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Abstract
Total variation (TV) is one of the most popular regularizers in the context of ill-posed image
reconstruction problems. Due to its particular structure, minimization of a TV-regularized
function with a fast iterative shrinkage/thresholding algorithm (FISTA) requires additional
sub-iterations, which may lead to a prohibitively slow reconstruction when dealing with very
large scale imaging problems. In this work, we introduce a novel variant of FISTA for isotropic
TV that circumvents the need for subiterations. Specifically, our algorithm replaces the exact
TV proximal with a componentwise thresholding of the image gradient in a way that ensures
the convergence of the algorithm to the true TV solution with arbitrarily high precision.
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Abstract— Total variation (TV) is one of the most popular regu-
larizers in the context of ill-posed image reconstruction problems.
Due to its particular structure, minimization of a TV-regularized
function with a fast iterative shrinkage/thresholding algorithm
(FISTA) requires additional sub-iterations, which may lead to a
prohibitively slow reconstruction when dealing with very large
scale imaging problems. In this work, we introduce a novel vari-
ant of FISTA for isotropic TV that circumvents the need for sub-
iterations. Specifically, our algorithm replaces the exact TV proxi-
mal with a componentwise thresholding of the image gradient in a
way that ensures the convergence of the algorithm to the true TV
solution with arbitrarily high precision.

1 Introduction
Consider a linear inverse problem y = Hx+ e, where the goal
is to computationally reconstruct an unknown, vectorized im-
age x ∈ RN from the noisy measurements y ∈ RM given the
known matrix H ∈ RM×N . The matrix H models the response
of the acquisition device, while the unknown vector e ∈ RM
represents the measurement noise. Practical inverse problems
are typically ill-posed and the standard approach to reconstruct
the image often relies on the regularized least-squares estimator

x̂ = argmin
x∈RN

{C(x)} (1a)

= argmin
x∈RN

{
1

2
‖y −Hx‖2`2 +R(x)

}
, (1b)

where R is a regularizer promoting solutions with desirable
properties such as positivity or transform-domain sparsity.

One of the most popular regularizers for images is the
isotropic total-variation (TV)

R(x) , λ

N∑
n=1

‖[Dx]n‖`2 = λ

N∑
n=1

√√√√ D∑
d=1

([Ddx]n)2, (2)

where λ > 0 is a parameter controlling the amount of the reg-
ularization, D is the number of dimensions of the signal, and
D : RN → RN×D is the discrete gradient operator that com-
putes finite differences along each dimension of the signal. The
TV penalty has been originally introduced by Rudin et al. [1]
as regularization approach capable of removing noise, while
preserving image edges. It is often interpreted as a sparsity-
promoting `1-penalty on the magnitudes of the image gradient.
TV regularization has proved to be successful in a wide range
of applications in the context of sparse recovery of images from
incomplete or corrupted measurements [2–6].

The minimization problem (1) with the TV regularizer (2) is
a non-trivial optimization task. Two challenging aspects are the

non-smooth nature of the regularization term and the large size
of typical vectors that need to be processed. The large-scale na-
ture of the problem makes the direct, non-iterative reconstruc-
tion computationally unfeasible; it also restricts the iterative
algorithms to the so-called first-order methods that perform re-
construction by successive applications of H and HT. On the
other hand, non-smoothness of the regularization term compli-
cates direct application of the gradient methods. Accordingly,
proximal minimization methods [7] such as iterative shrink-
age/thresholding algorithm (ISTA) [8–10] and its accelerated
variants [11, 12] are the standard first-order approaches to cir-
cumvent the non-smoothness of TV and are among the methods
of choice for solving large-scale linear inverse problems.

For the general minimization problem (1), both standard and
fast ISTA (often called FISTA) can be expressed as

xt ← proxγR(s
t−1 − γHT(Hst−1 − y)) (3a)

st ← xt + ((1− qt−1)/qt)(xt − xt−1) (3b)

with q0 = 1 and x0 = s0 = xinit ∈ RN . Here, γ > 0 a
step-size that can be set to γ = 1/L with L , λmax(H

TH) to
ensure convergence and {qt}t∈[0,1,2,... ] are relaxation param-
eters [13]. For a fixed qt = 1, the guaranteed global rate of
convergence of (3) is O(1/t), however, an appropriate choice
of {qt}t∈[1,2,... ] leads to a faster O(1/t2) convergence, which
is crucial for larger scale problems, where one tries to reduce
the amount of matrix-vector products with H and HT. Itera-
tion (3) combines the gradient-descent step with respect to the
quadratic data fidelity term with a proximal operator

proxγR(z) , argmin
x∈RN

{
1

2
‖x− z‖2`2 + γR(x)

}
. (4)

While application of ISTA is straightforward for regulariz-
ers such as `1-penalty that admit closed form proximal opera-
tors, many other popular regularizers including TV do not have
closed form proximals. This results in the need for an addi-
tional iterative algorithm for solving the corresponding mini-
mization problem (4), which adds a significant computational
overhead to the reconstruction process. For example, the origi-
nal TV-FISTA by Beck and Teboulle [4] relies on an additional
fast proximal-gradient algorithm for evaluating the TV proxi-
mal, which leads to sub-iterations.

In the rest of this manuscript, we describe a new variant
of FISTA for solving TV regularized reconstruction problems.
The algorithm builds on the traditional TV-FISTA in [4], but
avoids sub-iterations by exploiting a specific approximation of
the proximal as a sequence of simpler proximals. Theoret-
ical analysis of the proposed method shows that it achieves
the true TV solution with arbitrarily high precision at a global
convergence rate of O(1/t2). This makes the proposed algo-
rithm ideal for solving very large-scale reconstruction prob-
lems, where sub-iterations are undesirable.



2 Main Results
We consider the following iteration

xt ←WTT
(
W(st−1 − γHT(Hst−1 − y)); 2γλ

√
D
)

st ← xt + ((1− qt−1)/qt)(xt − xt−1). (5)

Here, the linear transform W : RN → RN×D×2 consists of
two sub-operators: the averaging operator A : RN → RN×D
and the discrete gradient D as in (2), both normalized by
1/(2
√
D). Thus, W is a union of scaled and shifted discrete

Haar wavelet and scaling functions along each dimension [14].
Since the transform can be interpreted as a union of K = 2D,
scaled, orthogonal transforms, it satisfies WTW = I; how-
ever, note that WWT 6= I due to redundancy [15]. The non-
linear function

T (z; τ) , max(‖z‖`2 − τ, 0)
z

‖z‖`2
, (6)

with z ∈ RD, is a componenent-wise shrinkage function that
is applied to each scaled difference [Ds]n ∈ RD, with n ∈
[1, . . . , N ]. The algorithm (5) is closely related to a technique
called cycle spinning [16] that is commonly used for impoving
the performance of wavelet-domain denoising. In particular,
when H = I, γ = 1, and qt = 1, the algorithm yields the direct
solution

x̂←WTT (Wy; 2λ
√
D), (7)

which can be interpreted as the isotropic version of the tradi-
tional cycle spinning algorithm restricted to the Haar wavelet-
transforms. Additionally, (5) is an extension of the parallel
proximal algorithm in [17] to the isotropic TV implemented
with FISTA.

To establish convergence of the method (5), one remarks the
following equivalence (see also the relevant discussion in [18])

min
x∈RN

{
1

2
‖y −Hx‖2`2 + λ

N∑
n=1

‖[Dx]n‖`2

}

= min
u∈RKN

{
1

2
‖y −HWTu‖2`2 +R1(u) +R2(u)

}
, (8)

where the regularizers are defined as

R1(u) , 2λ
√
D

N∑
n=1

‖[udif]n‖`2 andR2(u) , 1U (u). (9)

Here, udif denotes difference coefficients of u = Wx, and 1U
is the indicator function for the set

U , {u ∈ RKN : u = WWTu}. (10)

Thus, the algorithm (5) can be interpreted as a simple incre-
mental proximal-gradient algorithm [19] that approximates the
proximal of R in (2) with the successive evaluation of two
proximals of R1 and R2 in (9). Then, by assuming that
the gradient of the data-term and subgradients of R1 and R2

are bounded for every iterate, one can establish the following
proposition.

Proposition 1. Denote with x∗ the solution of (1) with the TV
regularizer (2). Then, for an appropriate choice of {qt}t, the
iterates generated by the proposed method in (5) satisfies(
C(xt)− C(x∗)

)
≤ 2

γ(t+ 1)2
‖x0 − x∗‖2`2 + γG2, (11)

where G > 0 is a fixed constant proportional to the bound on
the gradients.
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Figure 1: Recovery of the Shepp-Logan phantom from blurry and noisy mea-
surements. Top: We plot the relative gap (C(xt)− C(x∗))/C(x∗) against the
iteration number for 3 distinct step-sizes γ. Bottom: Visual illustration of the
final results. The figure illustrates the convergence of the proposed method to
the minimizer of the TV cost functional. Even for γ = 1/L the solution of the
proposed method is visually and quantitatively close to the true TV result.

Note that appropriate choice of {qt}t∈[1,2,... ], simply refers
to the choice of relaxation parameters used in the standard
FISTA. The proof of the proposition can be established by ex-
tending the original proof of FISTA in [12] to sums of proxi-
mals as was done, for example, in [17] and [20].

Proposition 1 states that for a constant step-size, convergence
can be established to a neighborhood of the optimum, which
can be made arbitrarily close to 0 by letting γ → 0. Addition-
ally, the global convergence rate of the method equals that of
the original TV-FISTA.

In Fig. 1, we illustrate the results of a simple image de-
blurring problem, where a 3 × 3 Gaussian blur of variance
2 was applied to the Shepp-Logan phantom. The blurry im-
age was further contaminated with additive white Gaussian
noise (AWGN) of 35 dB SNR. We plot the per-iteration gap
(C(xt) − C(x∗))/C(x∗), where xt is computed with the pro-
posed algorithm and x∗ is the actual TV result. The reg-
ularization parameter λ was manually selected for the opti-
mal SNR performance of TV. We compare 3 different step-
sizes γ = 1/L, γ = 1/(4L), and γ = 1/(16L), where
L = λmax(H

TH) is the Lipschitz constant. The figure illus-
trates that the theoretical results in Proposition 1 hold in prac-
tice, and that even for γ = 1/L the solution of the proposed
method is very close to the true TV result, both qualitatively
and quantitatively. For this experiment, it takes about 4 times
less time (in seconds) to compute the TV solution with the pro-
posed method compared to the standard TV-FISTA.

To conclude, we proposed to use the method summarized in
eq. (5) as a fast alternative to the original TV-FISTA. The time
gains of the method come from the fact that it has O(1/t2)
global rate of convergence and that it uses a closed form proxi-
mal instead of solving an inner minimization problem.
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