𝑜𝑖𝑠𝑦

Noisy 𝐨𝑡
𝑛𝑜𝑖𝑠𝑦 23.66

Noisy 𝐨𝑡
𝑛𝑜𝑖𝑠𝑦 Enhanced 𝐨𝑡

𝑒𝑛ℎ 14.86

Enhanced 𝐨𝑡
𝑒𝑛ℎ Enhanced 𝐨𝑡

𝑒𝑛ℎ 16.17

Re-training with enhanced
features degrades the ASR 
performance!!
• Noisy data training are robust

for distorted speech (?)

CHiME 3 
Real Eval

Feature 
extraction

SE front-end

𝑌𝑗(𝑡, 𝑓)

𝑋(𝑡, 𝑓) 𝐨𝑡
𝑒𝑛ℎ

Feature 
extraction

𝑌𝑗(𝑡, 𝑓) 𝐨𝑡
𝑛𝑜𝑖𝑠𝑦
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Remarks

• Noise robust feature and linear feature transformation are 
effective
– Effective for both GMM and DNN acoustic modeling 

• Deep learning is effective for noise robust ASR
– DNN with sequence discriminative training is still powerful

– RNN, TDNN, and CNN can capture the long-term dependency of 
speech, and are more effective when dealing with reverberation and 
complex noise

• We can basically use standard acoustic modeling techniques 
even for distant ASR scenarios

• However, need special cares for
– Alignments

– Re-training with enhanced features
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3.3 Acoustic model adaptation

Feature 
extraction

Recognizer

Acoustic
model

Language
model

Lexicon

My name is …

𝑊𝑂

……
SE front-end

𝑌𝑗(𝑡, 𝑓)
𝑋(𝑡, 𝑓) 𝐨𝑡

Model 
adaptation
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Importance of acoustic model adaptation

0 2 4 6 8 10

CHiME 3

REVERB

WER (%)

W/O adaptation

W Adaptation

(Delcroix’15a)

(Yoshioka’15b)
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Acoustic model adaptation

• DNN is very powerful so why do we need adaptation?

– Unseen test condition due to limited amount of training data

– Model trained on large amount of data may be good on average but not 
optimal for a specific condition

Acoustic
model

Training data
Various speakers & environments

Testing data
Specific speaker & environment

Acoustic
model

Adapt
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Supervised/Unsupervised adaptation

• Supervised adaptation
– We know what was spoken

– There are transcriptions associated with adaptation data

• Unsupervised adaptation
– We do not know what was spoken

– There are no transcriptions
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Supervised/Unsupervised adaptation

• Supervised adaptation
– We know what was spoken

– There are transcriptions associated with adaptation data

• Unsupervised adaptation
– We do not know what was spoken

– There are no transcriptions
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DNN adaptation techniques

• Model adaptation
– Retraining

– Linear transformation of input or hidden layers (fDLR, LIN, LHN, LHUC)

– Adaptive training (Cluster/Speaker adaptive training)

• Auxiliary features
– Auxiliary features

• Noise aware training

• Speaker aware training

• Context adaptive DNN
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DNN adaptation techniques

• Model adaptation
– Retraining

– Linear transformation of input or hidden layers (fDLR, LIN, LHN, LHUC)

– Adaptive training (Cluster/Speaker adaptive training)

• Auxiliary features
– Auxiliary features

• Noise aware training

• Speaker aware training

• Context adaptive DNN
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Unsupervised labels estimation

• 1st pass
– Decode adaptation data with an existing ASR system

– Obtain estimated labels, Ƹ𝜏𝑡,𝑘

Adaptation 
speech data

Ƹ𝜏𝑡,𝑘Feature 
extraction

Recognizer

Acoustic
model

Language
model

Lexicon

𝑂

……

Speech 
enhancement

𝑦𝑗[𝑛]
ො𝑥[𝑛] 𝐨𝑡
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Retraining

• Retrain/adapt acoustic model 
parameters given the estimated 
labels with error backpropagation 
(Liao’13)

• Prevent modifying too much the 
model
– Small learning rate

– Small number of epochs (early stopping)

– Regularization (e.g. L2 prior norm 
(Liao’13), KL (Yu’13)) 

• For large amount of adaptation data, 
retraining all or part of the DNN (e.g. 
lower layers)

Output: ℎ𝑡,𝑘
𝐿0.1 0.8 0.1 0 0

a i u w N

0 1 0 0 0 Label: Ƹ𝜏𝑡,𝑘

HMM State

・・・

･･････

Input speech features
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Linear input network (LIN)

• Add a linear layer that transforms the input features

• Learn the transform with error backpropagation

(Neto’95)

･･････

Input speech features

a i u w N
・・・

･･････

a i u w N
・・・

ෝ𝐨𝑡 = 𝐀 𝐨𝑡 + 𝐛
(no activation)
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Linear hidden network (LHN)

• Insert a linear transformation layer inside the network

መ𝐡𝑡
𝑙 = 𝐀 𝐡𝑡

𝑙 + 𝐛
(no activation)

(Gemello’06)

･･････

Input speech features

a i u w N
・・・

･･････

a i u w N
・・・
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Learning hidden unit contribution  (LHUC)

• Similar to LHN but with diagonal matrix

 Fewer parameters

･･････

Input speech features

a i u w N
・・・

･･････

a i u w N
・・・

መ𝐡𝑡
𝑙 = 𝐀 𝐡𝑡

𝑙

𝐀 =
𝑎1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝑎𝑁

(Swietojanski ’14b)
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Speaker/Cluster adaptive training

• Parameters of one or several layers are made dependent on conditions 
(speaker or noise)
– During adaptation, adapt only the parameters of this layer (speaker adaptive 

training) (Ochiai’14)
– Use the trained set of parameters as basis (𝐖𝑐

𝑙 , 𝑐 = 1,… , 𝐶) and only adapt 
weights of these basis 𝜆𝑐

𝑙 (Cluster adaptive training) (Tan’15, Chunyang’15)

･･････

Input speech features

𝐖𝑙 =

𝑐=1

𝐶

𝜆𝑐
𝑙 𝐖𝑐

𝑙

𝜆1
𝑙 𝜆𝑐

𝑙 𝜆𝐶
𝑙
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Room adaptation for REVERB (RealData)

Speech processed with WPE (1ch)
Amount of adaptation data ~9 min
Back-end:
- DNN with 7 hidden layers
- Trigram LM

Results from (Delcroix’15a)

Adap WER (%)

- 24.1

1st 21.7

All 22.1

LIN 22.1
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Model adaptation

 Can adapt to conditions unseen during training

 Computationally expensive + processing delay
Requires 2 decoding step

 Data demanding
Relatively large amount of adaptation data needed
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DNN adaptation techniques

• Model adaptation
– Retraining

– Linear transformation of input or hidden layers (fDLR, LIN, LHN, LHUC)

– Adaptive training (Cluster/Speaker adaptive training)

• Auxiliary features
– Auxiliary features

• Noise aware training

• Speaker aware training

• Context adaptive DNN
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Auxiliary features based adaptation

• Exploit auxiliary information about 
speaker or noise

• Simple way: 
– Concatenate auxiliary features to input 

features

• Weights for auxiliary features 
learned during training

Auxiliary Features represents e.g.,

• Speaker aware (i-vector, Bottleneck feat.) (Saon’13)

• Noise aware (noise estimate) (Seltzer’13)

• Room aware (RT60, Distance, …) (Giri’15)

･･････
Input speech features

a i u w N
・・・
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Context adaptive DNN

• Similar to cluster adaptive training but the class weights 𝜆𝑐
𝑙 are derived 

from an auxiliary network that input auxiliary features

• The joint optimization of context classes, class weights and DNN 
parameters enables class weights and class definitions optimized for ASR

･･････

Input speech features

・・・

Auxiliary Features

× × ×

(Delcroix’15b, ’16a, ’16b)

𝐖𝑙 =

𝑐=1

𝐶

𝜆𝑐
𝑙 𝐖𝑐

𝑙

(𝜆1
𝑙 , …, 𝜆𝐶

𝑙 )
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Speaker adaptation

• Speaker i-vectors or bottleneck features have shown to 
improve performance for many tasks

• Other features such as noise or room parameters have also 
been shown to improve performance

Auxiliary feature AURORA 4 REVERB

- 9.6 % 20.1 %

i-vector 9.0 % 18.2 %

Speaker ID Bottleneck 9.3 % 17.4 %

Results from (Kundu’15)
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Auxiliary features-based adaptation

 Rapid adaptation 

Auxiliary features can be computed per utterance (~10 sec. or less)

 Computationally friendly
No need for the extra decoding step

(Single pass unsupervised adaptation)

 Does not extend to unseen conditions
Requires training data covering all test cases



142

3.4 Integration of front-end and back-
end with deep networks

Feature 
extraction

Recognizer

Acoustic
model

Language
model

Lexicon

My name is …

𝑊𝑂

……
SE front-end

𝑌𝑗(𝑡, 𝑓)
𝑋(𝑡, 𝑓) 𝐨𝑡

Model 
adaptation
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Front-end and back-end integration

Feature 
extraction

Acoustic
model

𝑂

……
SE front-end

𝑌𝑗(𝑡, 𝑓)
𝑋(𝑡, 𝑓) 𝐨𝑡

Represents SE front-end and 
acoustic model with neural 
networks
 Optimize both SE front-end 

and Acoustic model using the 
same objective function

 SE front-end becomes optimal 
for ASR

a i u w N
・・・
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×

Single channel integrated system

• DNN-based SE front-end and 
ASR back-end can be 
connected to form a large 
network

Can be optimized for ASR 
objective function (Cross 
entropy or SMBR)

• Initialize each component 
independently

Requires parallel corpus for

initialization

Mask 𝐦𝑡

Input: noisy speech features 𝐲𝑡 (log 
power spectrum)

Enhanced power spectrum

Enhanced  filterbank
(Trainable)

log, delta, 
mean normalization,
Splicing
(Not trained)

M
as

k 
e

st
im

at
io

n
 

n
e

t
Fe

at
u

re
 

e
xt

ra
ct

io
n

 n
e

t
A

co
u

st
ic

 
m

o
d

e
l

(Wang’16)
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Experiments on CHiME 2

System CE sMBR

Baseline (No SE front-end) 16.2 % 13.9 %

Mask estimation using CE 14.8 % 13.4 %

Mask estimation + retraining 15.5 % 13.9 %

Joint training of mask 
estimation and acoustic model

14.0 % 12.1 %

Large DNN-based acoustic model 15.2 % -

Results from (Wang’16)

Enhancement DNN
- Predict mask (CE Objective function)
- Features: Log power spectrum
Acoustic model DNN
- Log Mel Filterbanks
- Trained on noisy speech with cross entropy (CE) or sMBR objective function
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Multi-channel approaches
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Multi-channel approaches

• Multi-channel input to the acoustic model

• Beamforming network

1. Directly enhance signal using CNN-based beamforming network 
(Filter learning)

2. DNN outputs beamforming filters (Filter prediction)

𝐨𝑡 =
𝐲𝑡,1
𝐲𝑡,2

𝐲𝑡,1

𝐲𝑡,2

HMM state 
posteriors

Beamforming 
network

Acoustic 
modeling 
network

Acoustic 
modeling 
network

HMM state 
posteriors
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Multi-channel input acoustic model

• Concatenate speech features (e.g. log mel filterbank) for each 
channel at the input of the acoustic model

– With fully connected networks (Swietojanski’13 , Liu’14)

– With CNNs (Swietojanski’14a)

– Without phase difference: lack of special information

(Marino’11, Swietojanski’13 , Liu’14, Swietojanski’14a)

𝐨𝑡 =
𝐲𝑡,1
𝐲𝑡,2

𝐲𝑡,1

𝐲𝑡,2

Acoustic 
modeling 
network
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CNN-based multi-channel input (feature domain)

• Each channel considered as a different feature map input to a CNN 
acoustic model

ℎ𝑡,𝑓

𝐰𝑗𝐲𝑡,𝑓,𝑗

Process each channel with same filter 𝑤
Max pooling across channels
 Select the “most reliable” channel for each 

time-frequency bin
 Applicable to different microphone 

configuration

𝐰

𝐲𝑡,𝑓,𝑗 𝐰

𝐰

max
𝑗
(ℎ𝑡,𝑓,𝑗)

• Process each channel with different 
filters 𝑤𝑗

• Sum across channels 

 Similar to beamforming but 
- Filter shared across time-frequency bins
- Input does not include phase information

ℎ𝑡,𝑓,𝑗

Channel wise convolution

ℎ𝑡,𝑓 = 𝜎 

𝑗

𝑤𝑗 ∗ 𝑦𝑡,𝑓,𝑗 + 𝑏

ℎ𝑡,𝑓,𝑗 = 𝜎 𝑤 ∗ 𝑦𝑡,𝑓,𝑗 + 𝑏

Conventional CNN

Input maps Input maps

(Swietojanski’14a)
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Results for AMI corpus

DNN CNN

Single distant mic 53.1 % 51.3 %

Multi-channel input (4ch)  51.2 % 50.4 %

Multi-channel input (4ch)
channel-wise convolution

- 49.4 %

BeamformIt (8ch) 49.5 % 46.8 %

Back-end configuration:
- 1 CNN layer followed by 5 fully connected layers
- Input feature 40 log mel filterbank + delta + delta-delta

- Inputting multi-channel improves over single-channel input
- Beamforming seems to perform better possibly because it exploits phase 

difference across channels

Results from (Swietojanski’14a)
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Filter learning-based Beamforming network 
(time domain)

• Beamforming can be expressed as a convolutional layer in the 
time domain (raw signals)

• Joint optimization is possible
– Time domain  Can exploit phase information

– Fixed beamforming filter is learned from corpus

– By having multiple output maps, we can obtain a set of fixed 
beamformers steering at different directions

𝑤1[𝑛]

𝑤𝑗[𝑛]

𝑤𝐽[𝑛]

𝑦𝑗 𝑛 ො𝑥[𝑛]
+

𝑎[𝑛]

𝑤𝑗 𝑛𝑦𝑗 𝑛
a[𝑛] =

𝑗

𝑤𝑗 𝑛 ∗ y𝑗[𝑛]

Input maps

(Hoshen’15, Sainath’16)

𝑤𝑗 𝑛 → 𝑤𝑗
𝑚
[𝑛]
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Filter learning-based Beamforming network 
architecture

• Beamforming and acoustic modeling 
can be expressed as a single neural 
network

 Joint training becomes possible

• Beamforming network

- Performs beamforming + implicit 
filterbank extraction

- Max pooling in time and non-linearity 
removes phase information and 
mimic filterbank extraction

Time
convolution

Max pooling in 
time

Non-linearity

CNN/LSTM-
based acoustic 

model

B
ea

m
fo

rm
in

g 
n

et
w

o
rk
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Results on a large corpus

CE sMBR

Raw signal (1ch) 23.5 % 19.3 %

Oracle delay and sum (8ch) 22.4 % 18.8 %

Beamforming network (8ch) 20.6 % 17.2 %

8ch log mel input 21.7 % -

Google internal data
2000 h of training data with simulated distant speech

Results from (Sainath’16)
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Filter prediction-based beamforming network

• Design a neural network to predict the beamforming filter 
coefficients given the input microphone signals

 Adaptive to the input signal
– Time domain implementation (Li’16)

– STFT domain implementation (Xiao’16)

𝑌𝑗 𝑡, 𝑓
+ 𝑋 𝑡, 𝑓 =

𝑗

𝑊𝑗 𝑓 𝑌𝑗(𝑡, 𝑓)

Beamforming filter 
predictor network

𝑊1(𝑓)

𝑊𝑗(𝑓)

𝑊𝐽(𝑓)

Complex domain 
neural network
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Filter prediction-based beamforming network

• Beamforming and acoustic 
modeling can be expressed as a 
single neural network

 Joint training becomes possible
• Mimic Log Mel Filterbank
• Utterance-level mean pooling

– Time-independent linear filter 𝑊𝑗(𝑓)

• Need careful training procedure
– Train network, which predict 

Beamforming filter independently 
• Requires simulated data to have 

ground truth of the beamformer
filter

– Train acoustic model DNN 
independently on 1ch data

– Refine with joint-optimization

Log mel feature 
extraction

Acoustic model
DNN

GCC-PHAT STFT

Beamforming filter 
predictor network

×

𝑊1 𝑓 , … ,𝑊𝐽 𝑓

𝑌1 𝑡, 𝑓 , … , 𝑌𝐽 𝑡, 𝑓

(not trained)

Utterance-level 
mean pooling

(Xiao’16)
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Results on the AMI corpus

WER

Single distant mic (1ch) 53.8 %

BeamformIt (8ch) 47.9 %

Beamforming filter predictor 
network (8ch)

47.2 %

+ Joint training (8ch) 44.7 %

Back-end configuration:
- Acoustic model (6 layer fully connected)
- Training criterion: Cross entropy 

Results from (Xiao’16)
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Remarks

• Integration of SE front-end and ASR back-end becomes 
possible when all components are using neural networks

• Joint optimization improves performance

• For multi-channel, including phase information using raw 
signals or STFT domain features appears more promising
– There may be issues for unseen condition or unseen microphone 

configurations

– Filter learning or filter prediction
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4. Building robust ASR systems
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4.1 Overview of some successful systems 
at CHiME and REVERB
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REVERB: NTT system
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REVERB challenge system

Feature 
extraction

Recognizer

Acoustic
model

Language
model

Lexicon

My name is …

𝑊𝑂

……
SE front-end

𝑌𝑗(𝑡, 𝑓)
𝑋(𝑡, 𝑓) 𝐨𝑡

Model 
adaptation

Multi-channel 
dereverberation

Multi-channel 
noise reduction

Additional 
noise reduction

WPE MVDR 
Noise spatial 

correlation matrix 
computed from the 
first and last frames

DOLPHIN (Nakatani’13)

Spectral and spatial 
model combination 
based enhancement

(Delcroix’15) 
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REVERB challenge system

Feature 
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Acoustic
model

Language
model

Lexicon

My name is …

𝑊𝑂

……
SE front-end

𝑌𝑗(𝑡, 𝑓)
𝑋(𝑡, 𝑓) 𝐨𝑡

Model 
adaptation

Features
- 40 Log mel filter-bank coefficients + ∆ + ∆∆ (120) 
- 5 left+5 right context (11 frames)
Acoustic model
- DNN-HMM (7 hidden layers)
- RBM pre-training
- Training with data augmentation without SE front-end

(Delcroix’15) 
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REVERB challenge system

Feature 
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Recognizer

Acoustic
model

Language
model

Lexicon
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𝑊𝑂

……
SE front-end

𝑌𝑗(𝑡, 𝑓)
𝑋(𝑡, 𝑓) 𝐨𝑡

Model 
adaptation

Unsupervised environmental adaptation
- Retrain 1

st
layer of DNN-HMM w/ small learning rate using

- Labels obtained from a 1
st

recognition pass

(Delcroix’15) 
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REVERB challenge system
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Acoustic
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model
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……
SE front-end

𝑌𝑗(𝑡, 𝑓)
𝑋(𝑡, 𝑓) 𝐨𝑡

Model 
adaptation

Language model (LM)
- Recurrent neural net (RNN) based LM w/ on-the-fly rescoring 

(Hori’14)

(Delcroix’15) 
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REVERB: MERL/MELCO/TUM system



169

REVERB challenge system

Feature 
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Acoustic
model

Language
model

Lexicon
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𝑊𝑂

……
SE front-end

𝑌𝑗(𝑡, 𝑓)
𝑋(𝑡, 𝑓) 𝐨𝑡

Model 
adaptation

Multi-channel 
noise reduction

single-channel 
noise reduction/
dereverberation

Delay and Sum 
Beamformer

GCC to compute TDOA

LSTM based dereverberation
2 or 3-layer LSTM (128 units)
Spectrum Subtraction based 

Dereverberation
Late reverberation estimation based 
on the reverberation time estimation

(Tachioka’14) 
(Weninger’14)
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REVERB challenge system

Feature 
extraction

Recognizer

Acoustic
model

Language
model

Lexicon

My name is …

𝑊𝑂

……
SE front-end

𝑌𝑗(𝑡, 𝑓)
𝑋(𝑡, 𝑓) 𝐨𝑡

Model 
adaptation

Acoustic model (GMM)
- 40 MFCC/PLP, LDA, MLLT, and fMLLR
- Feature-space MMI, boosted MMI
Acoustic model (LSTM)
- LSTM output corresponds to 23 Log mel filter-bank 

coefficients
- 3-layer LSTM (50 units)
Multi-Stream integration

(Tachioka’14) 
(Weninger’14)
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REVERB challenge system

Feature 
extraction

Recognizer

Acoustic
model

Language
model

Lexicon

My name is …

𝑊𝑂

……
SE front-end

𝑌𝑗(𝑡, 𝑓)
𝑋(𝑡, 𝑓) 𝐨𝑡

Model 
adaptation

Language model (LM)
- 3-gram LM
Minimum Bayes Risk decoding
System combination

(Tachioka’14) 
(Weninger’14)
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Results of top 2 systems

Baseline

MERL/MELCO/TUM

NTT

• Two systems significantly 

improve the performance

from the baseline
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CHiME 3: NTT system
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CHiME3 challenge system

Feature 
extraction

Recognizer

Acoustic
model

Language
model

Lexicon

My name is …

𝑊𝑂

……
SE front-end

𝑌𝑗(𝑡, 𝑓)
𝑋(𝑡, 𝑓) 𝐨𝑡

Model 
adaptation

Multi-channel 
dereverberation

Multi-channel 
noise reduction

WPE MVDR (Higuchi’16)

Spatial correlation matrix 
derived from time-frequency 
mask obtained by Clustering 

of spatial features

(Yoshioka’15) 
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CHiME3 challenge system

Feature 
extraction

Recognizer

Acoustic
model

Language
model

Lexicon

My name is …

𝑊𝑂

……
SE front-end

𝑌𝑗(𝑡, 𝑓)
𝑋(𝑡, 𝑓) 𝐨𝑡

Model 
adaptation

Features
- 40 Log mel filter-bank coefficients + ∆ + ∆∆ (120) 
- 5 left+5 right context (11 frames)
Acoustic model
- Deep CNN using Network-in-Network
- Multi-channel training data (treat each channel training 

utterance as a separate training sample)
- Training without SE front-end

(Yoshioka’15) 
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CHiME3 challenge system

Feature 
extraction

Recognizer

Acoustic
model

Language
model

Lexicon

My name is …

𝑊𝑂

……
SE front-end

𝑌𝑗(𝑡, 𝑓)
𝑋(𝑡, 𝑓) 𝐨𝑡

Model 
adaptation

Unsupervised speaker adaptation
- Retrain all layers of CNN-HMM
- Labels obtained from a 1

st
recognition pass with DNN based 

system  cross adaptation (system combination)

(Yoshioka’15) 
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CHiME3 challenge system

Feature 
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……
SE front-end

𝑌𝑗(𝑡, 𝑓)
𝑋(𝑡, 𝑓) 𝐨𝑡

Model 
adaptation

Language model (LM)
- Recurrent neural net (RNN) based LM w/ on-the-fly rescoring 

(Hori’14)

(Yoshioka’15) 
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CHiME 3: MERL-SRI system
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CHiME3 challenge system

Feature 
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𝑌𝑗(𝑡, 𝑓)
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adaptation

Multi-channel 
noise reduction

BeamformIt (Anguera’07)
LSTM Mask-based MVDR (Erdogan’16)

Both methods are integrated at 
system combination

(Hori’15) 
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CHiME3 challenge system

Feature 
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model
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……
SE front-end

𝑌𝑗(𝑡, 𝑓)
𝑋(𝑡, 𝑓) 𝐨𝑡

Model 
adaptation

Features (3 type features. Integrated at system combination)
1) 40 Log mel filter-bank coefficients
2) Damped oscillator coefficients (DOC) (Mitra’14a)
3) Modulation of medium duration speech amplitudes (MMeDuSA) (Mitra’14b)
- 5 left+5 right context (11 frames)
- LDA, MLLT, fMLLR feature transformation
Acoustic model
- DNN with sMBR training
- Training with SE front-end

(Hori’15) 
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CHiME3 challenge system
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adaptation

Language model (LM)
- Recurrent neural net (RNN) based LM

(Hori’15) 
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CHiME3 challenge system

System combination
1) BeamformIt + Log mel filter-bank
2) BeamformIt + DOC
3) BeamformIt + MMeDuSA
4) Make-based MVDR + Log mel filter-bank

(Hori’15) 
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Results of top 4 systems
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• Significant error reduction 
from the baseline (more than 
60%)

→ Top system reaches clean 
speech performance (~5%)

• All systems are very complex
 (reproducibility)

• We will discuss how to build 
such systems with existing 
tools
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4.2 Overview of existing tools
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SE front-end

Feature 
extraction

Recognizer
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model

Language
model

Lexicon

My name is …

𝑊𝑂

……
SE front-end

𝑌𝑗(𝑡, 𝑓)
𝑋(𝑡, 𝑓) 𝐨𝑡

Model 
adaptation

Tool Institute Function Language License

WPE NTT Dereverberation Matlab Proprietary

BeamformIt ICSI/X. Anguera Beamforming C++ Apache 2.0

SRP-PHAT MVDR Inria Beamforming Matlab GPL

FASST Inria Multi-channel 

NMF

C++ GPL

NN-based GEV beamformer U. Paderborn Beamforming Python Non-commercial

Educational
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Whole system: Kaldi recipes

Feature 
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Recognizer
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model
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model
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……
SE front-end

𝑌𝑗(𝑡, 𝑓)
𝑋(𝑡, 𝑓) 𝐨𝑡

Model 
adaptation

Recipe Enhancement Acoustic modeling Language modeling Main developers

REVERB n/a GMM N-gram F. Weninger, S. Watanabe

CHiME2 n/a DNN, sMBR N-gram C. Weng, S. Watanabe

CHiME3 BeamformIt DNN, sMBR RNNLM S. Watanabe

CHiME4 BeamformIt DNN, sMBR RNNLM S. Watanabe

AMI BeamformIt DNN, sMBR, LSTM, TDNN N-gram P. Swietojanski, V. Peddinti

ASpIRE n/a DNN, sMBR, LSTM, TDNN N-gram V. Peddinti



187

Whole system: Kaldi recipes
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𝑋(𝑡, 𝑓) 𝐨𝑡

Model 
adaptation

Recipe Enhancement Acoustic modeling Language modeling Main developers

REVERB n/a GMM N-gram F. Weninger, S. Watanabe

CHiME2 n/a DNN, sMBR N-gram C. Weng, S. Watanabe

CHiME3 BeamformIt DNN, sMBR RNNLM S. Watanabe

CHiME4 BeamformIt DNN, sMBR RNNLM S. Watanabe

AMI BeamformIt DNN, sMBR, LSTM, TDNN N-gram P. Swietojanski, V. Peddinti

ASpIRE n/a DNN, sMBR, LSTM, TDNN N-gram V. Peddinti
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CHiME4 Kaldi recipe
based on free software

1. Get CHiME4 data

http://spandh.dcs.shef.ac.uk/chime_challenge/software.html

– Registration → LDC license confirmation step → credentials

2. Get Kaldi

https://github.com/kaldi-asr/kaldi

3. Install Kaldi tools

– In addition to default Kaldi tools, you have to install BeamformIt, IRSTLM, 
SRILM, and Milonov's RNNLM (all are prepared in kaldi/tools/extras

– For SRILM, you need to get source (srilm.tgz) 
at http://www.speech.sri.com/projects/srilm/download.html

4. Install Kaldi

5. Specify CHiME4 data root paths in kaldi/egs/s5_6ch/run.sh

6. Execute ./run.sh

http://spandh.dcs.shef.ac.uk/chime_challenge/software.html
https://github.com/kaldi-asr/kaldi
http://www.speech.sri.com/projects/srilm/download.html
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kaldi/egs/s5_6ch/run.sh

• run_init.sh: creates 3-gram LM, FSTs, and basic task files

• run_beamform_6ch_track.sh: beamforming with 5 channel signals

• run_gmm.sh: LDA, MLLT, fMLLR based GMM

• run_dnn.sh: DNN + sMBR

• run_lmrescore.sh: 5-gram and RNNLM rescoring
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Result and remarks 

• Already obtain top level 
performance (11.5%)

• Everyone can reproduce
the same results!
– Concentrate on developing a 

new technology

• Still have a gap

• Contribute to DSR recipes 
to improve/standardize DSR 
pipeline for the community, 
e.g.
– Advanced beamforming

– Advanced acoustic 
modeling

– Data simulation

– DNN enhancement
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6. Conclusion and future 

research directions
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Conclusion

• Combining SE and ASR techniques greatly improves performance in 
severe conditions
– SE front-end technologies

• Microphone array,
• Neural network-based speech enhancement, …

– ASR back-end technologies
• Feature extraction/transformation
• RNN/LSTM/TDNN/CNN based acoustic modeling
• Model adaptation, …

• Introduction of deep learning had a great impact on DSR
– Large performance improvement
– Reshuffling the importance of technologies

• There remains many challenges and opportunities for further 
improvement
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Toward joint optimization?

• Joint training is a recent active research topic
– Currently integrate front-end and acoustic model
– Combined with end-to-end approaches it could introduce higher level cues 

to the SE front-end (linguistic info…)

ASR 
back-end

SE 
front-end

ASR 
back-end

SE 
front-end

Separate optimization

• Both components are designed 
with different objective functions

 Potentially SE front-end can be 
made  more robust to unseen 
acoustic conditions (noise types, 
different mic configurations)

 Not optimal for ASR

Joint optimization

• Both components are optimized 
with the same objective functions

 Potentially more sensitive to 
mismatch between training and 
testing acoustic conditions

 Optimal for ASR
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Dealing with uncertainties

• Advanced GMM-based systems exploited the uncertainty of 
the SE front-end during decoding (Uncertainty decoding)
– Provided a way to interconnect speech enhancement front-end and 

ASR back-end optimized with different criteria

• Exploiting uncertainty within DNN-based ASR systems has not 
been sufficiently explored yet
– Joint training is one option

– Are there other?
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More severe constraints

• Limited number of microphones
– Best performances are obtained when exploiting multi-microphones 

– Remains a great gap between performance with a single-microphone

 Developing more powerful single-channel approaches remains an 
important research topic

• Many systems assume batch processing or utterance batch 
processing

 Need further research for online & real-time processing

Headset

5.9 %
Lapel

8.3 %
8ch

9.0 %
2ch

12.7 %
1ch

17.4 %
REVERB challenge
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More diverse acoustic conditions

• More challenging situations are waiting to be tackled
– Dynamic conditions 

• Multiple speakers 
• Moving speakers, …

– Various conditions 
• Variety of microphone types/numbers/configurations 
• Variety of acoustic conditions,  rooms,  noise types, SNRs, …

– More realistic conditions
• Spontaneous speech
• Unsegmented data
• Microphone failures, …

– New directions
• Distributed mic arrays, …

 New technologies may be needed to tackle these issues
 New corpora are needed to evaluate these technologies
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Larger DSR corpora

• Some industrial players have access to large amount of field data…
… most publicly available DSR corpora are relatively small scale

• It has some advantages, 
 Lower barrier of entry to the field
 Faster experimental turnaround
 New applications start with limited amount of available data

But…
Are the developed technologies still relevant when training data cover 

a large variety of conditions?

Could the absence of large corpora hinder the development of data 
demanding new technologies?

 There is a need to create larger publicly available DSR corpus 
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DSR data simulation

• Low cost way to obtain large amount of data covering many conditions

• Only solution to obtain noisy/clean parallel corpora

• Distant microphone signals can be simulated as

– Good simulation requires measuring the room impulse responses and the 
noise signals in the same rooms with the same microphone array

– Still … 

• Some aspect are not modeled e.g. head movements

• It is difficult to measure room impulse response in public spaces,… 

∗ +=

Microphone signal clean speech measured room 
impulse response

measured noise



200

DSR data simulation

• Recent challenges results showed that
– Simulated data help for acoustic model training

• No need for precise simulation

– Results on simulated data do not match results on real data when 
using an SE front-end

• SE models match better to simulated data  Causes overfitting

Need to develop better simulation techniques
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Toolkits

• ASR research has long history of community developed toolkits and 
recipes

• Toolkits and recipes are important to
– Lower barrier of entrance
– Reproducibility of results
– Speedup progress in the field

• Recent DSR recipes for REVERB and CHiME challenges include state-
of-the-art back-end technologies

• Much less toolkits and recipes available for SE technologies

Community based development of SE toolkits could contribute to 
faster innovation for DSR
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Cross community

• DSR research requires combination of
– SE front-end technologies

– ASR back-end technologies

Cross disciplinary area of research from speech enhancement, 
microphone array, ASR…

Recent challenges (CHiME, REVERB) have contributed to 
increase synergy between the communities by sharing
– Common tasks

– Baseline systems

– Share knowledge
• Edit book to appear “New Era for Robust Speech Recognition: Exploiting 

Deep Learning,” Springer (2017)
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Thank you!
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