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Regularized Covariance Matrix Estimation with High Dimensional Data

for Supervised Anomaly Detection Problems

Daniel Nikovski, Member, IEEE, and Kiran Byadarhaly

Abstract—We address the problem of estimating high-
dimensional covariance matrices (CM) for the explicit purpose
of supervised anomaly detection, in the case when the number
n of data points is lower than their dimensionality p. This
is increasingly common with the emergence of the Internet
of Things that makes it possible to collect data from many
sensors simultaneously, resulting in very high-dimensional data
points. When we attempt to perform anomaly detection for
such data by modeling the normal behavior of the system by
means of a multivariate Gaussian distribution, and n < p, the
sample CM is singular, and cannot be used directly without
some form of regularization. In contrast to existing methods for
CM regularization that aim to fit the training data accurately,
we propose a regularization algorithm for CM estimation that
directly aims to maximize the area under the resulting receiver-
operator characteristic (AUROC) for the ultimate decision prob-
lem that needs to be solved: anomaly detection. Experiments on
test problems demonstrate the ability of the proposed algorithm
to find CM estimates significantly better at anomaly detection
than existing estimation methods that are unaware of the decision
task that the CMs they produce will be used in.

I. INTRODUCTION

Anomaly detection is one of the main classes of problems
addressed by data mining methods. One popular general ap-
proach of such methods is to characterize the normal behavior
of the system or process under observation by means of a
model learned from a collected data set of examples of normal
behavior. Once such a model has been created, new data points
are continuously tested against the model to decide whether
they are likely to conform to it, or not; if not, an alert for a
possible anomaly is raised.

For many problems, a parametric model of normal behavior
is appropriate, and one of the most popular parametric models
is the multivariate Gaussian model N(µ,Σ) with mean µ and
CM Σ. For example, when the operating point of a process or
device is intended to be fixed, but there are multiple (possibly
correlated) disturbances and/or measurement errors, by virtue
of the central limit theorem, the vector of observations of
that operating point is likely to be a random multivariate
Gaussian variable. The probability density function (pdf) of
a multivariate Gaussian distribution in p dimensions is given
by

f (x; µ,Σ) =
1

(2π)
p
2 |Σ|

1
2

exp
(
−1

2
(x−µ)T

Σ
−1(x−µ)

)
(I.1)
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Here x is a p-variate Gaussian random variable, µ ∈ Rp

is the mean of the Gaussian distribution, and Σ ∈ Rp×p is
the non-negative definite CM of the Gaussian distribution.
Frequently, for a given multivariate Gaussian model N(µ,Σ)
and a test point x, the density f (x; µ,Σ) at that point is used as
an anomaly score: if that density is below a given threshold,
an anomaly is signaled.

Clearly, if the density f (x; µ,Σ) is to be evaluated, the
CM Σ must be invertible. However, in many data-driven
anomaly detection problems, this is not necessarily always
the case. In such problems, a data set X = {x1,x2,x3, . . . ,xn}
with n samples has usually been collected, and Σ must be
estimated from X . The maximum likelihood (ML) estimator
of Σ, also known as the sample covariance matrix ΣS, is
ΣS =

1
n−1 ∑

n
i=1 (xi−µS)(xi−µS)

T , where µS =
1
n ∑

n
i=1 xi is the

sample mean. In high-dimensional problems, when the number
of dimensions p exceeds the number of samples n, the sample
CM ΣS will be singular, and hence non-invertible; its direct use
for anomaly detection by means of the multivariate Gaussian
density would thus be impossible.

In this paper, we address the problem of estimating the
CM Σ from a data set X in the regime n < p, specifically
for the purpose of anomaly detection. The regime n < p
is becoming increasingly important in practical applications,
with the advent of the Internet of Things, itself facilitated
by increasingly affordable sensing, communication, and in-
formation technologies. Modern machines and entire systems
are increasingly equipped with multiple sensors that produce
one or more senor readings, aggregated into a joint high-
dimensional vector x that describes the state of the entire
system. In many cases, it is desirable to produce reasonable
and usable model estimates from relatively few collected data
samples, in comparison to the dimensionality of the data
vector; this is when estimation in the regime n < p is often
necessary.

Due to the high practical significance of this regime, a lot of
research has been focused on it in the statistical and machine
learning communities. A number of advanced methods, such
as Hoffbeck and Ledoit-Wolf regularization, as well as banding
and tapering algorithms, have been proposed, and are briefly
reviewed in Section II. The main commonality between these
methods is that they approach the problem as a data fitting,
machine learning problem, whereas the problem of anomaly
detection is essentially a decision problem. The objective of
these methods is to optimize a loss function that describes how
well the estimated CM fits the data set X , while still providing
a well-behaved, non-singular matrix. For example, Hoffbeck



regularization maximizes the log-likelihood of the data set
X , and Ledoit-Wolf regularization minimizes the Frobenius
norm of the difference between the estimated and true CMs.
Although these approaches have good statistical merits as
regards the accuracy of fitting the data set X , that accuracy
is not the ultimate goal of anomaly detection algorithms —
instead, the ultimate goal is high accuracy of the decision
problem, namely anomaly detection. That accuracy is typically
measured by different loss functions, for example the area
under receiver operator characteristic (ROC) curves. In Section
III, we propose a novel algorithm that directly optimizes such
a loss function for the purposes of anomaly detection, and in
Section IV, we investigate its performance on test problems,
and compare it to that of methods that are concerned with
optimizing purely data fitting measures.

II. CM ESTIMATION METHODS IN THE REGIME n < p

For high-dimensional data, unless the number of samples
is much larger than the number of dimensions, for example,
n > 10p, an accurate estimation of the covariance matrix is
not likely. In such cases, one of the simplest approaches is to
use the diagonal CM Σd in place of the full CM. Although
it can typically be estimated from very few samples, its use
would completely ignore the cross correlations between pairs
of individual variables, and is not likely to result in high
accuracy when 2� n < p [1].

A much more successful approach to CM estimation when
n < p is to regularize the singular sample CM by blending
it with another positive definite matrix of full rank. These
methods are also known as shrinkage methods. Given the
singular sample CM ΣS estimated from insufficient data, the
regularized covariance ΣR is given by

ΣR = (1−α)ΣS +αΣF (II.1)

Here α is the shrinkage parameter, and ΣF is a chosen full
rank matrix; the original low-rank sample CM is essentially
“shrunk” to that matrix, hence the name of this class of
methods. The full-rank CM can either be Σd , or the identity
matrix Ip scaled by the trace σ of the full sample CM,
or any other suitable full-rank matrix. Depending on the
type of that matrix, and the method used to determine the
shrinkage parameter α , several methods have been proposed,
as described below.

A. Hoffbeck Regularization

An effective regularization method for covariance matrix es-
timation proposed by Hoffbeck et al. [2],[3] uses leave-one-out
cross-validation (LOOCV) on a training set and maximizes the
likelihood of data left out in a computationally efficient way.
In this method, the estimated low rank covariance matrix ΣS is
shrunk towards the diagonal covariance matrix Σd . In LOOCV,
each training sample is omitted in turn, then the sample CM
is estimated from the remaining samples, after which the log-
likelihood of the omitted sample is computed with respect
to the estimated mean and the regularized covariance of the
remaining data, for a given choice of regularization parameter

α . The log-likelihood of omitted samples is averaged over the
entire data set, and the value of α with the highest average
log-likelihood is selected. The final regularized covariance is
the combination of the full and diagonal covariances estimated
over the entire training set.

B. Ledoit-Wolf Regularization

Ledoit and Wolf [4] proposed a method for the estimation of
covariance matrices in which they compute a well-conditioned
structured estimator and then shrink the sample covariance
to that structured estimator. The well-conditioned structured
estimator used is the identity matrix scaled by the trace of the
original sample covariance matrix. The optimal combination of
the sample covariance and the structured estimator is obtained
by minimizing the Frobenius norm of the difference between
the regularized and true CM.

The main difficulty in obtaining accurate covariance esti-
mation in the Ledoit-Wolf method is that the optimal combi-
nation of the sample covariance and the structured estimator
depends on the true covariance matrix which is not known.
To resolve this problem, the authors proposed a consistent
estimator of the parameters involved in the computation of the
optimal shrinkage parameter, and proved that substituting these
consistent estimators for the true parameters does not make
any difference asymptotically. The problem of minimizing the
Frobenius norm of the difference between the true covariance
and the estimated regularized covariance can be written as the
following quadratic programming problem under an equality
constraint:

minimize
α

E[‖ ΣR−Σ ‖2]

subject to ΣR = (1−α)ΣS +ασ I

(II.2)

Here Σ is the true covariance, and σ is the trace of the
sample covariance matrix ΣS. The optimal solution to the
above problem can be obtained analytically as α∗ = β 2/δ 2,
where δ 2 = E[‖ΣS−ρI‖2], ρ = 〈Σ, I〉, and β 2 = E[‖ΣS−Σ‖2].
Clearly, these quantities cannot be computed directly with-
out prior knowledge of the true CM Σ, but they can be
replaced with their readily computable consistent estimators
d2 =‖ ΣS− rI ‖2, r = 〈ΣS, I〉, and b2 = min(b̄2,d2), where
b̄2 = 1

n2 ∑
n
k=1 ‖ xk(xk)

t −ΣS ‖. When these consistent estimators
are replaced in the expression for the regularization parameter
α , its optimal value for the Ledoit-Wolf method is obtained
as αLW = b2/d2. In general, this value will be different from
that obtained by Hoffbeck’s method.

C. Band-Diagonal Covariance

Another method proposed by Bickel and Levina uses a
banded version of the sample covariance matrix [1]. They
show that by banding the covariance matrix, they can get
consistent and non-singular estimates of the CM under the
l1 norm. For a given full sample covariance matrix ΣS with
individual entries σi j, and a band limit k, 0 ≤ k < p , its
banded matrix Σk = Bk(ΣS) is given by Σk

.
= [σi j1(i− j ≤ k)],

where 1(·) denotes the indicator function that is equal to 1



when its argument is true. The most important parameter here
is the choice of the banding parameter k. Ideally, it would
be chosen such that the norm of the difference between the
banded covariance matrix and the true covariance matrix Σ

is as small as possible; however, again, the true covariance
matrix is not available. Instead, the authors proposed to
divide the data set into two parts, producing two sample
covariance matrices ΣS1 and ΣS2 . If we define a risk variable
RB(k)

.
= ‖Bk(ΣS1)−ΣS2‖(1,1) , we choose the optimal band

width k∗ such that k∗ = argmin
k

RB(k). The matrix norm used

is the l1 matrix norm.

D. Band-Tapering Covariance

A tapering procedure for the estimation of the covariance
matrix was proposed by Cai, Zhang, and Zhou [5]. For a given
integer k with 1≤ k≤ p, a tapering estimator of the covariance
matrix is defined as the weighted modification ΣT = Tk,λ (ΣS)=
(wi jσi j)p×p of the entries σi j of the sample covariance matrix
ΣS, with weights given by

wi j =


1, when |i− j| ≤ kh

2− |i− j|
kh

, when kh < |i− j|< k

0, otherwise

(II.3)

Here, kh = k/2. The authors have chosen an optimal trade-
off value for k = n

1
2λ+1 for which they find upper and lower

bounds. The value of the parameter λ must be chosen so as
to minimize the norm between the tapering covariance matrix
and the true covariance matrix. Similarly to the banded case,
a risk RT (λ )

.
= ‖T k,λ (ΣS1)−ΣS2‖(1,1) is defined for a split

of the data set, and the optimal parameter λ ∗ is chosen as
λ ∗ = argmin

λ

RT (λ ).

III. REGULARIZED CM ESTIMATION FOR ANOMALY
DETECTION

All methods described in the previous section aim to op-
timize the fit of the regularized CM to the data. In contrast,
we are considering the problem of estimating useful regular-
ized CMs for the decision problem of supervised anomaly
detection, which calls for a different optimization criterion
that is specific to the nature of the decision problem. One
popular definition of anomaly detection is that it is the process
of identifying data points that do not conform to a notion
of expected normal behavior. The most important aspect of
anomaly detection is thus to accurately quantify the notion of
normal behavior. The training data that is used to learn the
anomaly detection model must strongly reinforce the concept
of normal behavior so that the model is trained well enough to
identify anomalies in data that it has not seen before. One of
the ways it can be done is if the training data has explicit labels
that indicate if each point is an anomaly or not. These labels
must be provided by the experts who have seen the data and
know what exactly constitutes an anomalous behavior [6], [7],
[8]. In many cases, such data is available from maintenance
records of industrial machinery or systems.

The methods described in the previous section are often
successful in producing non-singular CM estimates that fit
a particular data set X well. In principle, when such CMs
are used within a decision problem, such as classification,
regression, etc., the estimated CMs can be used directly in the
predictive model. For example, for a two-class classification
problem, where the two classes have multivariate Gaussian
distributions with different means, but share the same CM, the
optimal classifier can be shown to be a Linear Discriminant
Analysis (LDA) classifier; similarly, when the CMs for the
two classes are different, the optimal classifier is a Quadratic
Discriminant Analysis (QDA) classifier [9]. For a large number
of classification problems, this kind of symmetric assumption
— that both classes are characterized by multivariate Gaussian
distributions — is largely reasonable. The decision surfaces for
these classifiers would be hyperplanes (for LDA) or quadratic
surfaces (for QDA).

However, for the problem of supervised anomaly detection,
the statistical characteristics of normal and abnormal data
points are typically very different. As argued in the beginning,
when normal behavior corresponds to a fixed operating point
of a system or a device that is disturbed by random measure-
ment or process noise, it is often reasonable to assume that data
corresponding to normal behavior comes from a multivariate
Gaussian distribution. Conversely, this assumption is typically
not reasonable for the abnormal data. Because abnormal is
defined as anything that is not normal, it is not likely that
abnormal data points would cluster around a specific value;
rather, they are more likely to be scattered around the entire
operating domain. So, when examples of abnormal operation
are available, estimating a CM from such data would not
make sense, because their distribution is not Gaussian; it could
instead be uniform, multi-modal, etc. In this case, the optimal
decision surface is likely to be a hypersphere corresponding
to an isocontour of the probability (for example, at the 1%
probability level) given by the Gaussian distribution of the
normal class. Clearly, this decision surface is very different
from those of the LDA and QDA classifiers.

As mentioned, supervised anomaly detection can be viewed
as a classification problem, and any number of supervised
learning algorithms can be used to solve it, for example
decision trees, support vector machines (SVM), multi-layer
neural networks, etc. In the case of a multi-layer neural
networks, one or more hidden layers with a large number of
neurons may be needed to learn decision surfaces for high
dimensional nonlinearly separated data of the type described
above. Similarly, SVMs with standard kernels would likely
find it quite difficult to separate this type of data in high dimen-
sions without a large number of samples. Given sufficient data,
these algorithms should be able to learn a decision surface
close to the optimal. However, they would not make use of
the knowledge that at least the normal class has a multivariate
Gaussian distribution.

Another alternative approach is to ignore the abnormal
data altogether, and treat the anomaly detection problem as
unsupervised, by fitting a regularized CM only for the normal



class. Although this approach should be able to produce a
good anomaly detector in the asymptotic case, when a lot
of data is available, its performance is likely to suffer in the
n < p regime, where the CM will be regularized with the only
purpose of fitting the normal data, unaware of how well the
resulting anomaly detector detects abnormal data points.

Below, we propose a method that makes full use of the para-
metric Gaussian form of the normal class, while also using the
available abnormal data points to increase accuracy of anomaly
detection. Its main idea is to find the optimal regularization
parameter α while performing cross-validation on a hold-
out set specifically for the target decision problem, anomaly
detection. The objective function to be optimized in this
process is not one of the usual data-fitting loss functions for
other shrinkage algorithms, but the Area Under the Receiver
Operator Characteristic (AUROC) that is commonly used in
detection problems. Because AUROC is not differentiable with
respect to the regularization α , we use a related approximating
function.

In order to compute the ROC curve of an anomaly detector,
a suitable anomaly score si is computed for every data point
xi by means of the learned predictive model. Some suitable
scores are the estimated probability density f (xi; µS,ΣR) of the
normal class evaluated at the data point xi, or the generalized
Mahalanobis distance si = (xi − µS)

T Σ
−1
R (xi − µS) from the

point xi to the sample mean µS of the normal class. The
AUROC can then be calculated using the Wilcox-Mann-
Whitney (WMW) U statistic, which for a given labeled data
set is given by [10]

U =
n+−1

∑
i=0

n−−1

∑
j=0

I(s+i ,s
−
j ) (III.1)

Here s+i is the score of the ith data point in the abnormal class
(+), and s−j is the score of the jth data point in the normal
class (−), n+ is the number of examples of abnormal behavior,
and n− is the number of examples of normal behavior. The
function I(s+i ,s

−
j ) is given by

I(s+i ,s
−
j ) =

{
1, i f s+i > s−j
0, otherwise

(III.2)

The true AUROC can then be computed as J0 =
U

n+n− .
The analytic form of the AUROC, calculated using the

WMW U statistic, is not differentiable and cannot easily be
used as an objective function for an optimization problem.
However, the ordering test I(s+i ,s

−
j ) can be approximated by

a sigmoid function [11]:

H(s+i ,s
−
j ) =

1

1+ e−θ(s+i −s−j )
(III.3)

Here θ is a smoothing parameter for the sigmoid. A small
value of the smoothing parameter θ softens the function
I(s+i ,s

−
j ) too much, whereas a large value of θ , although

approximating I(s+i ,s
−
j ) closely, would lead to numerical

problems during optimization due to steep gradients.
The approximated AUROC can then be written as

J =
∑

n+
i=1 ∑

n−
j=1 H(s+i ,s

−
j )

n+n−
(III.4)

The objective function (approximated AUROC) can be
rewritten as a function of the regularization parameter α by
expressing the normal and anomaly scores in terms of the
generalized Mahalanobis distance form, as shown below:

J(α) =
∑

n+
i=1 ∑

n−
j=1 H[(x+i −µS)

T Σ
−1
R (x+i −µS),(x−j −µS)

T Σ
−1
R (x−j −µS)]

n+n−

=
∑

n+
i=1 ∑

n−
j=1 H{(x+i −µS)

T [(1−α)ΣS +αΣd ]
−1(x+i −µS),(x−j −µS)

T [(1−α)ΣS +αΣd ]
−1(x−j −µS)}

n+n−

=
1

n+n−
∑

n+
i=1 ∑

n−
j=1 1

(1+ e−{θ [(x
+
i −µS)T [(1−α)ΣS+αΣd ]

−1(x+i −µS)−(x−j −µS)T [(1−α)ΣS+αΣd ]
−1(x−j −µS)]})

(III.5)

αA = argmax
α

J(α) (III.6)

5J(α) =
∑

n+
i=1 ∑

n−
j=1 H(s+i − s−j )(1−H(s+i − s−j ))θ [(x

+
i −µS)

T [Σ−1
R [ΣS−Σd ]Σ

−1
R ](x+i −µS)− (x−j −µS)

T [Σ−1
R [ΣS−Σd ]Σ

−1
R ](x−j −µS)

n+n−
(III.7)

The optimal value αA of the regularization parameter given by
equation III.6 can be found by gradient ascent optimization.
The gradient of the objective function with respect to the

regularization factor is given by Equation III.7. We will refer
to this method of finding the optimal value of α as the Area
Under ROC curve REGularization (AUROCREG) algorithm.



IV. EMPIRICAL EVALUATION

A. Evaluation on Synthetic Data

We compared the performance of various covariance esti-
mation methods listed in the previous sections by using them
in anomaly detection tasks on both synthetic and real test data.
The multivariate Gaussian model for anomaly detection with
the different estimated covariances were also compared with
a kernel SVM classifier with a radial basis function kernel, as
well as with a multilayer neural network (MLP) with a single
hidden layer implementing the anomaly detection task as a
supervised binary classification task.

Synthetic datasets containing normal and anomalous data
were generated for dimensions p ∈ {20,50,100}. A total of
10,000 data samples (5,000 normal and 5,000 abnormal) were
generated in each dataset. In each of these datasets, the normal
data points were drawn from a multivariate Gaussian distribu-
tion with a chosen mean and covariance matrix, whereas the
anomalous data points were drawn from a uniform distribution
in a certain range such that it surrounds the normal data. The
covariance of normal data was chosen as a random positive
definite matrix. The mean of the normal data was chosen as
µ = 0, a p-dimensional vector of zeros.

The data generated was split into training, cross-validation,
and testing sets. The number of samples in the training data set
n (which is made up of only normal samples), was varied, and
CMs were estimated from that data set according to each tested
method. Such a training data set, made up of only normal
samples for the multivariate Gaussian model, corresponds to
a situation where a relatively small amount of data samples
are acquired from a tested system during its normal operation.
For the AUROCREG method, the cross-validation data set was
used to find the optimal value of the regularization parameter
α . The estimated covariances were then used for anomaly
detection on the test data set, as described above.

The cross-validation and the test data set were made up of
equal number of normal and abnormal samples. The training
and cross-validation data points were chosen randomly from
the first half of the normal and abnormal data (5,000 samples),
such that when the training data consisted of n normal samples,
the corresponding cross-validation set consisted of n normal
and n abnormal data points. The training data for the SVM
and the multilayer perceptron neural network was made up
of n/2 normal and n/2 abnormal data points from the first
half of the normal and abnormal data (5,000 samples). The
test data was chosen randomly from the second half of the
normal and abnormal data (also 5,000 samples), and always
had the same size: 250 normal and 250 abnormal data points,
for the sake of accurate evaluation of the resulting AUROC
for anomaly detection. This process was repeated for r trials,
and the resulting AUROC curves were computed from the
aggregated anomaly scores over all r trials.

The first set of results examine the cost function that is
being maximized to find the optimal regularization parameter
α in the AUROCREG method. Figs. 1 through 3 show the
dependency of the AUROC on the regularization parameter

α for anomaly detection over the cross validation data sets,
averaged over r = 10 trials. Here regularization was performed
towards the identity matrix multiplied by the trace σ of the
sample CM, such that the AUROCREG estimate ΣA was
obtained as ΣA = (1−α)ΣS +ασ I. It is evident that AUROC
values depend strongly on α , and finding the optimal value
makes a big difference in the anomaly detection task. It is
also evident that the amount of training data (n) strongly
affects performance, as expected. The optimal value of α could
vary significantly, depending on n, p, and their relationship. In
addition, it can be seen that there is relatively little difference
between the true AUROC computed by the WMW statistic
(shown in solid lines), and its differentiable approximation
(shown in dotted lines of the same color for the same re-
spective n). Another favorable observation is that all of these
curves appear to have a single global maximum, so most non-
linear optimization algorithms should have little difficulty in
finding it quickly, if supplied with the gradient of the objective
function.
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Fig. 1. Comparison between the WMW objective function and its differ-
entiable approximation for p = 20 and varying values of n. The curves
corresponding to the non-differentiable WMW U statistic are shown as solid
lines and those corresponding to the approximate function are shown as dotted
lines.

Figs. 4 through 6 show the performance on anomaly de-
tection of multiple CM estimation algorithms (as measured
by the resulting AUROC on the independent testing data set)
vs. the number of available training data samples n. It can
be seen that for the regime n < p, the AUROC achieved by
the proposed algorithm AUROCREG is always at least as
good, and sometimes substantially better, than that of any
other regularization method tested . Only for n = 6 case, does
some other method(s) outperform the AUROCREG algorithm,
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Fig. 3. Comparison between the WMW objective function and its differ-
entiable approximation for p = 100 and varying values of n. The curves
corresponding to the non-differentiable WMW U statistic are shown as solid
lines and those corresponding to the approximate function are shown as dotted
lines.

but for all others in the n < p regime, the AUROCREG
algorithm is consistently the best choice. For the n≥ p regime,
the AUROCREG algorithm clearly outperforms all other co-
variance estimation methods, as well as the two supervised
classification methods (SVM and MLP). The band diagonal
method slightly outperforms the AUROCREG method when
n = p, but is unable to match its performance for n > p. This
further reinforces the expectation that when the conditions are
satisfied (the normal data has a Gaussian distribution), there
is no better method than the multivariate Gaussian model to
detect anomalies.

In these graphs, the dotted line represents the AUROC
that would be achieved by the anomaly detection algorithm
if it had full knowledge of the true Gaussian distribution
from which the normal data samples were drawn, and thus
represents the upper limit on the accuracy that any learning
algorithm can achieve. It can be seen that the AUROCREG
algorithm indeed approaches that accuracy in the regime n> p,
whereas many other CM estimation algorithms fail to do
that. The most important conclusion from these figures is
that by optimizing directly for the performance in the task at
hand (anomaly detection) rather than for data fitting measures
such as log-likelihood of the training data (Hoffbeck method)
or deviation from the true covariance (Ledoit-Wolf method),
the performance of the anomaly detector can be increased
substantially.
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Fig. 4. Performance on anomaly detection vs. number of training data samples
for p = 20.

B. Evaluation on Real Data

We next tested the described methods on an anomaly
detection task involving vehicle silhouettes, using available
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Fig. 5. Performance on anomaly detection vs. number of training data samples
for p = 50
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Fig. 6. Performance on anomaly detection vs. number of training data samples
for p = 100.

data described in [12]. The purpose of this data set is to
distinguish 3D objects within a 2D image based on a vector of
shape features extracted from the silhouettes, of dimensionality
p = 18. Four different model vehicles were used for the
experiment, with the expectation that they would be readily
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Fig. 7. Variation of the AUROC vs. the number of training data samples for
the vehicle silhouette data. The number of dimensions of the data points is
p = 18.

distinguishable based on their feature vectors. The entire data
set consists of 946 total image silhouettes for four model
vehicles. In order to use this data set for anomaly detection,
one of these four classes was chosen as the normal class, and
the other three were merged to form the abnormal data. Note
that while it might be reasonable to expect that the normal
class can be modeled by a multivariate Gaussian distribution,
the same assumption cannot be made for the abnormal data,
because it will have at least three distinct modes. Fig. 7 shows
a comparison between the accuracy of the described methods
for this anomaly detection task. Clearly, the AUROCREG
method dominates all other methods, in all regimes with the
n = 16 and n = 20 cases being an exception in which the
Hoffbeck method outperforms the AUROCREG method by a
slight margin, and its performance matches that of the full
sample covariance matrix ΣS when n� p, as expected; for
that regime, AUROCREG essentially uses ΣS, by concluding
that the optimal regularization parameter is α = 0.

The described methods were also tested on a social me-
dia dataset provided by the AMG group at the Laboratoire
d’Informatique de Grenoble [13]. This dataset contains data
from two social networking sites, namely twitter and tom’s
hardware. In twitter data, there is no direct audience estimator,
and they used the nad feature as the target feature and showed
higher reactivity of exchanges than tom’s hardware. There
are French and German contributions in twitter data. In this
study, they focused on a set of 6671 topics, such as: over-
clocking; grafikkarten; disque dur; android; etc. related to the
technology domain. For the classification/anomaly detection
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Fig. 8. Variation of the AUROC vs. the number of training data samples for
the twitter data. The number of dimensions of the data points is p = 77.

task, they provided time windows with an upward trend in the
number of tweets about a topic, and the task was to determine
whether or not these time windows are followed by buzz
events. The labeling and the upward change detection were
done considering a univariate time-series. They also used a
threshold value =̧500 to determine if a topic qualifies as a buzz
or not. The data points that generated buzz were considered
to be anomalous points, and those that didn’t were considered
to be normal.

Fig. 8 shows a comparison between the accuracy of the
described methods for the anomaly detection task involving
the social network data. The result shows that a number of
methods, including AUROCREG, perform very well on the
test data. Notable is the relatively poor performance of the
supervised learning methods, SVM and MLP, which can be
explained with the relatively high dimensionality of the feature
space.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed a novel method for learning
a well-behaved, non-singular estimate of the covariance matrix
of a multivariate Gaussian distribution from limited amounts
of data in high-dimensional feature spaces, specifically for
the purpose of supervised anomaly detection tasks. Unlike
other regularization methods that focus solely on fitting the
available training data well, our method optimizes directly
the expected accuracy on the anomaly detection task, as
measured in the resulting AUROC. Because AUROC is not
differentiable, and cannot be used by non-linear optimization
algorithms directly, we propose to use a suitable approximation

that is differentiable. Experiments on synthetic and real data
demonstrate that for the regime of interest, n < p, our method
dominates other tested methods in all cases, and when n > p,
it tends to smoothly transition the optimal estimate to the
sample covariance matrix ΣS, as expected, and outperforms all
other methods for estimating CMs. We have also confirmed
experimentally that its performance is much better than that
of direct supervised classification methods, probably because
the latter cannot learn very accurate decision surfaces in high-
dimensional feature spaces from relatively few samples.

Although we have described the method as applicable to
a specific decision problem — supervised anomaly detection
where the normal data has a multivariate Gaussian distribution,
but the abnormal data does not — its application is not limited
to this problem only. It can also be applied to any other
classification problem that matches these characteristics. Fur-
thermore, it might be possible to extend it to more complicated
distributions for the normal data, for example mixtures of
multivariate Gaussians, as long as the processes of estimating
the regularized CMs of the individual Gaussian components
and the allocation of data points to these components can be
interleaved. Another problem that is worth addressing in future
research is how potentially imbalanced training sets can be
handled, for example in the rather common case when very
few examples of abnormal data are available.
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Informatiques, 2013, p. 16.


	Title Page
	page 2

	/projects/www/html/my/publications/docs/TR2016-099.pdf
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8


