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case study.

Symposium on Nonlinear Control Systems

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in
whole or in part without payment of fee is granted for nonprofit educational and research purposes provided that all
such whole or partial copies include the following: a notice that such copying is by permission of Mitsubishi Electric
Research Laboratories, Inc.; an acknowledgment of the authors and individual contributions to the work; and all
applicable portions of the copyright notice. Copying, reproduction, or republishing for any other purpose shall require
a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All rights reserved.

Copyright c© Mitsubishi Electric Research Laboratories, Inc., 2016
201 Broadway, Cambridge, Massachusetts 02139





Robust Soft-Landing Control with

Quantized Input

Claus Danielson ∗ Stefano Di Cairano ∗

∗Mitsubishi Electric Research Laboratories, Cambridge MA

Abstract: We propose a controller architecture for soft-landing control with quantized input.
The objective of the soft-landing problem is to achieve precise positioning of a moving object
at a target position, while ensuring the velocity decreases as the target is approached. In this
paper, we formulate the soft-landing problem as a constrained control problem. Our approach
combines traditional convex model predictive control with a rounding rule that quantizes the
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1. INTRODUCTION

Many control applications in the automotive, aerospace,
manufacturing, and transportation fields require the pre-
cise positioning of a moving object at a desired location
while ensuring the the velocity of the object decreases as
the target is approached. The resulting soft-landing (also
called soft-contact) avoids damage and reduces wear. One
example of soft-landing is the control of valves in camless
engines, which requires the high-speed closing of a valve
in its seating while avoiding rough impacts that reduce
component operating life (see Hoffmann et al. (2003)). An-
other example is docking of spacecraft which requires the
docking spacecraft to make soft-contact to avoid the space-
craft ricocheting or suffering damage (see Weiss et al.
(2012)). Soft-landing is also important for rider comfort
during the automatic stopping of vehicles (see Bu and Tan
(2007)).

The soft-landing problem can be formulated as a con-
strained control problem where constraints are placed on
the object velocity relative to its position so that the object
slows as it approaches the target position. Hence the soft-
landing problem can be solved using constrained control
techniques. An early approach to the soft-landing problem
was based on reference governors (see Kolmanovsky and
Gilbert (2001)). This approach can guarantee constraint
satisfaction but has limited performance since reference
governors can only manipulate the reference of a linearly
pre-compensated system. More recently, model predictive
control (MPC) has been used to solve the soft-landing
problem (see Di Cairano et al. (2014)). In Di Cairano et al.
(2007) soft-landing MPC was applied to soft-landing for
valves in camless engines. In Di Cairano et al. (2012) and
Weiss et al. (2012) soft-landing MPC was applied to soft-
landing for space-craft docking.

In this paper, we consider the soft-landing problem when
the input is restricted to a finite set. Model predictive
control has been applied to system with finite input in the

literature. Aguilera and Quevedo (2011) studied the sta-
bilization of systems with a finite number of inputs using
model predictive control. Corona et al. (2006) focused on
the optimality of model predictive control for finite input
system. In the soft-landing problem, our main concern
is with guaranteeing constraint satisfaction rather than
optimality or stability. Picasso et al. (2002) presented a
method for computing control invariant sets for linear sys-
tems with finite input. For numerical simplicity, we adopt
the rounding rule approach from Kirches (2011). Our
approach combines a convex model predictive controller
which guarantees robust state constraint satisfaction and
a rounding rule that ensures the input lies in the finite set.
Our rounding rule is designed using Voronoi partitions.
This approach has been previously used in Bullo and
Liberzon (2006). The convex MPC and rounding rule are
designed jointly to ensure robust constraint satisfaction.

This paper is organized as follows. In Section 2 we formally
define the dynamics, constraints, and control objectives
for the soft-landing problem. In Section 3 we describe
our control algorithm for solving the soft-landing problem.
We pay particular attention to the issue of ensuring our
controller is robust to model uncertainty and rounding
errors. In Section 4 we demonstrate our control algorithm
on a transportation system case study.

2. SOFT-LANDING PROBLEM

In this section we define the dynamics, constraints, and
control objectives of the soft-landing problem.

2.1 Soft-Landing Dynamics

We consider an inertial object moving in a one-dimensional
space described by the dynamics

ẋm(t) =

[
0 1

0 − b
m

]
︸ ︷︷ ︸

Ām

xm(t) +

[
0
1
m

]
︸︷︷︸
B̄m

qf (t) (1)



where the state xm(t) = [y(t), ẏ(t)]T ∈ R2 of the systems is
the position y(t) and velocity ẏ(t) of the inertial object, m
is the mass of the object, b is the viscous friction coefficient,
and qf (t) ∈ R1 is the controlled force on the object.

The controlled force qf (t) is the output of a linear filter
that captures the dynamics of the actuator. The filter is
described by the state-space model

ẋq(t) = Āqxq(t) + B̄qq(t) (2a)

qf (t) = C̄qxq(t) + D̄qq(t) (2b)

where xq ∈ Rnq is the state of the input filter and q(t) ∈
Rm is the input command. The soft-landing problem
assumes specific dynamics and constraints for the inertial
subsystem, but the input dynamics can be arbitrary and
are unconstrained. The soft-landing problem can also
include a disturbance force d. In addition the controlled
input force qf (t) can depend on the state xm(t) of the
inertia systems. However, for simplicity, we do not consider
these cases in this paper.

The state of the composite system x(t) = [xm(t), xq(t)] is
the state of the inertial system xm(t) and input filter xq(t).
In discrete-time, the dynamics of the composite system are
modeled by[

xm(k + 1)
xq(k + 1)

]
=

[
Âm B̂mĈq

0 Âq

]
︸ ︷︷ ︸

A

[
xm(k)
xq(k)

]
+

[
B̂mD̂q

B̂q

]
︸ ︷︷ ︸

B

q(k) (3)

where (Âm, B̂m) and (Âq, B̂q, Ĉq, D̂q) are the discrete-
time transformations of (Ām, B̄m) and (Āq, B̄q, C̄q, D̄q)
respectively. We use the short-hand x(k) = x(tk) and
q(k) = q(tk) to denote the state and input, respectively, at
time tk = t0+k∆t where k ∈ N and ∆t is the discrete-time
sample period.

2.2 Soft-Landing Constraints

In this section we describe the state and input constraints
for the soft-landing problem. The state constraints only
apply to the state xm(t) of the inertial system.

The objective of the soft-landing problem is to bring the
inertial object to a stop in a neighborhood of the origin,
called the target set

T =

{[
xm,1
xm,2

]
:
xmin ≤ xm,1 ≤ xmax

xm,2 = 0

}
⊆ R2

where xmin < 0 < xmax are the maximum deviations of
the position xm,1 from the origin. We only require that
the state xm(t) reaches the target set, not that it remains
in the target set. This is motivated by several practical
applications in which, upon entering the target set, the
dynamics change in such a way to keep the state in the
target set. For instance static friction is used to hold
valves in their seating, clamps are used hold spacecraft
in place during docking, and parking brakes are used to
keep elevators at floor level.

We do not want the state xm(k) of the inertial systems
to approach the target set T with a velocity that is too
fast or too slow. Therefore we introduce the “soft-landing”
cone constraint to control the approach velocity

S =

{[
xm,1
xm,2

]
:
xm,2 + γmax(xm,1 − xmax) ≤ 0
xm,2 + γmin(xm,1 − xmin) ≥ 0

}
(4)

where γmax, γmin ∈ R+ with γmin < γmax are spatial de-
celeration coefficients. This constraint bounds the velocity
xm,2(k) = ẏ(tk) of the inertial system as a function of
position xm,1(k) = y(tk) to ensures the velocity decreases
smoothly as the inertial system approaches the target
set T ⊆ R2. The state constraint set is given by the
unbounded polytope

X = S × Rnq ⊂ Rn (5)

where n = 2 + nq is the dimension of the composite
system (3). In the soft-landing problem there are no
constraints on the state of the input xq ∈ Rnq filter.

The nonlinearity of this problem is due to the quantization
of the input q(k) which is drawn from a finite set Q ⊂ Rm
where |Q| <∞. We assume that the convex-hull conv(Q)
of the input set Q contains the origin in its interior
0 ∈ conv(Q).

2.3 Soft-Landing Objectives

The objective of the soft-landing problem is to generate an
input trajectory that drives the inertial object to the target
set while satisfying state constraints. The soft-landing
problem is formally stated below.

Problem 1. (Soft-landing). Select a feasible input trajec-
tory q(k) ∈ Q for k ∈ N such that the state trajectory
x(k) = [xm(k), xq(k)]T resulting from the dynamics (3)
satisfies the state constraints x(k) ∈ X for all k ∈ N and
converges x(k) → T to the target set T i.e. there exists
f ∈ N such that x(f) ∈ T .

If the final time f =∞ is infinite, then we mean that the
state asymptotically converges the target set xm(k)→ T .

In Di Cairano et al. (2014) it was shown that a feasible
state trajectory x(k) ∈ X that satisfies the dynamics (3)
will necessarily converge to the target set. Thus Problem 1
can be solved by simply finding a feasible input trajectory
q(k) ∈ Q that produces a persistently feasible state
trajectory x(k) ∈ X . In Di Cairano et al. (2014), Problem 1
was solved using convex model predictive control with
a robust control invariant set that guaranteed persistent
feasibility. In this paper we extend this result to the case
where the input is quantized.

3. SOFT-LANDING CONTROL DESIGN

In this section we describe our controller for solving the
Soft-Landing Problem 1. Our controller consists of two
parts connected in series: a convex model predictive con-
troller and a rounding rule. The convex model predictive
controller is used to ensure robust state constraint satis-
faction. The rounding rule is used to ensure satisfaction of
the input constraint. The rounding rule will be described
in Section 3.2 and the model predictive controller will be
described in Section 3.3.

3.1 Model Uncertainty

The mass m and the viscous friction coefficient b of
the inertial system are uncertain and thus the matrices
Ām and B̄m are uncertain. In addition, the dynamics
matrices (Āq, B̄q, C̄q, D̄q) of the input dynamics (2) may



be uncertain. Therefore the dynamics matrices A and B
of the composite system (3) are uncertain.

The parametric uncertainty of the composite system (3) is
modeled by the polytopic linear parameter varying system

x(k + 1) = A(ξ)x(k) +B(ξ)q(k) (6)

where Ai and Bi for i ∈ I are a finite collection |I| <∞ of
extreme dynamics whose convex-hulls A(ξ) =

∑
i∈I ξiAi

and B(ξ) =
∑
i∈I ξiBi cover all possible realizations of

the actual system dynamics (A,B), and ξ ∈ Ξ = {ξ : ξ ≥
0,
∑
i∈I ξi = 1} is an unknown time-varying parameter

vector.

3.2 Rounding Rule

In this section we describe the rounding rule we use to
ensure the control input q(k) lies inside the finite set Q.

The convex model predictive controller will relax the non-
convex constraint q ∈ Q. It will compute control inputs
u ∈ U in a set U ⊇ conv(Q) containing the convex-hull
conv(Q) of the finite-set Q. A rounding rule q : U → Q
is used to map the requested input u ∈ U to a feasible
quantized input q = q(u) ∈ Q. We propose a rounding
rule of the form

q(u) = argmin
q∈Q

‖u− q‖2W (7)

where the weighting matrix W ∈ Rm×m is a design
parameter use to ameliorate the effects of rounding the
requested input u ∈ U . The offline design of the weighting
matrix W will be discussed later in this section.

The difference between the requested control input u ∈ U
and the implemented control input q(u) ∈ Q is treated as
a disturbance on the system

w = u− q(u). (8)

We will bound the set of possible rounding errors (8) using
Voronoi cells. The Voronoi cell of a point q ∈ Q in a finite
set Q is the set of points u ∈ U ⊇ conv(Q) closer to q ∈ Q
than any other point p ∈ Q in the set Q
V(q,Q) =

{
u ∈ U : ‖u− q‖2W ≤ ‖u− p‖2W , ∀p ∈ Q

}
.

The Voronoi cell V(q,Q) ⊆ Rm is a polytope. If the
rounding rule (7) chooses the quantized input q ∈ Q for
u ∈ U , then the rounding error (8) must lie in the shifted
Voronoi cell V(q,Q)− q ⊆ Rm. Thus the set of all possible
rounding errors is the union

⋃
q∈Q V(q,Q) − q ⊆ Rm of

shifted Voronoi cells V(q,Q)−q. This set is generally non-
convex, hence we will outer-bound it by its convex-hull

W = conv
{
V(q,Q)− q : q ∈ Q

}
. (9)

We can conservatively assume that all rounding errors (8)
produced by the rounding rule (7) will lie in the polytopic
set (9). In the next section, we will use standard robust
model predictive control techniques to design a controller
that is robust to rounding errors w ∈ W in the set (9).
Thus we can guarantee constraint satisfaction despite the
quantization of the input.

Next we discuss how we choose the weighting matrix W ∈
Rm×m to shape the set (9) of possible rounding errors.
The rounding rule (7) chooses the quantized input q(u)
that minimizes the quantity wTWw where w = u− q(u).
Thus we would like to choose the matrix W ∈ Rm×m so

that if the quantity wTWw is small, then the effect of the
rounding error w = u− q(u) on the system is small.

For a given polytopic input set U ⊇ conv(Q), we compute
the ideal weighting matrix W offline by solving a series of
semi-definite programs

maximize log detW−1 (10a)

subject to

[
(1−α)P−1 ∗ ∗

AiP
−1+BiFP

−1 P−1 ∗
0 W−1BT

i αW−1

]
� 0 (10b)[

P−1 ∗
HT

x,i K
2
x,i

]
� 0 for i = 1, . . . , cX (10c)[

P−1 ∗
HT

u,iFP
−1 K2

u,i

]
� 0 for i = 1, . . . , cU (10d)

where (Hx,i,Kx,i), and (Hu,i,Ku,i) are the half-space pa-
rameters that define the state and relaxed input constraint
sets respectively

X =
{
x ∈ Rn : HT

x,ix ≤ Kx,i for i = 1, . . . , cX
}

U =
{
u ∈ Rm : HT

u,ix ≤ Ku,i for i = 1, . . . , cU
}
.

Problem (10) finds the largest ellipsoidal set of rounding
errors

E(W ?) =
{
w ∈ Rm : wTW ?w ≤ 1

}
⊆ Rm

such that the uncertain system (6), for all realizations of
the dynamics ξ ∈ Ξ, has an ellipsoidal positive invariant
set

E(P ?) =
{
x ∈ Rn : xTP ?x ≤ 1

}
⊆ Rn

under a linear controller of the form u = F ?x that satisfies
the state constraints E(P ?) ⊆ X and the relaxed input
constraints F ?E(P ?) ⊆ U . This is proven in Theorem 1
below. Since E(W ?) is the largest set of rounding errors
that the uncertain system (6) can reject using linear
control without violating state or input constraints, the
effects of the errors in the set E(W ?) must be relatively
small. We can formalize this intuition using the Minkowski
function of the set E(W ?) to measure the size of the
rounding error w

ΦE(W?)(w) = min
{
λ ≥ 0 : w ∈ λE(W ?)

}
= ‖w‖2W?

The rounding rule (7) chooses the quantized input q ∈
Q that minimizes the rounding error in terms of the
Minkowski function of the set E(W ?).

Theorem 1. Let W ? ∈ Rm×m, P ? ∈ Rn×n, and F ? ∈
Rm×n be the optimal solution of problem (10). Then
E(W ?) is the largest ellipsoidal disturbance set such that
the system (6) for all realizations of the dynamics ξ ∈ Ξ
has a positive invariant set E(P ?) under a linear controller
u = F ?x that satisfies state E(P ?) ⊆ X and input
F ?E(P ?) ⊆ conv(U) constraints.

An immediate corollary of Theorem 1 is that if the
rounding error set (9) is contained W ⊆ E(W ?) in the
ellipsoid E(W ?) then the set E(P ?) is positive invariant
under model uncertainty and rounding errors.

Corollary 2. Suppose the rounding error set (9) is con-
tained W ⊆ E(W ?) in the ellipsoid E(W ?) where W ?, P ?,
and F ? is the solution to problem (10). Then the set E(P ?)
is positive invariant for the system (6) in closed-loop with
the linear controller u = F ?x.

Corollary 2 means that it is possible to satisfy constraints
despite model uncertainty and rounding errors. Thus it



is possible to solve the soft-landing problem with an
uncertain model and a finite set of inputs Q.

The matrix inequalities in problem (10) are linear in the
decision variables X = P−1, Y = W−1, and Z = FP−1.
Thus, for a fixed α ∈ [0, 1], problem (10) is a semi-definite
program. Therefore we can find the the solution W ? � 0
by performing a line-search on the scalar parameter α and
solving a series of convex semi-definite programs.

The solution of problem (10) depends on the choice of
the relaxed input set U ⊇ conv(Q). We would like the
input set U to be large to produce a less conservative
positive invariant set E(P ?). However a larger input set
U will produce a larger set of rounding errors W. We
use Algorithm 1 as a heuristic for determining the relaxed
input set U . Algorithm 1 initially choses the relaxed input
set U0 = conv(Q). During each iteration, Algorithm 1 finds
the corresponding error set Wk by solving problem (10)
and using the weighting matrix W ?

k to determine the
rounding error set (9). We note that the non-convex input

set Ûk+1 = Q ⊕ Wk produces the same errors set (9)
as the input set Uk. Algorithm 1 updates the input set
Uk+1 = conv(Q ⊕ Wk) by taking the convex relaxation
of the set Q ⊕ Wk. Algorithm 1 terminates when the
rounding error set Wk is too large Wk 6⊆ E(W ?) for a
linear controller u = F ?k x to reject without violating state
or input constraints.

Algorithm 1 Computation of relaxed input set U
U0 = conv(Q)
repeat

Compute W ?
k by solving problem (10) for U = Uk.

Compute the error set Wk using (9)
Update input set Uk+1 = conv(Q⊕Wk)

until Wk 6⊆ E(W ?
k )

U = Uk

3.3 Soft-landing Model Predictive Controller

In this section we describe the model predictive controller
used for the soft-landing problem.

During each sample period, the controller executes the
following steps online:

(1) Measure (or estimate) the current state x(k) =
[xm(k), xq(k)]T of the composite system (3).

(2) Solve the following finite time optimal control prob-
lem

minimize
v0,...,vN−1

xTNPxN +

N−1∑
k=0

xTkQxk + uTkRuk (11a)

subject to xk+1 = A(ξ̂)xk +B(ξ̂)uk (11b)

xk ∈ X , uk ∈ U (11c)

(x0, u0) ∈ Cx,u (11d)

where xk is the predicted state trajectory starting
from the initial state x0 = x(k) under the control
input uk over the horizon N . The nominal dynam-

ics (11b) use an estimate ξ̂ ∈ Ξ of the unknown
parameter ξ ∈ Ξ which is constant over the prediction
horizon.

(3) Apply the rounding rule (7) to obtain a feasible input
q(u?0) ∈ Q.

Next we discuss the offline design of the constraint set
Cx,u ⊆ Rn×Rm used in the constrained finite-time optimal
control problem (11).

To guarantee persistent constraint satisfaction, the model
predictive controller will restrict the state x = [xm, xq]

T

of the uncertain system (6) to a control invariant subset
C ⊆ X of the state-space X . The control invariant set C
must be robust to model uncertainty and rounding errors.
Robust control invariant sets are defined below.

Definition 3. A set C ⊆ X is a robust control invariant
set if for all x ∈ C there exists a control input q ∈ Q
such that A(ξ)x + B(ξ)q ∈ C for all realizations of the
dynamics ξ ∈ Ξ. A set C∞ ⊆ X is the maximal robust
control invariant set if it contains C∞ ⊇ C all other robust
control invariant sets C ⊆ X .

Computation of a robust control invariant set uses the
predecessor operator

Pre(Ω) =
{
x ∈ Rn : ∃u ∈ U s.t. Aix+Biu−Biw ∈ Ω,

for all i ∈ I and w ∈ W
}
. (12)

The predecessor operator (12) computes the set of states
x ∈ Pre(Ω) that can be mapped into the set Ω for all
rounding errors w ∈ W and extreme dynamics (Ai, Bi) for
i ∈ I.

Algorithm 2 Computation of robust control invariant set

Ω0 = X
repeat

Ωk+1 = Pre(Ωk) ∩ Ωk
until Ωk+1 = Ωk
C = Ωk

A robust control invariant set is computed using Algo-
rithm 2. We refer the reader to Blanchini and Miani (2007)
for details about Algorithm 2. The following proposition
shows that the set C produced by Algorithm 2 is a robust
control invariant set for the system (6) with quantized
input q ∈ Q.

Proposition 4. The set C ⊆ X produced by Algorithm 2 is
a robust control invariant set for the uncertain system (6)
subject to state constraints x ∈ X and quantized input
constraints q ∈ Q.

Remark 1. The set C produced by Algorithm 2 is a robust
control invariant set, but not necessarily the maximal
robust control invariant set since the rounding error set (9)
is a conservative over-approximation of the actual non-
convex set of rounding errors. The maximal robust control
invariant set for the uncertain system (6) with finite input
q ∈ Q will, in general, be non-convex. Finding the maximal
robust control invariant set for this problem is computa-
tionally difficult since it requires computing an exponential
union of polytopes. In addition for a non-convex control
invariant set, the constrained finite-time optimal control
problem (11) is difficult to solve online since it is a non-
convex problem. Instead, we compute a convex inner-
approximation of the maximal robust control invariant set
using Algorithm 2. A convex inner-approximation is easier
to compute offline and makes the resulting constrained
finite-time optimal control problem easier to solve online.

We define the admissible set Cx,u ⊆ Rn × Rm as the set
of state x ∈ Rn and input u ∈ Rm pairs such that the



successive state A(ξ)x+B(ξ)u−B(ξ)w is inside the control
invariant set C for all rounding errors w ∈ W and all
realizations ξ ∈ Ξ of the dynamics

Cx,u =
{

(x, u) : A(ξ)x+B(ξ)u−B(ξ)w ∈ C (13)

for all ξ ∈ Ξ and w ∈ W
}
.

By convexity the admissible set (13) is equivalent to the
set

Cx,u =
{

(x, u) : Aix+Biu−Biw ∈ C
for all i ∈ I and w ∈ W

}
.

The model predictive controller requires (11d) that the
initial state x0 and input u0 lie in the admissible set
Cx,u. This ensures persistent feasibility of optimal control
problem (11). Since the invariant set C is robust to model
uncertainty and rounding errors, the model predictive
controller and rounding rule will satisfy constraints. As
shown in Di Cairano et al. (2014), persistent constraint
satisfaction implies that the controller solves the soft-
landing problem (Problem 1).

Our model predictive controller tacitly assumes that the
uncertain system (6) subject to rounding errors (8) has a
robust control invariant set. The existence of such a set is
guaranteed by the conditionW ⊆ E(W ?) in Corollary 2. If
this condition is not satisfied then it may not be possible
to solve the soft-landing problem with this finite input set
Q.

If Algorithm 2 converges after a finite number of iterations,
then the robust control invariant set C ⊆ X will be a
polytope C = {x ∈ Rn : HCx ≤ KC}. Likewise the
admissible set Cx,u will be polytope

Cx,u =
{

(x, u) : HCAix+HCBiu ≤ KC ,∀i ∈ I
}

since the set of extreme systems I is finite |I| <∞. Thus
the constrained finite-time optimal control problem (11)
can be posed as a quadratic program. Our controller
can be implemented on modest hardware since it only
requires solving a quadratic program and evaluating a
simple rounding rule (7) online.

4. CASE-STUDY IN TRANSPORTATION SYSTEMS

In this section we apply our soft-landing controller to
the problem of stopping a large automated transportation
vehicle moving along a fixed track.

The transportation vehicle has dynamics of the form (1).
The mass m and viscous friction coefficient b are uncertain,
but lie in the intervals [m,m] and [b, b] respectively. The
targets set is the set of positions xm,1 within 2 meters of
the origin

T =

{[
xm,1
xm,2

]
:
−2 ≤ xm,1 ≤ 2

xm,2 = 0

}
.

The vehicle has two actuators: a pneumatic actuator with
high control authority but slow dynamics and an electric
actuator with fast dynamics but low control authority.
The controlled input q = [qe, qa]T is the force from both
actuators whose dynamics are modeled by a low-pass filter

ẋq(t) = − 1
τa
xq(t) +

[
1
τa
, 0
] [ qe(t)

qa(t)

]
(14a)

qf (t) = kaxq(t) + [0, ke]
[
qe(t)
qa(t)

]
(14b)

where qe and qa are the commands to the electric and
pneumatic actuators respectively, τa and ka are, respec-
tively, the time-constant and gain of the pneumatic ac-
tuator, and ke is the gain of the electric actuator. The
actuator gains ka and ka are uncertain but lie in the
intervals ka ∈

[
ka, ka

]
and ke ∈

[
ke, ke

]
respectively.

(a) Rounding Rule (b) Naive Rounding Rule

(c) Rounding Error Set

Fig. 1. (a) Rounding rule used by the controller. (b)
Naive rounding rule which rounds control input to
the nearest discrete value. Circles are the elements of
the finite input set Q and polytopes are the Voronoi
cells V(q,Q) of the inputs q ∈ Q. (c) Ellipsoidal error
set E(W ) enclosing the rounding error sets V(q,Q)−q
and their convex-hullW = conv{V(q,Q)−q : q ∈ Q}.

The electric actuator has three settings: full-throttle qe =
1, idle qe = 0, and braking qe = −1. The pneumatic
actuator has five settings: full-throttle qa = 1, half-throttle
qa = 0.5, idle qa = 0, half-braking qa = −0.5, and full-
braking qe = −1. Thus the input q ∈ Q is restricted to the
|Q| = 15 element set

Q =
{
− 1, 0, 1

}
×
{
− 1,−0.5, 0, 0.5, 1

}
.

Figure 1(a) shows the rounding rule (7) where relaxed
input set U and weighting matrix W ? were obtained using
Algorithm 1. The circles correspond to the |Q| = 15
elements of the finite input set Q and the surrounding
polytopes are the Voronoi cells V(q,Q) for each discrete
input q ∈ Q. The rounding rule will chose the quantized
input q ∈ Q if the relaxed input u ∈ U produced by the
model predictive controller lies in its Voronoi cell V(q,Q).

Figure 1(c) shows the rounding errors produced by the
rounding rule in Figure 1(a). Figure 1(c) shows the
ellipsoidal set E(W ?) produced by solving problem (10).
Inside this ellipsoid are the shifted Voronoi cells V(q,Q)−q
for each discrete input q ∈ Q. The rounding error setW =
conv{V(q,Q)− q : q ∈ Q} is the convex-hull of the shifted
Voronoi cells V(q,Q) − q. By Corollary 2, it is possible
to solve the soft-landing problem with this rounding rule
since the set of rounding errors W is contained W ⊆
E(W ?) in the ellipsoidal set E(W ?). Thus it is possible to
compute a robust control invariant set C for this problem.
The robust control invariant set C is shown in Figure 2.



(a) Trajectories using rounding rule

(b) Trajectories using naive rounding rule

Fig. 2. Closed-loop position versus velocity of the trans-
portation vehicle plotted on top of the projected state
constraint set X and the projected maximal robust
control invariant set C.

The transportation vehicle was simulated in closed-loop
with our model predictive controller and rounding rule. We
used two difference tunings of the cost function (11a) in the
model predictive controller; one that maximizes approach
velocity and one that minimizes approach velocity. The
simulation results are plotted in Figure 2 which shows the
vehicle velocity versus position. In addition Figure 2 shows
the projection of the state constraint set X ⊆ R3 and
maximal robust control invariant set C ⊆ R3.

In each simulation trial, the model predictive controller
uses the same nominal model of the dynamics, but the
parameters of the actual dynamics of the transportation
vehicle and input filter are randomly generated from the
set possible parameters. Despite the model mismatch and
input rounding, the controller was able to keep the state
of the vehicle inside the state constraints as shown in
Figure 2(a). Figure 2(b) shows the closed-loop trajectories
when we use the naive rounding rule, shown in Figure 1(b),
which chooses the quantized input q ∈ Q closest to the
requested input u ∈ U

q(u) = argmin
q∈Q

‖u− q‖2I = argmin
q∈Q

(u− q)T (u− q).

In this rule the identity matrix is the weighting matrix
W = I. For every trajectory simulated using this rounding
rule, the closed-loop trajectory violated the constraints.

Figure 3 shows the input trajectories versus time for one
simulation trial. The requested u ∈ U and implemented
q ∈ Q inputs are often very different. The implemented
input qa(u) ∈ Q for the pneumatic actuator roughly tracks
the requested input ua ∈ U from the model predictive
controller. However the implemented input qe(u) ∈ Q
for the electric actuator is often very different from the
requested value ue ∈ U . In fact, the implement input
qe for the electric actuator often has a different sign
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Fig. 3. An example of the requested input and imple-
mented input for the pneumatic and electric actua-
tors.

the requested input ue depending on the requested input
ua to the pneumatic actuator. Despite the fact that
the requested and implemented control inputs are very
different in terms of Euclidean distance and sign, the
resulting rounding errors are relatively easy for the system
to reject without violating constraints.
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