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Abstract
Being able to isolate a target speech signal from background signals is of direct importance
for telephony, hands-free communication and audio surveillance, and it is also critical as a
pre-processing step in applications such as voice activity detection, automatic speaker iden-
tification, and most importantly automatic speech recognition (ASR) in challenging envi-
ronments. While speech enhancement and separation methods originally did not rely on
training, there has recently been an explosion in the use of machine learning based methods
that exploit large amounts of training data. This tutorial will present a broad overview of
these methods, analyzing the insights that can be gained from the pre-deep-learning era of
graphical modeling and NMF approaches, then diving into an in-depth presentation of recent
deep learning approaches encompassing single-channel methods, multi-channel methods, and
new directions.
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General overview

Speaker: Emmanuel Vincent



Speech separation and enhancement

What is speech enhancement?

� extract target speech signals from a recording,

� remove other speech sounds and noises (separation),

� remove reverberation (dereverberation).

In this tutorial, focus on separation.

What is it used for?

� listen to separated sources,

� remix them,

� retrieve information.
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Applications to spoken communication

Enhance speech for

� mobile phones,

� hands-free phones,

� hearing aids. . .
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Applications to human machine interfaces

Voice command for

� personal assistants,

� home automation,

� robots. . .

Includes speech recognition, speaker recognition, paralinguistics. . .
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Applications to spoken documents

Retrieve

� TV/radio/movie contents,

� personal videos. . .

Includes language recognition, speech recognition, speaker diarization,
keyword spotting. . .
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Time-frequency domain processing

Separation originally formulated as a linear inverse problem:

x(t) =
∞∑

τ=0

A(τ) s(t − τ)

x(t): I × 1 mixture signal
s(t): J × 1 point source signals
A(τ): I × J matrix of impulse responses
t: discrete time

Replaced by the more general formulation:

x(n, f ) =
J∑

j=1

cj(n, f )

cj(n, f ): I × 1 spatial image of source j
(can be diffuse)
n: time frame
f : frequency bin

Goal: filter the signal x(n, f ) into the different sources in each
time-frequency bin.
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Spectral filtering

Single-channel: spectral filtering achieved via time-frequency masking.

Speech source
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Spatial filtering

Multichannel: combination of spatial and spectral filtering.

Spatial filter (anechoic)
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What is a good filter?

Spectral and spatial filtering can

� reduce other speech sounds and noises. . .

� but affect the target speech signal too!

Tradeoff between

� residual noise aka. interference

� speech distorsion aka. artifacts

High speech distorsion typically results in

� low intelligibility,

� high error rate for speech recognition, speaker recognition. . .
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How to estimate a good filter?

Two general approaches:

� model-based:

� design a suitable source model (based on expertise),
� learn/estimate the model parameters,
� derive a filter,

� single-step: directly estimate the separation filter.
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Increasingly complex models
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Test paradigms

Separation methods often categorized according to the amount of
information about the test data:

� blind: no information (inapplicable to audio),

� weakly guided: general information about the context of use, for
instance “the sources are speech”,

� strongly guided: specific information about the processed signal:
speaker position, speaker identity, presence of a specific noise. . .

� informed: highly precise information encoded and transmitted along
with the audio (kind of audio coding).
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Training paradigms

In this tutorial, categorization according to existence and nature of
training data:

� learning-free: no training, all parameters fixed by an expert or
estimated from test data,

� unsupervised source modeling: train a model for each source from
unannotated isolated signals of that source type,

� supervised source modeling: train a model for each source from
isolated signals of that source type annotated with, e.g., speech
transcripts, noise environment labels. . .

� separation based training: train a single-step filter or jointly train
models for all sources from mixture signals given the underlying true
source signals.

Last three categories are learning-based.
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Why learning-based separation?

Compared to learning-free separation, learning-based separation can

� estimate parameter values more accurately (because data are not
corrupted by interfering sources and noise),

� exploit larger amounts of data to design and learn more complex
models.
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Tutorial outline

� Graphical models, NMF, and shallow networks

� Deep learning approaches to single-channel separation

� Deep learning approaches to multichannel separation

� New directions in deep learning approaches

� Wrap-up, perspectives
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Speaker: Jonathan Le Roux 

The pre-deep-learning era 
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Generative vs discriminative 

Ŷ Generative model-based methods 
Ź Training data used for 

Getting models of each source (type), independently 
Ź Examples 

Probabilistic models (GMMs/HMMs) 
NMF (some overlap with probabilistic models) 

Ŷ Discriminative methods: discriminative models, as well as 
discriminative training of generative models 
Ź Training data used for 

Learning how to obtain the source estimates from the mixture 
Ź Examples 

Some discriminative versions of the above 
Classification-based objectives, early attempts using SVMs 
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Model-based Source Separation  
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Traffic Noise 
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Speech Babble 
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Speech 
He held his arms close to… 
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Data 
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Signal modeling domain 
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Signal modeling domain 
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Interaction model Simple Intricate 

Signal representation Challenging Convenient 

sparsity  less source overlap strong source overlap 

additive excitation/filter: convolutive multiplicative 
good bad dynamic range: 

spectral patterns/harmonics identifiable 
ignore phase (for better or worse) 

… 
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Modeling signal interaction 
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Play music! 

Noisy speech 

Feature domain: Interaction model: 
Time 

Complex spectrum 

Power spectrum 

Log-power spectrum 

Power-sum 
Approximations: 

Log-sum 
Max model 

Phase difference 
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Example: enhancement using GMM with log-sum 
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* = 

GMM clean speech model 
Single Gaussian noise model 

Log-sum approximation 

Still intractable! non-linear 

� VTS: linearize at an expansion point                         for speech state 
� Compute posterior distribution 
� (Algonquin: iterate on       using posterior mean) 
� Compute MMSE estimate: 
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A tale of approximations 

Ŷ Limit to class of models that we can begin to do maths on 
Ź Exponential families, conjugate priors, etc. 

Ŷ Limiting assumptions 
Ź diagonal covariance in GMMs, conditional independence in HMMs 

Ŷ Further approximate to derive useful quantities 
Ź VTS, max model 

Ŷ … but still crazy derivations (no salvation from automatic diff.) 
Ŷ Scales badly  Approximate inference algorithms, 

computational tricks 
Ź “Search” (not “inference”!) 

Viterbi beam search across time 
Hierarchical search for best Gaussian (cf. decision tree in ASR) 

Ź Band quantization to limit number of Gaussians to compute 
Ŷ Nonetheless powerful, amenable to interpretation & extension 
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Factorial HMMs with max model 

Ŷ K source models, with  
discrete states                            

Ŷ mask states                          
indicate dominant source 

Ŷ inferring them jointly  exponentially 
intractable! 
 

Posterior is a bi-partite graph: 
Ŷ Given source states  

 infer masks in linear time 
Ŷ Given mask states   

 infer sources in linear time 
So variational EM can alternate between 
masks and source states  [Rennie et al., 2008] 
 

Gives amazing super-human results on a 
constrained problem (closed speaker set). 
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multiple speaker model 

mask states  

source states  

posterior state model 

mixture sources 
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4 Speaker Separation 

4 speaker mixture 

speaker #4 original 

speaker #4 estimated 
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4 Speaker Separation 

4 speaker mixture 

speaker #4 mask 

speaker #4 estimated mask 
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IBM’s 4-Speaker Separation Demo 

PLACE GREEN WITH B 8 SOON 

LAY BLUE AT P ZERO NOW 

PLACE RED IN H 3 NOW 

PLACE WHITE AT D ZERO SOON 

PLACE GREEN WITH B 8 SOON LAY BLUE AT P ZERO NOW PLACE RED IN H 3 NOW PLACE WHITE AT D ZERO SOON 

0 dB 

-7 dB 

Exact inference/marginals: over 1 trillion masks to compute 
Approximate Inference: Only 1024 masks 

-7 dB 

-7 dB 
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Impressive but ultimately limited 

However, variational EM is:  
Ŷ still too slow to be practical 
Ŷ highly dependent on initialization 
Ŷ has narrow model assumptions 

(e.g., diagonal covariance gaussians) 
 

Ŷ not easy to extend to general conditions: 
Ź unknown speakers,  
Ź unknown environments, 
Ź unknown source types, 
Ź unknown numbers of sources. 
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Non-negative Matrix Factorization (NMF) 

Ŷ Factorize matrix             into product 
Ŷ In audio, typically applied to (e.g., power) spectrogram 

 
 
 

Ŷ Hope: decomposition into meaningful building blocks that are 
representative of the source or source type 
Ź Phonemes in speech, notes in music, etc. 
Ź Constraints such as sparsity added to help 

Ŷ Obtained by minimizing some cost function 
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§ * 

sparsity term unit-norm 
critical unless 
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Ŷ Typically minimizing some beta-divergence: 
 
 
 

Ŷ “Simple” iterative update equations 
 
 
 
 

Ŷ Easy to derive heuristically, e.g., 
 

Relatively simple optimization procedure 

15 

Kullback-Leibler (KL) div. 
Itakura-Saito dist. 

Euclidean dist. 

where 
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NMF for speech separation 

Ŷ One NMF model for each source type (e.g., speech v. noise)
 
 
Ź So-called “supervised” setting: training data for all source types 

 
 
 
 
 
 
 

Ź “Semi-supervised”: training data only for some source types, 
“garbage” model estimated at test time for the rest 
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Test: Obtain activations on  
mixture using trained bases 

Training: 

bases activations es act

Obtain bases separately 
on each source type’s 
training data 

Reconstruct using  
Wiener filter-like mask 
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Test time optimization 
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Test time optimization 
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GMMs vs. NMF 

Ŷ GMM arguably better suited to monophonic signals (e.g., speech) 

Ź Not great for music: too complex to represent all note 
combinations 

Ź Not great for mixtures: discrete state model, combinatorial 
optimization  exponential complexity in sources 

Ŷ NMF great at handling polyphony 
Ź Popularity started with music  

Especially good for instruments like piano whose spectrogram 
is approximately low rank 

Ź Not as clear for a single speaker because no polyphony, but may 
still be useful for mixtures: continuous state model  no 
explosion of complexity! 

Ź But components of one source and components of different 
sources interact in the same way  need additional constraints 
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Handling dynamics and context 

Ŷ Why do we need dynamics?  
Ŷ Stacked/spliced frames 

 
 
 
 
 

Ŷ Convolutive bases  
Ź OK for sounds with clear templates  
Ź Rationale less clear for speech 
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Handling dynamics and context 

Ŷ Dynamic state models:
Ŷ Discrete: non-negative HMM (N-HMM) 

Ź transition between multiple basis sets 
Ź each set represents e.g. phoneme 

 
 

Ŷ Continuous: non-negative dynamical system (NDS) 
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NDS enhancement example 
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No processing 
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NDS enhancement example 
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No processing 
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(baseline) 
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NDS enhancement example 
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No processing 

OMLSA 
(baseline) NDS 
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Factorial extensions  

Ŷ Enforce further structure in spectrogram factorization
Ŷ Source-filter model of speech production 

Ź Can be as simple as 

22 

vocal tract  vocal cords / breath 

speech spectrogram 
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Factorial extensions  

Ŷ Enforce further structure in spectrogram factorization
Ŷ Source-filter model of speech production 

Ź … or a bit more involved (SFNDS) 
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Many other extensions 

Ŷ Use linguistic knowledge
Ź Introduce language models via N-HMM framework 
Ź Iterate separation and ASR, using phoneme-dependent models 

Ŷ Deal with unknown speakers 
Ź Universal speech model using group sparsity to represent a new 

speaker using a small number of known speaker models 
Ŷ Online separation with unseen speaker/noise 

Ź Incrementally update noise model and speech+noise activations 
Ŷ Handle phase information 

Ź Complex NMF: 
Ź Time domain spectrogram factorization: optimize time-domain 

signal and NMF factorization to match its STFT 
Ŷ Obtain better basis sets 

Ź Exemplar-based NMF: sample data frames as bases 
24 
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What’s “wrong” with “generative” methods? 

Ŷ The example of NMF-based separation:
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Training: 

Test: 

Bases optimal for activations obtained on sources! 

At test time, activations obtained on a mixture! 

Mismatch! 

sourc

ure!

h!

Wiener filter for reconstruction 
Not part of objective! 
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Why is it so hard to train them discriminatively?

Ŷ Bi-level optimization
 
 
 
 
 
 
 
 
 

Ŷ A way to break the bi-level issue: 
Ź Allow the bases to be different 
Ź Added benefit: leads to a more general model 
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where 

and 
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Discriminative NMF 
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Training 1: 

Test: 

Goal: maximize SDR for target source 1   (just say it!) 

Training 2: on training mixtures                                , 

Analysis W :

          

Reconstruction W 

Same  
procedure 

Test:
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First classification-based approaches 

Ŷ Time-frequency (T-F) mask, binary or continuous, used as 
intermediate goal for decades (cf. Wiener filter, CASA, etc.) 

Ŷ Generative model approach: use classifier to predict a mask 
Ź Bayesian classifier of SNR using GMMs on AM features 

Ŷ Discriminative approaches 
Ź Optimize classification accuracy on mask  

SVMs on various features 
Ź Optimize SNR 

MLPs on pitch-based features (1 hidden layer) 
Ŷ Shallow methods 

Ź Limited capacity, scale poorly, don’t generalize well  
Ź Processing each channel separately 

More context  more information, but harder to extract 
Ź Difficult to extend to joint inference of whole spectrograms 

 28 
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Deep learning 
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Deep learning - continued 

Ŷ Recent successes of deep learning (DL) in: 
Ź Speech recognition and spoken dialogue systems (siri, google voice) (2011-) 
Ź Object recognition in images (imagenet challenge) (2012-) 
Ź Handwriting recognition, machine translation, sentiment analysis 
Ź Atari game playing (2014) (DL+reinforcement learning) Video  
Ź Image captioning (2015) web page 
Ź Alphago (2016) news page 

Ŷ Will it help get us to “true” Artificial Intelligence? What’s next? 
Ŷ Companies 

Ź Google (bought Deepmind, Geoff Hinton’s company) 
Ź IBM, Microsoft, Apple, Amazon, Facebook 
Ź Openai (Elon Musk) 

Ŷ Some important researchers 
Ź Geoff Hinton (U Toronto, Google), Yann LeCun (NYU, Facebook), Yoshua 

Bengio (U Montreal), Andrew Ng (Stanford, Baidu), Jurgen Schmidhuber 
(IDSIA) 
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Neural net – a function approximator 
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Network with parameters  

Input data 

Output of the network 

+ lots of data to train from 
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Multi-layer feed-forward network 
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� First operation at a layer:  
� An affine transform: a matrix times input 

vector plus a bias vector 
� Second operation at a layer: 

� An elementwise nonlinearity 
� Usually a sigmoid function 
� Tanh 
� Rectified linear unit 
� Others 

Image taken from wikipedia 

x y h 

Hidden layers 1 through L-1 
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Inputs, outputs, targets… 

Ŷ Inputs (x)  for a learning problem 
Ź Raw signal values (image pixel intensities, signal values) 
Ź Features extracted from data 
Ź Machine learning people prefer raw data -> no hand-

engineering required 
Ŷ Targets (t) are desired outputs known during training the 

system (learning targets) 
Ź Class identities, integral data (for classification) 
Ź Another vector (for regression), any N-dimensional tensor data 
Ź Sequences of classes/vectors/tensors 
Ź Other structured targets may also be possible 
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Loss functions 
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Training a network 

Ŷ How to solve the training problem? 
Ź Use (stochastic) gradient descent to minimize the loss function 
Ź Use back-propagation to calculate gradients 
Ź Stochastic gradient descent (SGD) works much faster than full batch 

gradient 
Many variants exist: momentum, RMSPROP, RPROP, ADAM etc. 

Ź In SGD, we iteratively update parameters using mini-batches of 
training data 

choose a mini-batch of data, calculate gradients on that data only 
and update parameters in the direction of the negative gradient with 
a step size 
Step size in the update which is called the learning rate is an 
important parameter in SGD 

Ź Other optimization methods such as Hessian-free optimization exist 
and can sometimes achieve better results, but slower to run 
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Back-propagation - 1 

9 



Interspeech 2016 Tutorial 3. Deep learning for single channel separation 

Back-propagation - 2 
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Forward pass Backward pass 
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Back-propagation - 3 
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Back-propagation - 4 
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Generalization: Computational networks 

Ŷ Consider a directed acyclic graph (DAG) of 
computational “layers” 

Ŷ Each layer needs to provide a forward pass and 
backward pass routine 

Ŷ In the backward pass, one should calculate the 
gradient wrt the learnable parameters (weights) in 
the layer and also the gradient wrt the inputs of the 
layer given the gradient wrt the outputs of the layer 

Ŷ If outputs of a layer is fed into multiple layers, then 
the gradients coming from each (in the backward 
pass) should be summed 

Ŷ All gradients can be computed with a single 
forward pass followed by a backward pass through 
the whole computational network 

Ŷ Many toolkits (cntk, theano, tensorflow, torch, 
caffe, chainer ) use this kind of ideas to build and 
train networks 
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Image taken from 
CNTK toolkit 
documentation 
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Recent tricks of the trade for training 

Ŷ How to make the networks train better? 
Ź Better: faster to converge, achieving better validation error 
Ź Some tricks aim to avoid gradient vanishing 
Ź Others use randomization techniques to improve generalization 

Ŷ Older tricks (from 2010): unsupervised (RBM, deep 
autoencoder) layer by layer initialization 

Ŷ Better nonlinearities (such as rectified linear units) 
Ŷ Dropout training 
Ŷ Maxout 
Ŷ Batch normalization 
Ŷ Residue networks 
Ŷ Ladder networks 
Ŷ Highway networks 
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Are neural networks slow? 

Ŷ Training can be very slow due to large amounts of training 
data 
Ź But training is done offline, so it is potentially OK! 
Ź Trained models can be reused for many problems 
 

Ŷ But, inference is very fast, we just feed-forward the input 
data! 

Ŷ Usually no lag or latency in processing, appropriate for 
online processing 
 

Ŷ So final answer: No they are not slow, in contrast they are 
very FAST to apply 
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Why need toolkits? 

Ŷ We require toolkits to define computational networks and 
learn their parameters (W) from training data 

Ŷ We want the toolkits to be flexible, so that researcher’s can 
define loss functions, novel architectures, saving and 
reloading networks should be easy 

Ŷ Build networks from low level functions, automatically 
differentiate using back-propagation 

Ŷ The code should run efficiently on a GPU without much effort 
Ŷ NVIDIA has CUDA library, also CUDNN, CUBLAS, 

CUSPARSE etc., but these are low level libraries 
Ŷ Need higher level toolkits 
Ŷ More discussion about toolkits in the appendix 
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Recurrent neural network (RNN) 

Ŷ Recurrent networks process sequential data, have memory 

17 

1 
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Bi-directional RNN 

18 

1 -1 

Ŷ Bi-directional RNNs have forward and backward memory 
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A simple model for human brain as an RNN 
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input at time t 
Vision, sound, touch, taste, smell  t-1 t+1 

output at time t: 
Motor commands (speak, move) 

State of the 
mind at 
time t : 
memories, 
beliefs, 
information 

State of the 
mind is 
updated at 
each time step 

beliefs, 
information

p
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Enhancement/separation problem formulation 

 
Ŷ Short-time Fourier transform (STFT) domain 
Ŷ y,s,n=mixed signal, speech, noise STFTs (complex) 

 
 

Ŷ Often made assumption: 
Ŷ Problem: Given mixed signal’s STFT y, estimate speech 

STFT s 
Ŷ Assume availability of training data  for each source type 

(speech and other), mixtures of them can be formed at 
various SNRs -> Use machine learning 
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Ideally we want 
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The magnitude and the phase 

Ŷ Should we try to estimate both       and       ? 
Ŷ Under complex Gaussian assumptions for speech and noise 

and some other constraints, MMSE optimal estimate for       
is equal to         [Ephraim&Malah 1984, Cohen&Berdugo 2001] 

Ŷ So, try to estimate the magnitude only and use the mixed 
signal phase as the phase estimate 

Ŷ Can we do better than that? May be we can, but in this talk, 
we restrict ourselves to magnitude prediction 
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Mask prediction 

Ŷ Estimate speech  as                          where      is a real filter 
(mostly restricted to [0,1] )  
Ź uses the mixed signal’s scaled magnitude and its exact phase 

Ŷ Boils down to estimation of             at each time-frequency 
bin 

Ŷ Binary mask:     is 0 or 1 
Ź Assign each TF-bin to one source only 

Ŷ Ratio mask or soft mask:     is between 0 and 1 
Ź Distribute each TF-bin partially to each source 

23 
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Learning-free speech enhancement 

Ŷ Spectral subtraction, Wiener filter, MMSE-STSA, LSA, 
OMLSA 

Ŷ No machine learning (no prior training data) 
Ŷ Estimate parameters from utterance at hand 
Ŷ Assumptions: speech and noise STFTs are independent, 

both complex Gaussian with mean zero  
Ŷ Noise is stationary (or slowly varying) 
Ŷ Minimize MSE in complex, magnitude or log-magnitude 

domains 
Ŷ Estimate noise variance from noisy data (using minimum 

energy averaging, speech presence probability, etc.) which 
leads to estimation of a gain parameter 

Ŷ Phase is not estimated but taken from noisy data since it is 
the MMSE-optimal choice [Ephraim&Malah 1984] 
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Learning-free methods 

25 

� Uncorrelatedness, Gaussianity, stationarity assumptions 
may not be realistic 

� Also, need to estimate some parameters from only a 
single observation 

STFT 

ISTFT 

Estimate noise 
variance 

Estimate gain 
parameter T

S
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Performance of OMLSA in non-stationary noise 
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Machine learning methods 

Ŷ Focus on the term “source separation” rather than “speech 
enhancement” 

Ŷ Age of big data: we have a lot of data and CPU/GPU power 
to process them 

Ŷ Machine learning techniques 
Ź Model-based (already covered) 

NMF and its variants 
Other methods 

Ź Neural networks 
Deep feed-forward neural nets or MLPs 
Recurrent NN (RNN) 
LSTM-RNN 

27 



Interspeech 2016 Tutorial 3. Deep learning for single channel separation 

Speech enhancement using Neural Nets: Early days 

Ŷ Earlier studies [1988-1998] on speech enhancement using 
neural networks 
Ź Speech enhancement using time-domain signal segments as 

inputs [Tamura&Waibel 1988, Tamura 1989, Tamura&Nakamura 
1990] 

Ź Transform domain noise reduction network (enhancing features 
for speech recognition, concatenate with a recognition network) 
[Sorensen 1991, Dawson&Sridharan 1992, Moon&Hwang 1993, 
Wan 1995] 

Ź Log-spectral domain gain estimation (single t-f bin) 
[Xie&Compernolle 1994] 

Ź Other time-domain speech enhancement papers for various 
applications [Dahl&Claessen 1996, Le&Mason 1996] 

Ź A survey paper summarizing earlier papers [Wan&Nelson 1998] 
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What was missing back then? 

Ŷ Earlier papers used smaller neural networks trained from 
small amounts of training data 

Ŷ Deep learning studies did not exist, so efficient training 
techniques were not present 

Ŷ Time-domain enhancement performed worse than transform 
domain enhancement 

Ŷ Neural networks were in the decline, scientific community 
believed that other model based methods were superior to 
neural networks 

Ŷ There were not widespread databases for consistent 
comparison of different approaches 
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Types of recent neural network methods 

30 

Ŷ Revived interest on speech enhancement/separation using 
deep neural networks with following goals 
Ź Binary mask estimation from noisy spectra using DNNs and 

other classifiers, essentially a classification problem 
[Wang&Wang 2013] 

Ź Soft-mask estimation, or directly estimating source spectra 
from noisy spectra, essentially a regression problem 
[Xu&Du&Dai&Lee 2014, Huang&Kim&Johnson&Smaragdis 2014, 
Weninger&Hershey&LeRoux&Schuller 2014, Wang&Narayanan&Wang 
2014] 

Ź Use DNN as a classifier to check for validity of source 
estimates while solving a  constrained optimization 
problem (our first trial of DNNs for this problem – details to 
follow) [Grais&Sen&Erdogan 2014]  
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Using a DNN as a source verifier 

Ŷ Summary of our paper: Grais, Sen and Erdogan, “Deep neural networks 
for single channel source separation,” ICASSP 2014. 

Ŷ Inspired from using NMF as a model for each source, we thought we 
could use a DNN as a model for each source, or better yet, a 
“discriminative” model, a classifier of sources 

Ŷ We train a single DNN to classify sources 
Ŷ Idea: We have three conditions to satisfy to solve the problem: 

Ź The source estimates should be compatible with their own models 
(should be classified as source one or two using the trained DNN) 

Ź The source estimates should sum to the mixed signal 
Ź The source estimates should be nonnegative 

Ŷ In the paper, we solve an optimization problem that aims to achieve 
these conditions together 
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Formulation 

32 
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Results 
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speech - piano music separation performance, L is the stacked frame count 
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Pros and cons of this approach 

Ŷ Pros:  
Ź Does not require training from mixtures, only train a DNN to classify 

single sources 
Ź DNN is a better model than an NMF model due to its power of 

representation and discriminative nature 
Ŷ Cons: 

Ź Requires solving an optimization problem at test time: quite slow 
Ź Requires good initialization of source estimates from an NMF model 

Ŷ Conclusion: 
Ź Straightforward method with feed-forward inference seems to work 

better, which we address next 
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Neural Net for speech enhancement simplified 

35 

network 

Noisy data 

Enhanced spectrogram, or mask 

+ lots of data to train from 
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What should be the input to the network? 

Ŷ All references seem to agree that using features similar to 
log-magnitude-spectra is a good type of input to the network 

Ŷ It was found that using log-mel-filterbank features with 100 
Mel filters gave the best result [Weninger&Hershey&LeRoux&Schuller 2014]  

Ŷ In ASR typically less filters are used, but in enhancement, it 
looks like a larger number like 100 is necessary 

Ŷ For DNN: concatenate features from neighboring frames for 
contextual information (splicing, super-frames, sliding-
window) 

Ŷ For RNN: use single-frame features, it handles context 
directly 
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Network training loss functions 
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Effects of various network losses 

Ŷ Predicting log-spectra and using log-spectral distance tends 
to oversmooth the large values and has some global 
variance problems which needs to be post-corrected 
[Xu&Du&Dai&Lee 2014] 

Ŷ Using squared error measure relates more to SNR, however 
it may not be perceptually optimal when speech power is low 

Ŷ KL, IS divergences (Bregman, beta, alpha divergences and 
others) need to be investigated 

Ŷ More investigation and comparison of different versions may 
be required 
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Predict mask or spectra? 
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[Weninger&Hershey&LeRoux&Schuller 2014] found MSA is better than MA, 
[Wang&Narayanan&Wang 2014] found MSA is better than LS loss 
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clean 

Ideal amplitude mask 
limited to [0,1] range 

noisy 

Mask versus spectra 
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Why predict mask? 

Ŷ Mask value can be restricted to be in the range [0,1] and we 
can use a logistic sigmoid output layer to predict it 

Ŷ Direct spectral prediction may require using a linear or 
rectified linear output layer with an infinite range of output 

Ŷ Prediction of the spectra may also yield over-smoothing 
effects in general due to the regression-to-the-mean effect 
(regardless of predicting log-spectra or not) 

Ŷ When the signal is clean, predicting a mask of 1, can directly 
pass the clean signal to the output, giving “perfect 
reconstruction” without having to learn to produce the signal. 
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Problems with RNNs 

Ŷ It was found that DNN and RNN performance for source 
separation are very close. [Huang&Kim&Johnson&Smaragdis 2014]  

Ŷ Shouldn’t RNN be better since it uses potentially longer 
context? 
Ź Yes, but hard to learn the parameters 

Ŷ Weights learned with back propagation through time (BPTT) 
Ŷ BPTT gradients get too small (or too large) as we back-

propagate from t to t-T where T is large 
Ŷ Network forgets previous “events” due to shrinkage of earlier 

hidden node activations as time progresses  
Ŷ Need to “preserve” the earlier (t-T) hidden node activations 

to be able to use them in predictions at time t 
Ŷ One solution: Long short-term memory (LSTM) RNNs 

[Hochreiter&Schmidhuber 1997] 
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LSTM memory cell 
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Taken from [Weninger et.al. 2014]. 
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LSTM forward computations 
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Results with LSTM networks 

Ŷ [Weninger&Hershey&LeRoux&Schuller 2014] found that using a two layer LSTM 
network with a MSA objective gave much better results than an NMF baseline 
and also is better than using a DNN 
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Improvements on the baseline method 

Ŷ How can we improve LSTM based, mask-predicting, 
magnitude spectrogram approximation (MSA) network 
introduced in [Weninger&Hershey&LeRoux&Schuller 2014] 
whose performance is quite good already 
Ź Use a phase-sensitive loss function 
Ź Use ASR alignments as additional evidence for enhancement, 

iteration of ASR and enhancement 
Ź Use bidirectional LSTM 

46 



Interspeech 2016 Tutorial 3. Deep learning for single channel separation 

Analyzing oracle masks 

Ŷ Use the mixed signal phase           and try to estimate only 
the magnitude of speech   
 

Ŷ How well can we perform (say in terms of SNR) if we 
estimated the magnitude “perfectly” ? 
 

Ŷ But: “perfectly” depends on what you consider to be perfect! 
 

Ŷ There are various options to consider! 
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Oracle masks 
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Illustrating ideal masks 
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Oracle masks movie 

50 



Interspeech 2016 Tutorial 3. Deep learning for single channel separation 

Oracle mask results 
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Phase-sensitive filter (PSF) ideal or truncated to [0,1]  
gives much higher SDR value than others! 
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Spectrograms obtained using oracle masks 
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Spectrograms obtained using oracle masks 
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noisy clean 

IBM [SDR=8.95 dB] PSF [SDR=11.86 dB] 



Interspeech 2016 Tutorial 3. Deep learning for single channel separation 

Phase-sensitive approximation loss 
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Relation to time-domain loss 

Ŷ Recently, [Wang & Wang 2015] introduced using time-domain least 
squares error in training neural networks for speech 
enhancement using DNNs 

Ŷ They also use the noisy phase to reconstruct the time 
domain signal and calculate network’s training loss as the 
squared error in the time domain 

Ŷ Phase-sensitive loss function is equivalent to time-domain 
least squares loss function since they are both maximizing 
SNR  
Ź Time domain and frequency domain errors are equivalent 
Ź Due to Parseval’s theorem 

55 



Interspeech 2016 Tutorial 3. Deep learning for single channel separation 

Using ASR to improve speech enhancement 

Ŷ ASR has access to a language model which the LSTM 
network does not know about 

Ŷ Additional information coming from an ASR system can help 
improve enhancement 

Ŷ We use additional “alignment information” inputs, which are 
basically obtained from alignment of frames with the one-
best ASR decoding result 

Ŷ A simple first step to achieve integration of ASR and speech 
separation/enhancement 
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A concocted example 
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Transcription:         Mit               su                   bish                 i 

ASR will help here 
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ASR alignment information – how to use 

Ŷ One possible way: concatenate “one-hot state alignment 
vectors” to the noisy log-mel-filterbank input 

Ŷ Another way: use “mean alignment vectors” for each state 
Ŷ Mean alignment vector = “average of the log-mel-filterbank 

features belonging to the ASR state”  
Ŷ We found ignorable difference in performance between 

different methods of providing the alignment information 
Ŷ We concatenate “mean alignment vector” for the active state 

at the current frame to the noisy log-mel-filterbank input to 
obtain the results in this talk 
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Bidirectional LSTM  

Ŷ Since we use ASR, no need to restrict ourselves to low-
latency real-time techniques 

Ŷ Bidirectional LSTM networks have the same algorithmic 
latency as an ASR system, so we can use them 

Ŷ BLSTM uses contextual information from past and future 
events that help predict the correct output at each frame 

Ŷ We use single frame inputs in LSTM and BLSTM 
Ŷ Let BLSTM learn which past and future events are relevant 

for prediction at the current frame 
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Iterated enhancement & ASR 
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Noisy 
speech 

Recognition 
& Enhancement 

networks 
(DRNN) 

Mask 
Enhanced 

speech 

Recognition 
result 

Enhance ĺ ASR ĺ Enhance ĺ ASR 
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Neural network learning parameters/tricks 

Ŷ Layer-by-layer supervised pre-training (aka. Microsoft style) 
Ŷ Whenever possible, initialize from an earlier trained network 

Ź Initially train with mask approximation in Mel-domain, then switch to 
signal approximation in spectral domain 

Ŷ Stochastic gradient with mini-batch size of 50 utterances 
Ŷ Learning rate (per whole training data) 1e-6 
Ŷ Momentum with momentum weight 0.9 
Ŷ Sequence shuffling 
Ŷ Normalize input data to mean 0 and variance 1 
Ŷ Add Gaussian noise to input with stdev 0.1 for robustness 
Ŷ Validation using monitoring of development set loss 
Ŷ Wait 20 epochs before no more improvement on validation loss to stop 

training 
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SDR/SIR results on CHiME-2 eval/test set 
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Average SDR and SIR in dB (higher is better) 

Network Cost Input Ave-SDR Ave-SIR 

LSTM 2x256 MSA mfb 13.83 17.53 

BLSTM 2x384 MSA mfb 14.22 18.24 

LSTM 2x256 PSA mfb 14.14 19.20 

BLSTM 2x384 PSA mfb 14.51 19.78 

BLSTM 2x384 PSA mfb+align 14.75 20.46 

mfb=log-mel-filterbank, 100 dimensional 
align=average log-mel-filterbank for the active state, 100 dimensional 
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Spectrograms 
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Recognition results with enhanced speech - CHiME-2 
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Enh. 
method/WER% 

No retraining Retrained with 
enhanced 

Dev Eval Dev Eval 
Baseline 54.17 47.90 54.17 47.90 
OMLSA 59.08 54.20 53.59 48.65 
Sparse NMF 51.22 46.30 45.22 39.13 
DNN-MSA 36.68 29.72 36.13 29.03 
LSTM-MSA 31.45 25.01 31.63 25.44 
BLSTM-SSA-PSA 25.52 19.81 24.79 19.11 

GMM-HMM system trained with mixed training data (multi-condition training)  
and retrained with enhanced training data 

Single channel results 
SSA=speech state aware (uses ASR info) 
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DNN-HMM recognizer with beamformed CHiME-2 data 
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Enhancement method WER Dev WER Eval 
BF 25.64 21.12 
2ch-NMF 25.13 19.46 
BF-LSTM-MSA 19.03 14.82 
BF-LSTM-PSA 19.20 14.63 
BF-BLSTM-MSA 18.35 14.47 
BF+SSA-BLSTM-MSA 18.41 14.25 
BF+SSA-BLSTM-PSA 18.19 14.24 
BF+ENH+SSA-BLSTM-MSA 18.16 13.95 
BF+ENH+SSA-BLSTM-PSA 18.28 13.95 

DNN target states from clean data alignment 
with sequentially discriminative training 
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Recent studies: complex mask prediction 

Ŷ Phase prediction is hard, however there has been recent 
studies on predicting a complex mask [Williamson&Wang 2016] which 
is equivalent to predicting the phase 

Ŷ Complex mask prediction is performed by predicting real and 
imaginary parts of the ideal mask 

Ŷ An ideal complex mask can take values from minus infinity 
to infinity 

Ŷ The range of the ideal mask is squeezed to be in a limited 
range [-K,K], and after prediction the range is un-squeezed 

Ŷ This helps in some datasets, but it is little worse than phase-
sensitive mask in some other datasets 
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Recent studies: joint enhancement/recognition 

Ŷ Joint enhancement/recognition networks for noise robust 
ASR [Wang&Wang 2016, Gao&Du&Dai&Lee 2015] 

Ŷ The basic idea (which was also there in studies in 1990’s) is 
to concatenate enhancement and recognition networks 

Ŷ One can start training with an enhancement loss function 
and then switch to a cross-entropy (classification) loss 
function 

Ŷ Feature extraction is built into the network, or enhancement 
is done in the feature domain 

Ŷ Mask prediction can still be employed within the network 
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Appendix 

-more information on toolkits 
- additional information 
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Python based toolkits 

Ŷ Theano (U Montreal Y Bengio lab) 
Ź Uses symbolic language to define a network 
Ź Compiles the network in C++ to run on GPU 
Ź Hard to debug errors in code 
Ź A bit hard to learn all details 

Ŷ Tensorflow (Google) 
Ź Backed by google, large user base 
Ź Rapidly changing and expanding 

Ŷ Theano wrappers 
Ź Keras (also wraps Tensorflow) 
Ź Lasagne 
Ź Theanets 
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Other python based toolkits 

Ŷ Chainer 
Ź Easy to learn 
Ź Seems easier to debug than Theano 

Ŷ MXNet 
Ź Claims to be flexible, fast 
Ź Seems a bit harder to learn 
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C++ toolkits 

Ŷ Torch 7 
Ź Generic toolkit, used a lot by ML researchers 
Ź LUA based scripting on top of C++ low level code 

Ŷ Caffe 
Ź Mostly for vision problems 
Ź But can be used for RNNs too 
Ź Flexible network definition, prototxt, python interface 

Ŷ CNTK (computational network toolkit) 
Ź Microsoft Research – originated from speech group 
Ź Scripts for defining networks 
Ź Highly efficient code 

Ŷ Currennt  
Ź Good for LSTMs, but not flexible 
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Matlab 

Ŷ Matlab usually considered slow for learning deep nets 
Ŷ Still, a lot of toolkits exist 
Ŷ Many researchers make their matlab code available 
Ŷ You can write your own matlab code as well 
Ŷ Some resources: 

Ź http://deeplearning.stanford.edu/wiki/index.php/UFLDL_Tutorial 
(very good to understand neural nets for beginners) 

Ź Matlab’s neural network toolbox - old one, and not specifically 
for deep learning 

Ź Many different ones come up in google searches, need a 
ranking system among them 
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Which toolkit should I learn and use? 

Ŷ It takes a lot of time to learn one toolkit 
Ŷ Choose one according to your needs and learn it 
Ŷ You may need to modify the code, so learn how the toolkit 

works internally, not as a black box 
Ŷ Avoid ones that keep changing too much internally 
Ŷ Start with a toolkit after asking around for advice and write 

some code in it to get a feel 
Ŷ It may be wise to choose a toolkit recommended by people 

around you and for which there is immediate help available 
Ŷ Online forums are also very helpful, so choose one with a 

large community of support 
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Other resources 

Ŷ http://deeplearning.net  
Ŷ Coursera courses: Andrew Ng’s machine learning, Geoff 

Hinton’s neural networks courses 
Ŷ Online book: http://neuralnetworksanddeeplearning.com  
Ŷ Yoshua Bengio’s Deep Learning book 

http://deeplearningbook.org 
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Deep learning
approaches to multichannel separation

Speaker: Emmanuel Vincent



Time-domain representation

Reminder: in the general case with I microphones

x(t) =
J∑

j=1

cj(t)
x(t): I × 1 mixture signal
cj(t): I × 1 spatial image of source j
t: discrete time

In the case of a point source:

cj(t) =
∞∑

τ=0

aj(τ) sj(t − τ)
aj(τ): I×1 vector of acoustic impulse responses
sj(t): single-channel source signal

Multichannel signals 2



Acoustic impulse responses
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Narrowband approximation

Assuming low reverberation:

cj(n, f ) ≈ aj(f ) sj(n, f )
cj(n, f ): I × 1 STFT of cj(t)
aj(f ): I×1 vector of acoustic transfer functions
sj(n, f ): STFT of sj(t)

Magnitude and phase of aj(f ) and sj(n, f ) difficult to disambiguate ⇒
model the relative transfer functions between mics instead:

� level difference (ILD): ILDii ′j(f ) = |aij(f )|/|ai ′j(f )|

� phase difference (IPD): IPDii ′j(f ) = ∠aij(f )− ∠ai ′j(f ) (mod 2π)

� time difference (ITD): ITDii ′j(f ) = IPDii ′j(f )/2πf (mod 1/f )
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Interchannel level and phase differences
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Spatial covariance matrix

With higher reverberation, sound comes from many directions at once.

Zero-mean multichannel Gaussian model:

cj(n, f ) ∼ N (0,Σcj (f )) Σcj (f ): I× I source covariance matrix

∼ N (0, σ2
sj
(n, f )Rj(f ))

σ2
sj (n, f ): short-term power spectrum

Rj(f ): I × I spatial covariance matrix

Rj(f ) =

(
r11 r12
r21 r22

)
can be parameterized in terms of

� ILD
√

r11/r22,

� IPD ∠r12,
� coherence (IC) |r12|/√r11r22

IC encodes the diffuseness of the sound field.

Multichannel signals 6



Interchannel coherence
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Single-channel separation using spatial features

� Append spatial features to the inputs
� ILD,
� cos(IPD),
� full interchannel cross-correlation,
� speech magnitude spectrum after beamforming,
� speech/noise magnitude spectrum after multichannel GMM. . .

� Train a DNN to compute a single-channel mask mj(n, f )
� exploit the fact that the features of the mixture are similar to those of

the predominant source,
� ensure the training set covers all possible angles,
� and/or shift the IPD according to source localization

� Apply it to one channel or as a post-filter after conventional
beamforming, e.g., delay-and-sum (DS)

ĉij(n, f ) = mj(n, f )xi (n, f )

ŝj(n, f ) = mj(n, f )xBF(n, f )

ĉij(n, f ): spatial image estimate
ŝj(n, f ): source estimate
xBF(n, f ): beamformer output

Single-channel separation using spatial features 8



Results (single spatial feature)

Araki et al. – CHiME-1, cepstral distorsion & segmental SNR
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Results (multiple spatial features)

Jiang et al. – Mixtures of 2 TIMIT sentences at 0 dB SNR, hit - false alarm rate
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Multichannel vs. single-channel separation

Multichannel adaptive filtering (aka beamforming)

� can cancel up to I − 1 coherent sources

� distorts speech less than single-channel masking or post-filtering

Spatial filter (anechoic)

 

 

angle (◦)

fr
eq
u
en
cy

(H
z)

102

103

104

0 45 90 135 180

dB

−30

−20

−10

0

10

Spatial filter (reverberant)

 

 

angle (◦)

fr
eq
u
en
cy

(H
z)

102

103

104

0 45 90 135 180

dB

−30

−20

−10

0

10

Model-based multichannel separation 11



Model-based multichannel separation

Multichannel filter:

ĉj(n, f ) = Wj(n, f )
Hx(n, f )

ŝj(n, f ) = wj(n, f )
Hx(n, f )

Wj(n, f ): I × I matrix
wj(n, f ): I × 1 vector

Model-based approach:

� use a DNN to estimate the source statistics Σcj (n, f ),

� derive Wj(n, f ) or wj(n, f ) according to a filter design criterion.

Model-based multichannel separation 12



MSE-based filter design: narrowband case

Under the narrowband approximation, with c �=j(n, f ) =
∑

j ′ �=j cj ′(n, f ):

ŝj(n, f )− sj(n, f ) = [wH
j (n, f )aj(f )− 1]sj(n, f )︸ ︷︷ ︸

speech distorsion

+wH
j (n, f )c �=j(n, f )︸ ︷︷ ︸

residual noise

.

Weighted mean square error (MSE) criterion:

min
wj (n,f )

= |wH
j (n, f )aj(f )− 1|2σ2

sj
(n, f ) + μwH

j (n, f )Σc �=j
(n, f )wj(n, f ).

⇒ wj(n, f ) =
σ2
sj
(n, f )Σ−1c �=j

(n, f )aj(f )

μ+ σ2
sj
(n, f )aHj (f )Σ

−1
c �=j

(n, f )aj(f )

Special cases:

� μ → 0: minimum variance distorsionless response (MVDR)

� μ = 1: multichannel Wiener filter (MWF) = Σ−1x (n, f )σ2
sj
(n, f )aj(f )

Note:

� all spatial filters are equal, only the spectral gain changes

� μ can be interpreted as an oversubtraction factor
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MSE-based filter design: general case

In the general case:

ĉj(n, f )− cj(n, f ) = [WH
j (n, f )− I]cj(n, f )︸ ︷︷ ︸
speech distorsion

+WH
j (n, f )c �=j(n, f )︸ ︷︷ ︸
residual noise

.

Weighted MSE criterion:

min
Wj (n,f )

= [wH
j (n, f )− I]Σcj (n, f )[wj(n, f )− I]

+ μWH
j (n, f )Σc �=j

(n, f )Wj(n, f ).

⇒ Wj(n, f ) = [Σcj (n, f ) + μΣc �=j
(n, f )]−1Σcj (n, f ).

Special cases:

� μ → 0: distorsionless noise reduction not feasible anymore

� μ = 1: multichannel Wiener filter (MWF) = Σ−1x (n, f )Σcj (n, f )

Model-based multichannel separation 14



SNR-based filter design

Maximum SNR (MSNR) criterion:

max
wj (n,f )

=
|wH

j (n, f )aj(f )|2σ2
sj
(n, f )

wH
j (n, f )Σc �=j

(n, f )wj(n, f )
=

wH
j (n, f )Σcj (n, f )wj(n, f )

wH
j (n, f )Σc �=j

(n, f )wj(n, f )
.

Solution:

� in the narrowband case, wj(n, f ) ∝ Σ−1c �=j
(n, f )aj(f ),

� in general, wj(n, f ) ∝ principal eigenvector of Σ−1c �=j
(n, f )Σcj (n, f ) or

Σ−1x (n, f )Σcj (n, f ), aka generalized eigenvalue (GEV) beamformer.

Gain fixing post-filter wBANj(n, f ) =
(wH

j (n,f )Σcj (n,f )Σcj (n,f )wj (n,f ))
1/2

wH
j (n,f )Σcj (n,f )wj (n,f )

� makes MSNR equivalent to MDVR in the narrowband case

� but more robust than MVDR when narrowband approx. doesn’t hold

Model-based multichannel separation 15



Mask-based estimation of source statistics

Speech presence probability (SPP) based estimation of source statistics:

� use a DNN to estimate a single-channel mask mj(n, f ),

� estimate the source statistics recursively as

Σcj (n, f ) = λΣcj (n − 1, f ) + (1− λ)mj(n, f )x(n, f )x
H(n, f )

Σc �=j
(n, f ) = λΣc �=j

(n − 1, f ) + (1− λ)[1−mj(n, f )]x(n, f )x
H(n, f )

with forgetting factor λ (λ → 1: time-invariant filter).

Note: assumes the source statistics vary slowly over time.

Model-based multichannel separation 16



Results

Heymann et al. – CHiME-3 simulated development set, perceptual speech quality
noise-aware: training on speech+noise mixtures
clean: training on clean speech (target mask = TF bins totaling 99% power)
Ito13, Tran10: spatial clutering techniques
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Iterative EM-based estimation of source statistics

Classical alternative approach:

� factor Σcj (n, f ) into spectral (quick) and spatial (slow) parameters

cj(n, f ) ∼ N (0, vj(n, f )Rj(f ))
vj(n, f ): short-term power spectrum
Rj(f ): spatial covariance matrix

� alternately reestimate vj(n, f ) and Rj(f ) in the maximum likelihood
(ML) sense using an expectation maximization (EM) algorithm

max
{vj (n,f ),Rj (f )}

∑

nf

logN (x(n, f )|0,∑jvj(n, f )Rj(f ))

Tweak: use a DNN to reestimate vj(n, f ) instead.

Model-based multichannel separation 18



Iterative EM-based estimation of source statistics

� Initialization: vj(n, f ) ← fW [|wH
DSx(n, f )|], Rj(f ) ← I

� E-step: estimate the posterior statistics of the sources

Wj(n, f ) =

[
∑

j ′
vj ′(n, f )Rj ′(f )

]−1
vj(n, f )Rj(f ) (MWF)

ĉj(n, f ) = WH
j (n, f )x(n, f )

Σ̂cj (n, f ) = ĉj(n, f )ĉ
H
j (n, f ) + [I−WH

j (n, f )]vj(n, f )Rj(f )

� M-step: update the parameters

Rj(f ) ← 1

N

∑

n

R̂cj (n, f )

vj(n, f )

ξj(n, f ) ← 1

I
tr(Rj(f )

−1Σ̂cj (n, f )) (power spectrum estimate)

vj(n, f ) ← fW [ξj(n, f )] (improve estimate by DNN)
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Iterative EM-based estimation of source statistics
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Results

Nugraha et al. – CHiME-3 simulated test set, signal-to-distorsion ratio

EM iter: 0 1 1 2 2 3
update: - spat spec spat spec spat
DNN: 0 - 1 - 1/2 -

10

11

12

13

14

15

16

17

S
D
R
(d
B
)

1 DNN

2 DNNs

3 DNNs
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Results

Nugraha et al. – CHiME-3 real test set, DNN-based ASR backend

Noisy WER=19.28%

DS beamforming WER=13.70%

Multichannel NMF WER=13.41%

Initialization WER=15.18%

Update Rj (iter 1) WER=11.46%

Update vj (iter 1) WER=11.46%

Update Rj (iter 2) WER=10.79%

Update vj (iter 2) WER=11.12%

Update Rj (iter 3) WER=10.14%

Model-based multichannel separation 22



Single-step multichannel separation

Instead of using a DNN to compute the source statistics, use it to

� compute the beamformer weights

� . . . or compute the beamformed signal directly!

Single-step multichannel separation 23



Fixed beamforming layer
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Adaptive beamforming network

Feature
Extraction

Acoustic model DNN

State posteriors

Log Mel filterbanks

Complex spectrum

wf;m

zt;f;m

r̂t;f

log

Mel 
j ¢ j

GCC-PHAT STFT

Array signal

Beamforming DNN

Beamforming 
in Frequency 
Domain

Mean pooling Complex 
spectrum of
all channels

GCC

BF weights
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Results

Xiao et al. – AMI, DNN-based ASR backend

Method WER (%)

Single distant mic 53.8
DS beamforming 47.9
Beamforming network 44.7
Headset 25.5
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New directions in deep-learning approaches 

1 

Interspeech 2016 Tutorial 
Data-driven approaches to speech enhancement and separation 
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Generative 
model-based 

Conventional 
DNN ? 

Use problem domain 
knowledge  not so much  
Insight for improvement  difficult  
Easy Inference optimizing, 

please wait…   
Easy discriminative training bi-level 

optimization?    
Invariance to unseen noise 
and reverberation, array 
geometry, mic ordering 

 
 

tough, but 
maybe… 

 

 

Model-based vs Deep learning 

2 

Both very successful machine learning approaches 
They are polar opposites in some ways 
We want to have the advantages of both 
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Problem level vs. mechanism level 

3 

Problem level 

Mechanism 

Pattern matching 
DTW 

HMM 

EM 
Viterbi 

natural 

EM

natural 

context-dependent phonemes 
model adaptation 

covariance modeling 
dynamic Bayesian networks 

weighted finite state transducers 

missing-data ASR 

discriminative training 

model-based enhancement 

factorial  
HMM 

var EM 
2D Viterbi 
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Problem level vs. mechanism level 

4 

Problem level 

Mechanism 

Pattern matching 
DTW 

HMM 

EM 
Viterbi 

natural 

EM

natural 
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if 
po
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Much harder. 

Trial and error: randomness… 
in the research process! 

Deep networks 
might be here? 

factorial  
HMM 

var EM 
2D Viterbi 

now what?? 

? 

? 
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Deep Unfolding: DNNs from generative models 
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Is there a model whose inference algorithm is a DNN?  
Then we could explore model variations to get new DNNs 
 

All 
Possible 

NNs 
e

Combinations 
of existing 

NNs 

Existing 
neural 

networks 

Graphical 
models 

MRF 

Multichannel 
GMM 

RBM 

Feed-forward sigmoid 

Graph
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multichannel 

GMM 
NMF 
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NNs
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Deep Unfolding Recipe 

1.  Define model, train source models 
2.  Derive iterative inference algorithm 
3.  Unfold iterations into layers in a network 
4.  Discriminatively train the source parameters 
5.  Untie the parameters across layers 

 

6 

Iterative 
algorithm: 
For k=1:K, 
  Update 
    using  

and data

Iterative
algorithm:
For k=1:K,
Update

    using 
and data

Examples: 
NMF: 
GMM: 



5. New directions in deep-learning approaches Interspeech 2016 Tutorial 

Example: unfolding NMF 

7 

Based on simple approximations/assumptions: 
Sources add in power spectrum 
Sources represented as non-negative combination of non-
negative bases 

Issue with classical NMF separation: 
Speech/noise bases trained on isolated sources 
At test time, get activation on the mixture 

Deep unfolding of NMF  “Deep NMF” 
Unfolds inference algorithm from mixture to source estimates 
Removes mismatch between training and test 
Leads to radically different deep network architecture 

Mismatch! 
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iterate K times 

Infer activations 

Input mixture 

Looking back at discriminative NMF 

 

8 

Analysis 

Reconstruction 

Reconstruct 

output 

Infer activ
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Unfolding the NMF iterations

9 

Analysis 

Reconstruction 
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Untying the basis sets        for each 
layer naturally leads to deep network 
architecture 

Deep NMF 

10 

Activation coefficients       : hidden layers 
Each layer’s activation function       
performs a multiplicative update: 
 
 
Input mixture        used in all layers 
Output function          computes enhanced 
speech estimate 
Parameters          can be trained using 
(non-negative, multiplicative) back-prop 
to minimize 
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Results on CHiME-2 speech enhancement task 

11 

Significantly outperforms NMF
Promising results, but not yet as good as the best nets 

Top     layers 
discriminatively 
trained 

  

context frames 
bases/source 
unfolded iterations 
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Generative model: multichannel GMM 

12 

Multichannel GMM (MCGMM): 
probabilistic model of complex-valued multichannel STFT 

GMM source models 
Narrowband channel model 

Source 
STFTs 

Multinomial 
GMM source 
states 

Channel 
model 

Source 
STFTs 

Channel 
models 

Noisy multichannel  
STFT observations 

Graphical model Physical scenario 
CC
mm

Noisy 
multichannel  
STFT 
observations 

N
m
S

Multinomial,  
Z possible states 

Complex Gaussian 
w/ state-dependent 
variance 

Deterministic 
unknown parameter 
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Generative model: multichannel GMM 

13 

For k=1:K, estimate: 

Source GMM state probabilities 

Source means (complex STFTs) 

Channel model 

Iterative variational 
inference algorithm 

For k=1:K, estimate:

SSoouurrcceee mmeeaaannss ((ccoooommmpplleexx SSTTFFFTTss))

SSSSoouuuurrrccceee GGGGMMMMMMM ssstttaaaattteeee ppprrroooobbbbaabbbiillliiitttiiieeesss

CCChhaannnnneeell mmmoodddeeelll

Source 
STFTs 

Channel 
models 

Noisy multichannel  
STFT observations 

Physical scenario 
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Source 
STFTs 

Multinomial 
GMM source 
states 

Channel 
model 

Graphical model 
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Unfolding the multichannel GMM 

For k=1:K, estimate: 
Source state probabilities
Source means 
Channel model 

Source 
model 

Optimize  
 
to minimize 

Optimize 

to minimize

Error-to-source cost 

Graphical model 

Iterative inference 

One layer of unfolded network 

For k=1:K, estimate:
SSSooouuurrrccceee sssstttaaaatteeee pprrrooobbbbaaaabbbiilliiittiiieeesss
SSoouurrccee  mmmeeaannss
CCChhaannnnneeell mmmoooddeeelll

Discriminative training: 



Deep clustering:  
Cracking the general cocktail party problem 

15 
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Solving the general source separation problem 

16 

To solve the general source separation problem,  
we need a method meeting the following requirements:  

Single channel 
Speaker/class independent 
Discriminative 
Practical complexity 

Previous approaches are missing some 
Should be feasible: humans do it 
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Clustering Approaches to Separation 

17 

CASA approaches cluster based on 
hand-crafted similarity features 
 
 
 
 

 

Relative strengths of cues unknown 
Learning from data not straightforward
 

Spectral clustering approach 
eigen-decomposition  learning hard 
need context of sources to measure 
similarity between T-F bins 
context contains mixture of sources,  
so need to separate first  (catch-22) 

 

CASA system: Hu & Wang (2013) 

Spectral clustering:  Bach & Jordan (2006) 

time-freq. bins of different  
speakers have similar context  
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Permutation problem for classification approaches 

18 

… but what about speech + speech? 
 

Need to handle the permutation problem: 
 
 
 

Even then, not easy for the network to learn 

Classification approaches work for speech + noise,  
speech speeeeee

noise 

speech vs. 
noise labels 

permutations on  

-th reference ce -th estimate 
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Affinity-based training 

19 

How can we handle speech + speech? 

speaker 1 

speaker 2 

spea
Key: represent source attributes by D-dim. embeddings 

Classification approaches work for speech + noise  
speech 

noise 

speech vs. 
noise 
labels 

train network to map same-source bins close together 

D 
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Speech Enhancement / Separation Models 

20 

multiple 
BLSTM  
layers:  

input sequence: 
STFT frames 

output sequence: 
masks for each  
STFT bin 
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Embedding output

21 

multiple 
BLSTM  
layers:  

input sequence: 
STFT frames 

output sequence: 
embeddings for 
each STFT bin 
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Deep clustering objective function 

22 

embedding dimension 

input spectrogram: 
time-frequency bins: one-hot labels: ideal affinity matrix: 

network embeddings: estimated affinities 

objective: 
minimize error  
in affinities over 
training examples 
  

unit length  
constraint: 
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Mixture of two female speakers 

23 

Mixture 
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Mixture of two female speakers 

23 

Mixture CASA 

Speaker 1 

Estimate 1 



5. New directions in deep-learning approaches Interspeech 2016 Tutorial 

Mixture of two female speakers 

23 

Mixture CASA Deep Clustering 

Speaker 1 

Estimate 1 
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Mixture of two female speakers 
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Mixture CASA Deep Clustering 

Speaker 2 

Estimate 2 
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Mixture of two female speakers 
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Mixture CASA Deep Clustering 

Speaker 2 

Estimate 2 
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Mixture of three speakers 

24 

Mixture 
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Mixture of three speakers 

24 

Mixture 

Deep 
Clustering 
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Optimization for signal reconstruction 

25 

Deep clustering is key, but only first step
segment spectrogram into regions dominated by same source 
does not recover sources in regions dominated by other sources 

Use 2nd-stage enhancement network to improve estimates 
 
 
 
 
 
 
Permutation-independent objective 
 
 

dpcl 
 

300x4 
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Two-speaker deep clustering results 
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Mixture of two female speakers 
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Mixture 
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Mixture of two female speakers 
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Mixture Deep Clustering 

Speaker 1 

Estimate 1 
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Mixture of two female speakers 
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Mixture Deep Clustering End-to-end 

Speaker 1 

Estimate 1 
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Mixture of two female speakers 
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Mixture Deep Clustering End-to-end 

Speaker 2 

Estimate 2 
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Mixture of two female speakers 
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Mixture Deep Clustering End-to-end 

Speaker 2 

Estimate 2 
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ASR performance 

GMM-based clean-speech WSJ models (Kaldi recipe) 
Despite very good perceptual quality, raw deep clustering 
(dpcl) not good for ASR, most likely due to near-zero 
regions 
Enhancement network dramatically improves the results 

28 



5. New directions in deep-learning approaches Interspeech 2016 Tutorial 

References: 

29 

F. Weninger, J. Le Roux, J.R. Hershey, B. Schuller, “Discriminatively Trained 
Recurrent Neural Networks for Single-Channel Speech Separation,” GlobalSIP 
2014 
J.R. Hershey, J. Le Roux, F. Weninger, “Deep Unfolding: Model-Based 
Inspiration of Novel Deep Architectures,” arXiv:1409.2574, MERL Tech. Rep., 
TR2014-117, 2014 
J. Le Roux, J.R. Hershey, F. Weninger, “Deep NMF for Speech Separation,” 
ICASSP 2015 
H. Attias, “New EM algorithms for source separation and deconvolution with a 
microphone array,” ICASSP, 2003 
S. Wisdom, J.R. Hershey, J. Le Roux, S. Watanabe, “Deep Unfolding for 
Multichannel Source Separation,” ICASSP 2016 
 
J.R Hershey, Z. Chen, J. Le Roux, S. Watanabe, “Deep Clustering: 
Discriminative Embeddings for Segmentation and Separation,” ICASSP 2016 
K. Hu and D. Wang, “An unsupervised approach to cochannel speech 
separation,” IEEE TASLP, 2013 
F. Bach and M. Jordan, “Learning spectral clustering, with application to speech 
separation”, JMLR, 2006 
Y. Isik, J. Le Roux, Z. Chen, S. Watanabe, J.R. Hershey, “Single-Channel Multi-
Speaker Separation using Deep Clustering,” Interspeech 2016 



Wrap-up, perspectives

Speaker: Emmanuel Vincent



Learning-based separation: pros and cons

learning-free learning-based

addresses all scenarios

data collection effort

computation time, memory,
latency

separation performance
in matched conditions

to

separation performance
in mismatched conditions

to to
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Deep learning-based separation: pros and cons

generative
model based

deep learning
based

ease of derivation

interpretability to

separation performance
in matched conditions

separation performance
in mismatched conditions

to

computation time (test) to

latency
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What was missing in early neural networks?

Earlier uses of neural networks unsuccessful mainly because of

� smaller-sized networks,

� smaller training datasets,

� computational power severely behind current capabilities,

� deep learning tricks like dropout, maxout, ReLU, batch normalization,
unsupervised and supervised pretraining not invented yet.

But also

� time-domain or spectral domain prediction instead of mask prediction,

� LSTMs not widespread.

Wrap-up 4



Which pre-deep-learning concepts are we still using?

� Pre-processing:

� STFT or Mel spectra,
� 3D auditory motivated features,
� spatial features,
� localization and beamforming.

� Intermediate target: time-frequency mask.

� Post-processing:

� classical post-processing techniques: oversubtraction, thresholding,
smoothing. . .

� spatial filter derivation from source statistics (beamforming),
� masking and inverse STFT (overlap-add method).

For how long still?

Wrap-up 5



Single-channel phase modeling

Currently:

� model magnitude spectrum, interchannel phase,

� single-channel phase notoriously harder to model

Ideas to explore further:

� test magnitude STFT inversion methods (Griffin & Lim) with DNN,

� predict real and imaginary parts of complex mask,

� complex networks (with complex weights) used in deep unfolding but
really useful (restriction of twice larger real network)?

Perspectives 6



Progress in deep unfolding

Currently, several generative models already unfolded:

� deep NMF for single-channel enhancement,

� deep multichannel MRF-GMM model for multichannel separation,

� end-to-end deep clustering for single-channel speaker separation.

Ideas to explore further:

� key enabling technology for end-to-end processing: discriminative
training of iterative algorithms,

� strong potential in adaptation scenarios: balance between power of
discriminative training and regularization ability of a generative model
for better generalization.

Perspectives 7



Data simulation

Currently:

� most DNNs trained on simulated mixtures of speech and noise,

� training on real data feasible but approximate target (close-talk mic),

� real training data sometimes better than simulated, sometimes not.

Ideas to explore further:

� understand why simulated training data work or not,

� don’t just add speech and noise but explore perturbation of impulse
response, SNR, noise rate, vocal tract length, frequency axis. . .

� bystep the limitations of acoustic simulation techniques by teaching a
DNN how to simulate data.

Perspectives 8



Learning from mixtures only

Currently: high quality isolated source signals used

� to train a model of each source,

� or as targets for DNN training.

Not always feasible, e.g., new speaker or new noise unseen in isolation.

Ideas to explore further:

� are low quality source signals still useful?

� semi-supervised training from mixtures without knowledge of
underlying source signals.

Perspectives 9



Robustness to unseen, mismatched conditions

Currently: DNNs experimentally more robust than one would think.

CHiME-3 WER achieved by multichannel DNN+EM enhancement

Training Test (real)
(real) BUS CAF PED STR Avg.
BUS 21.03 13.06 17.92 9.28 15.32

1 training environment:
CAF 31.48 13.15 16.95 8.78 17.59

Multicondition: 14.28%
PED 27.89 12.20 17.04 8.93 16.51

Matched: 14.93%
STR 24.30 11.80 16.42 8.48 15.25

Mismatched: 16.58%
1/4 of all 20.83 11.65 15.94 8.72 14.28

all but BUS 22.62 10.72 15.47 7.55 14.09
all but CAF 18.90 10.59 16.07 7.53 13.27 3 training environments:
all but PED 18.56 10.76 14.93 8.09 13.08 Multicondition: 13.26%
all but STR 18.19 10.03 15.08 7.94 12.81 Mismatched: 14.02%
3/4 of all 18.84 10.98 15.41 7.79 13.26

Ideas to explore further:

� why are some training environments better than others?

� use DNN to model and steer separation towards valid source spectra.

Perspectives 10



System fusion

Currently: use

� one method,

� one set of parameters and hyper-parameters.

Ideas to explore further:

� combine the results of multiple methods, e.g., by using their outputs
as inputs to a “fusion” DNN

CHiME-2 SDR
9 NMFs with various dictionary size + 9 DNNs with various size and training cost

Method SDR (dB)

Best individual NMF 5.12
Fused NMFs 8.15
Best individual DNN 9.01
Fused DNNs 9.31
Fused NMFs and DNNs 9.50

� fuse the hidden layers too?

Perspectives 11



Applications to spoken communication

Currently:

� learning-based separation mostly used in offline scenarios,

� DNN footprint smaller but still large, lack of control on sound quality.

Ideas to explore further:

� explore the impact of various training costs on sound quality,

� explore classical post-processing techniques (oversubtraction,
thresholding, smoothing. . . ),

� borrow DNN footprint reduction techniques from other fields until it
becomes feasible in real time for, e.g., hearing aids!

Perspectives 12



Applications to human machine interfaces and
spoken documents

Currently:

� concatenate enhancement, feature extraction and recognition
networks:

� multi-task training with enhancement and recognition losses,
� joint training for noise-robust ASR using cross-entropy loss,

� use automatic speech recognition (ASR) to improve enhancement:

� explicitly use ASR state posteriors as auxiliary input for enhancement;
� iterate enhancement and recognition.

Ideas to explore further:

� integrate DNN based separation with other tasks: speaker ID, speaker
diarization, language ID, keyword spotting. . .

� apply it to other spoken documents: movies, radio, TV. . .

Perspectives 13



References

Single-channel phase modeling

D. S. Williamson, Y. Wang, and D. L. Wang, “Complex ratio masking for
monaural speech separation”, IEEE/ACM Transactions on Audio, Speech, and
Language Processing, 24(3):483–492, 2016.

A. M. Sarroff, V. Shepardson, and M. A. Casey, “Learning representations using
complex-valued nets”, arXiV 1511.06351, 2015.

Data simulation

E. Vincent, S. Watanabe, A. A. Nugraha, J. Barker, and R. Marxer, “An analysis
of environment, microphone and data simulation mismatches in robust speech
recognition”, Computer Speech and Language, to appear.

J. Chen, Y. Wang, and D. L. Wang, “Noise perturbation improves supervised
speech separation”, in Proc. LVA/ICA, pp. 83–90, 2015.

S. Sivasankaran, A. A. Nugraha, E. Vincent, J. A. Morales Cordovilla, S. Dalmia,
I. Illina, and A. Liutkus, “Robust ASR using neural network based speech
enhancement and feature simulation”, in Proc. ASRU, pp. 482–489, 2015.

References 14



References

Robustness to unseen, mismatched conditions

E. Vincent, S. Watanabe, A. A. Nugraha, J. Barker, and R. Marxer, “An analysis
of environment, microphone and data simulation mismatches in robust speech
recognition”, Computer Speech and Language, to appear.

E. M. Grais, M. U. Sen, and H. Erdogan, “Deep neural networks for single
channel source separation”, in Proc. ICASSP, pp. 3734–3738, 2014.

M. Kim and P. Smaragdis, “Adaptive denoising autoencoders: a fine-tuning
scheme to learn from test mixtures”, in Proc. LVA/ICA, pp. 100–107, 2015.

System fusion

J. Le Roux, S. Watanabe, and J. R. Hershey, “Ensemble learning for speech
enhancement”, in Proc. WASPAA, pp. 1–4, 2013.

X. Jaureguiberry, E. Vincent, and G. Richard, “Fusion methods for speech
enhancement and audio source separation”, IEEE/ACM Transactions on Audio,
Speech, and Language Processing, 24(7):1266–1279, 2016.

References 15


	Title Page
	page 2

	/projects/www/html/publications/docs/TR2016-113.pdf
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26
	page 27
	page 28
	page 29
	page 30
	page 31
	page 32
	page 33
	page 34
	page 35
	page 36
	page 37
	page 38
	page 39
	page 40
	page 41
	page 42
	page 43
	page 44
	page 45
	page 46
	page 47
	page 48
	page 49
	page 50
	page 51
	page 52
	page 53
	page 54
	page 55
	page 56
	page 57
	page 58
	page 59
	page 60
	page 61
	page 62
	page 63
	page 64
	page 65
	page 66
	page 67
	page 68
	page 69
	page 70
	page 71
	page 72
	page 73
	page 74
	page 75
	page 76
	page 77
	page 78
	page 79
	page 80
	page 81
	page 82
	page 83
	page 84
	page 85
	page 86
	page 87
	page 88
	page 89
	page 90
	page 91
	page 92
	page 93
	page 94
	page 95
	page 96
	page 97
	page 98
	page 99
	page 100
	page 101
	page 102
	page 103
	page 104
	page 105
	page 106
	page 107
	page 108
	page 109
	page 110
	page 111
	page 112
	page 113
	page 114
	page 115
	page 116
	page 117
	page 118
	page 119
	page 120
	page 121
	page 122
	page 123
	page 124
	page 125
	page 126
	page 127
	page 128
	page 129
	page 130
	page 131
	page 132
	page 133
	page 134
	page 135
	page 136
	page 137
	page 138
	page 139
	page 140
	page 141
	page 142
	page 143
	page 144
	page 145
	page 146
	page 147
	page 148
	page 149
	page 150
	page 151
	page 152
	page 153
	page 154
	page 155
	page 156
	page 157
	page 158
	page 159
	page 160
	page 161
	page 162
	page 163
	page 164
	page 165
	page 166
	page 167
	page 168
	page 169
	page 170
	page 171
	page 172
	page 173
	page 174
	page 175
	page 176
	page 177
	page 178
	page 179
	page 180
	page 181
	page 182
	page 183
	page 184
	page 185
	page 186
	page 187
	page 188
	page 189
	page 190
	page 191
	page 192
	page 193
	page 194
	page 195
	page 196
	page 197
	page 198
	page 199
	page 200
	page 201
	page 202
	page 203
	page 204
	page 205
	page 206
	page 207
	page 208
	page 209
	page 210
	page 211
	page 212
	page 213
	page 214
	page 215
	page 216
	page 217
	page 218


