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Abstract

Soft video delivery, i.e., analog video transmission, has been proposed to provide graceful video
quality in unstable wireless channels. However, existing analog schemes need to transmit a
significant amount of metadata to a receiver for power allocation and decoding operations.
It causes large overheads and quality degradation because of rate and power losses. To
reduce the overheads while keeping high video quality, we propose a new analog transmission
scheme. Our scheme exploits a Gaussian Markov random field for modeling video sequences
to significantly reduce the required amount of metadata, which are obtained by fitting into
the Lorentzian function. Our scheme achieves not only reduced overhead but also improved
video quality, by using the fitting function and parameters for metadata. Evaluations using
several test video sequences demonstrate that our proposed scheme reduces overheads by 97 %
with 3.4 dB improvement of video quality compared to the existing analog video transmission
scheme.
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Abstract—Soft video delivery, i.e., analog video transmission,
has been proposed to provide graceful video quality in unstable
wireless channels. However, existing analog schemes need to
transmit a significant amount of metadata to a receiver for power
allocation and decoding operations. It causes large overheads
and quality degradation because of rate and power losses. To
reduce the overheads while keeping high video quality, we
propose a new analog transmission scheme. Qur scheme exploits
a Gaussian Markov random field for modeling video sequences
to significantly reduce the required amount of metadata, which
are obtained by fitting into the Lorentzian function. Our scheme
achieves not only reduced overhead but also improved video qual-
ity, by using the fitting function and parameters for metadata.
Evaluations using several test video sequences demonstrate that
our proposed scheme reduces overheads by 97 % with 3.4 dB
improvement of video quality compared to the existing analog
video transmission scheme.

I. INTRODUCTION

Wireless video delivery has been one of major applications
in wireless environment. According to Cisco visual networking
index studies, three-fourths of the world’s mobile data traffic
will be video contents by 2020 [1]. In conventional video
streaming, the digital video compression and transmission
parts operate separately. For example, the video compres-
sion part uses H.264/Advanced Video Coding (AVC) [2] or
H.265/High-Efficiency Video Coding (HEVC) [3] standard
to generate a compressed bit stream using quantization and
entropy coding. The transmission part uses a channel coding
and a digital modulation scheme to reliably transmit the
encoded bit stream.

However, the conventional scheme has the following prob-
lems due to the wireless channel unreliability. First, the
encoded bit stream is highly vulnerable for bit errors. When
the channel signal-to-noise ratio (SNR) falls under a cer-
tain threshold and bit errors occur in the bit stream during
communications, the video quality drops significantly. This
phenomenon is referred to as cliff effect. Second, the video
quality does not gracefully improve even when the wireless
channel quality is improved. Finally, quantization is a lossy
process and its distortion cannot be recovered at the receiver.

To overcome the above-mentioned problems, analog trans-
mission schemes [4]-[8] have been proposed. For example,
SoftCast [4], [5] directly transmits linear-transformed video
signals over a lossy channel and allocates power for the signals
to maximize video quality. In contrast to the conventional
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scheme, the video quality of SoftCast can be gracefully
improved according to the wireless channel quality.

However, the performance of SoftCast is inefficient due to
chunk division. In SoftCast, a sender allocates transmission
power to the video signals for noise reduction. The magnitude
of power allocation is based on the power of each linear-
transformed video signal. Hence, the sender needs to transmit
the power information of all the video signals without errors
to decode the signals at the receiver. The transmission of
these metadata causes large overheads, resulting into video
quality degradation due to power and rate loss. To reduce the
overheads, SoftCast divides the linear-transformed signals into
chunks. However, the chunk division can considerably degrade
performance due to improper power allocation, in particular
for large chunk sizes to reduce metadata.

To improve performance, coset coding [9], [10], subcarrier
assignment [11], and rateless coding [12] were adopted for
analog schemes. However, they are oblivious of the chunk
division. Although the trade-off between chunk size and video
quality were discussed in [13], how to effectively reduce the
overheads was beyond the scope of the paper.

In this paper, we propose a new analog scheme without
chunk division to overcome the issues of conventional analog
schemes. To obtain the power values of linear-transformed
video signals without transmitting large-overhead metadata,
our scheme uses Gaussian Markov random field (GMRF) [14],
[15] to model video signals and exploits a Lorentzian-based
fitting function at the sender and the receiver. Specifically,
the sender finds a few parameters for the fitting function and
sends the parameters as metadata to the receiver. The receiver
obtains the power values from the fitting function and the
received parameters for decoding. Evaluations using test video
sequences show that the proposed scheme improves video
quality by 3.4 dB with 97 % reduction in the overheads.

Our contribution is two-fold: 1) we verify that the power
of linear-transformed video signals are well fit by Lorentzian-
based function with eight parameters when the video signals
can be modeled by GMRF and 2) we propose fitting-based
power allocation and signal reconstruction to achieve improved
video quality and reduced overheads simultaneously.

II. SOFT VIDEO DELIVERY

The purposes of our study are 1) to achieve higher video
quality with the improvement of the wireless channel qual-
ity and 2) to achieve smaller overheads. Fig. 1 shows the
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Fig. 1. Proposed analog video transmission scheme.

schematic of our proposed scheme. The encoder first performs
3D-discrete cosine transform (DCT) operation for the original
video frames. According to the power of the DCT coefficients,
we find the best parameters of a fitting function. The DCT
coefficients are then scaled and analog-modulated based on
these parameters. Finally, the encoder sends the analog modu-
lated symbols and the fitting parameters to the receiver over a
wireless channel with additive white Gaussian noise (AWGN).
At the receiver side, the decoder uses minimum mean-square
error (MMSE) filter based on the received fitting parameters.
This filter is used for the received analog-modulated symbols
to obtain the DCT coefficients.

A. Encoder

The encoder first takes 3D-DCT operation for the original
sequence to obtain the DCT coefficients. 3D-DCT is used
for whole frames in one group of picture (GoP), which is a
sequence of successive video frames. The DCT coefficients are
mapped to I (in-phase) and Q (quadrature-phase) components
after the power allocation.

Let z; denote the i-th analog-modulated symbol. Each
analog-modulated symbol is scaled by g; for noise reduction:

)]

Here, s; is the i-th DCT coefficient and g; is the scale factor for
the coefficient. After the transmission, each received symbol
can be modeled for AWGN channels as follows:

Ti = 9gi- Si-

2

where y; is the i-th received symbol and n; is an effective
noise with a variance of o2.

The transmitter performs optimal power controls for g; to
achieve the highest video quality. Specifically, the best g; is
obtained by minimizing the mean-square error (MSE) under
the power constraint with total power budget P as follows:

Yi = Ti + Ny,
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where Z; is an estimate of the DCT coefficient at the receiver,
A; is the power of i-th DCT coefficient, and N is the number
of DCT coefficients. The near-optimal solution is expressed as
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B. Decoder

The receiver extracts DCT coefficients from I and Q com-
ponents, and reconstructs the coefficients using MMSE filter
[4] as follows

s = giM;

The decoder then obtains corresponding video sequence by
taking the inverse 3D-DCT for the filter output §;.

C. Overhead Reduction

In order for the receiver to carry out MMSE filtering
in (6), the sender needs to transmit \; of all coefficients
without errors as metadata. The amount of metadata can be
significantly large. For example, when the sender transmits
eight video frames with the resolution of 176 x 144, the
sender needs to transmit metadata for all DCT coefficients
of 176 x 144 x 8 202,752 to the receiver. It induces
performance degradation due to rate and power losses. To
reduce the overheads, conventional methods divide coefficients
into chunks and carry out power allocation and MMSE filter
for each chunk. However, overheads are still high and the
chunk division causes performance degradation due to im-
proper power allocation. When the chunk is a size of 44 x 36
pixels, 256 metadata are still required every eight frames.

To reduce the overheads, we use a fitting function to approx-
imate the power values \; for a variety of video sequences.
To this end, our scheme uses GMRF to model video signals.
Based on the model, we verify \;, except direct current (DC)
component, can be fit by a Lorentzian function with seven
parameters. The details of the derivation are described in
Sec. II-D. Our scheme uses 5\2 which is an estimated power
of DCT coefficients obtained from the fitting function, for the
power allocation and MMSE filter. To share the same \; at
both the sender and the receiver, our scheme transmits eight
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Fig. 2. GMRF model for video signals.

metadata, which consists of seven fitting parameters and DC
component of DCT coefficients. We assume that the encoder
uses 1/2-rate convolutional code and binary phase-shift keying
(BPSK) for the metadata transmissions.

D. Fitting Function

We use a simple GMRF to model video signals as shown
in Fig. 2. In the video signals, each pixel is connected to
three pixels for horizontal, vertical, and time directions. Each
direction has different correlations, which are defined as py,
pv, and p, respectively. In this case, the correlation between
two pixels can be described as pﬁH . pf," . p%T, where dy, dv,
and dr are horizontal, vertical, and time distances between the
pixels, respectively.

The DCT can be regarded as a discrete-time real-valued
version of the Fourier transform. After we take the Fourier
transform for the signals, the auto-correlation function cor-
responds to the power spectrum density according to the
Wiener—Khintchine theorem. For 3D video signals following
the GMREF, the power spectrum density of 3D-DCT coef-
ficients can be asymptotically obtained by the Lorentzian
function as follows:
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where Ny, Ny, and Nt are the number of coefficients in
horizontal, vertical, and time domains, respectively. Here, oy
and 3 are parameters for fitting. Note that above equations
express the power spectrum density of alternate current (AC)
components in the DCT coefficients. Our scheme ignores
the DC component from fitting operation because the DC
component cannot be modeled by the Lorentzian function.

E. Correlation Coefficient Estimation

To calculate the fitting function, the encoder estimates
the horizontal, vertical, and time correlations of the video
sequence, by fitting an empirical auto-correlation function into
an exponential function of f(x) = a® by means of a least-
squares method. Fig. 3 shows an example of fitting curves
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Fig. 3. Fitting horizontal correlation coefficients of akiyo.

for a video sequence of akiyo. In this case, we obtain the
estimated parameters py, py, and pt of 0.98, 0.98, and 0.99,
respectively. From this figure, it is expected that the simple
GMRF model depicted in Fig. 2 can capture some useful
statistics of real video sequences.

With the estimated correlations, the encoder finds the other
fitting parameters based on the empirical power of AC com-
ponents by least-squares fitting. The encoder then reproduces
the power of AC components using the estimated parameters
and fitting function. Fig. 4 shows the empirical and fitting
power of DCT coefficients within one video frame for the
video sequence of akiyo. In this case, the estimation error
is small; more specifically, the normalized mean-square error
(NMSE) between empirical and fitting values is about —25 dB.
The proposed scheme can significantly reduce the overheads
by transmitting just eight values regardless of the video size.

III. PERFORMANCE EVALUATION
A. Simulation Settings

Metric: We evaluate the performance of reference schemes
in terms of the NMSE and peak signal-to-noise ratio (PSNR)
defined as follows:

NMSE = 10logy, %MSE )

A
(2" -1y

MSE

(10)
where L is the number of bits used to encode pixel luminance
(typically eight bits), and eyisg is the MSE between all pixels
of the decoded and the original video. We obtain the average
NMSE and PSNR across whole video frames in each video
sequence.

Test Video: We use standard reference video, namely, fore-
man, akiyo, mobile, coastguard, and news in the QCIF format
(176 x 144 pixels, 30 fps) from the Xiph collection [16].
Wireless Channel Environment: The received symbols are
impaired by an AWGN channel.
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Amount of Metadata: As we mentioned in Sec. I1I-C, our
proposed scheme sends eight metadata. Conventional analog
schemes transmit two metadata (mean and variance) for each
chunk.

B. Video Signals from GMRF

Before analyzing real video sequences, we first evaluate
our proposed scheme for virtual video sequences generated
from GMRF model. We assume that the resolution of the
signals is 256 x 256 x 8 and the correlations of three domains
(horizontal, vertical, and time) are identical. We set the mean
and variance of the signals are 128 and 1, respectively. For
the comparison, we measure NMSE of the proposed and three
SoftCast schemes with different chunk sizes: 1 x 1, 2 x 2,
and 4 x 4 pixels. The corresponding number of chunks in
SoftCast becomes 524288, 131072, and 32768, respectively.
Fig. 5 shows the NMSE with the different correlations: (a)
0.1, (b) 0.5, and (c) 0.9. From these figures, we observe the
following two points:

o NMSE of the proposed scheme approaches SoftCast with
a minimum chunk size of 1 x 1, which is an idealistic
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Fig. 5. NMSE vs. SNR for video sequence generated by GMRF: (a) 0.1
correlation, (b) 0.5 correlation, and (c) 0.9 correlation.

case. This result means that the estimation error using
our fitting function is negligible.

e As the correlations increase, NMSE becomes smaller.
When signal correlations are high, most of video infor-
mation concentrate in lower frequency components. This
concentration facilitates protection of analog-modulated
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TABLE 1
PARAMETERS FOR FITTING FUNCTION
[ Video Sequence [ PH [ PV [ pT [ %1 [ Qs [ as [ B ]
Akiyo 099 | 098 | 0.99 -0.10 -0.85 | -0.48 15419.9
Foreman 098 | 096 | 0.92 -0.36 -0.52 | -0.83 244478
Mobile 098 | 094 | 093 -8.65 -0.89 | -0.63 1.32-107
Coastguard 099 | 098 | 097 -0.12 -0.89 | -0.40 12766.5
News 097 | 097 | 099 | 11240 [ -0.61 | -0.79 | 1.02-10™

symbols from communication noise.

Fig. 6 shows the NMSE with the different chunk sizes at an
SNR of 10 dB. Here, we evaluate NMSE of SoftCast with nine
chunk sizes: 1 x1,2x2,4x4,8x8, 16x16, 32x32, 64 x64,
128 x 128, and 256 x 256 pixels. The corresponding number
of chunks is 524288, 131072, 32768, 8192, 2048, 512, 128,
32, and 8. This figure demonstrates that our proposed scheme
significantly outperforms the conventional SoftCast. For ex-
ample, the proposed scheme improves NMSE approximately
by 39.5 dB compared to SoftCast with 2* metadata for the
correlation of 0.9.

C. Real Video Sequences

Previous evaluations demonstrated that our proposed
scheme approaches the performance with the smallest chunk
size when video signals are generated from GMRF. However,
real video sequences may not follow the model and this model
mismatch induces estimation errors. To evaluate the effect on
real video sequences, this section uses foreman, akiyo, mobile,
coastguard, and news as the test sequences. Table I lists the
values of fitting parameters of each video sequence in the first
GoP. We use the chunk size of 44 x 36 pixels (total 128 chunks)
for SoftCast, which is based on [4]. Fig. 7 shows the video
quality with the different video sequences. The key results
from this figure are summarized as follows:

o The proposed scheme achieves the higher video quality
compared to existing SoftCast regardless of test video
sequences. For example, the proposed scheme improves
video quality approximately by 3.4 dB compared to
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Fig. 7. PSNR vs. SNR with different video sequences.
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SoftCast at an SNR of 15 dB for the video sequence
of foreman.

o The proposed scheme reduces the amount of metadata by
96 % compared to SoftCast. This reduction saves trans-
mission power and leads to additional quality improve-
ment by allocating the saved power for the transmission
of analog-modulated symbols.

In addition, we demonstrate that our proposed scheme keeps
high video quality approximately by 2.1 and 2.7 dB compared
to SoftCast at an SNR of 15 dB for the video sequence of
coastguard and news, respectively.

D. Effect on Amount of Metadata

Previous evaluations revealed that the proposed scheme
achieves higher video quality and smaller overheads compared
to existing SoftCast with the fixed chunk size. However, the
performance of SoftCast can be improved by increasing the
overheads. For the detailed discussions, this section compares
the different sizes of chunks to demonstrate the impact of our
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proposed scheme. We evaluate the video quality of proposed
scheme and SoftCast schemes with five different sizes of
chunk: 1 x 1, 4 x 4, 16 x 16, 44 x 36, and 88 x 72
pixels. The corresponding number of chunks becomes 202752,
12672, 792, 128, and 32, respectively. Figs. 8 and 9 show
the video quality with the test video sequences of foreman
and akiyo, respectively. Our proposed scheme achieves higher
video quality even when the chunk size is 16 x 16 pixels.
Therefore, the proposed scheme can reduce the overheads by at
least 99.4 % while achieving better video quality. Note that the
estimation errors using fitting function in foreman are smaller
than akiyo.

Fig. 10 shows the video quality with the different amount
of metadata in each video sequence. To evaluate the effect of
metadata, we plot the performance for nine different sizes of
chunk: 1 x 1,2 x2,4x4,8x8,11 x9, 16 x 16, 22 x 18,
44 x 36, and 88 x 72 pixels. The corresponding number of
chunks is 202752, 50688, 12672, 3168, 2048, 794, 512, 128,
and 32. Fig. 10 represents that the proposed scheme greatly

improves video quality when the overheads of SoftCast are
small. Specifically, the improvement of our scheme is 9.9 dB
when the amount of metadata of SoftCast is 2° for the video
sequence of foreman.

IV. CONCLUSION

This paper proposed a new analog transmission scheme
based on a simple GMRF model to keep high video quality
with the reduction in overhead. The proposed scheme finds
parameters for fitting function to obtain the power of DCT
coefficients with small overheads. Performance evaluations
show that our proposed scheme achieves higher video qual-
ity compared to existing analog schemes with the improve-
ment of wireless channel quality. In addition, the proposed
scheme significantly reduces the required amount of over-
heads. This reduction saves transmission power and results
in additional quality improvement compared to conventional
analog schemes.
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