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Abstract

In this book chapter, we discuss a factorization-based approach to robust matrix completion.
We begin our discussion with a gauge optimization perspective to robust matrix completion.
We then discuss how our approach replaces the solution over the low rank matrix with its low
rank factors. In this context, we develop a gauge minimization algorithm and an alternating
direction method of multipliers algorithm that take advantage of the factorized matrix decom-
position. We then focus on the particular application of video background subtraction, which
is the problem of finding moving objects in a video sequence that move independently from
the background scene. The segmentation of moving objects helps in analyzing the trajectory
of moving targets and in improving the performance of object detection and classification al-
gorithms. In scenes that exhibit camera motion, we first extract the motion vectors from the
coded video bitstream and fit the global motion of every frame to a parametric perspective
model. The frames are then aligned to match the perspective of the first frame in a group
of pictures (GOP) and use our factorized robust matrix completion algorithm to fill in the
background pixels that are missing from the individual video frames in the GOP. We also
discuss the case where additional depth information is available for the video scene and de-
velop a depth-weighted group-wise PCA algorithm that improves the foreground /background
separation by incorporating the depth information into the reconstruction.

Robust Low-Rank and Sparse Matriz Decomposition: Applications in Image and Video
Processing

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in
whole or in part without payment of fee is granted for nonprofit educational and research purposes provided that all
such whole or partial copies include the following: a notice that such copying is by permission of Mitsubishi Electric
Research Laboratories, Inc.; an acknowledgment of the authors and individual contributions to the work; and all
applicable portions of the copyright notice. Copying, reproduction, or republishing for any other purpose shall require

a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All rights reserved.

Copyright (© Mitsubishi Electric Research Laboratories, Inc., 2016
201 Broadway, Cambridge, Massachusetts 02139






Factorized Robust Matrix
Completion

1.1 Introduction...............oooiiiiiiiiiiiiiiiiii 1-1
Notation
1.2 Robust Matrix Completion .......................... 1-3
1.3 Factorized Robust Matrix Completion ............. 1-4
Hassan Mansour Factorized gauge minimization algorithm ¢ Factorized

ADM algorithm ® Numerical Evaluation
1.4 Application to Video Background Subtraction.... 1-10
Dong Tian Stationary background ¢ Depth-weighted Group-wise
PCA ¢ Global motion parametrization ®
Depth-Enhanced Homography Model
Anthony Vetro 1.5 Conclusion .............ccooiiiiiiiiiiiiii .. 1-16
Mitsubishi Electric Research Laboratories References ... ... 1-17

Mitsubishi Electric Research Laboratories

Mitsubishi Electric Research Laboratories

1.1 Introduction

The problem of reconstructing large scale matrices from incomplete and noisy observations
has attracted a lot of attention in recent years. Of particular interest is the reconstruction or
completion of low-rank matrices, which finds many practical applications in recommender
systems, collaborative filtering, system identification, and video surveillance.

The robust matrix reconstruction/completion problem can be formulated as the task
of determining a low rank matrix L from observations A that are contaminated by sparse
outliers S and noise E. Moreover, the observations A are acquired through a linear operator
P that generates a smaller number of samples than those in L. In the case of matrix
completion, the operator P is a restriction operator that selects a subset {2 of the samples
in L. The general observation model is given as follows:

A=P(L)+S+E. (1.1)

A natural approach for recovering L from A involves solving the rank minimization
problem
mLin rank(L) subject to h(A—P(L)) <o, (1.2)

where h(-) is some penalty function suitable for the noise statistics, and ¢ is a mismatch
tolerance. However, problem (1.2) is noncovex and generally difficult to compute even when
the function h(-) is convex. Alternatively, Fazel et al. [FHBO1] introduced the nuclear norm
heuristic as the convex envelope of the rank to replace the rank objective resulting in the
nuclear norm minimization problem

mLin IIL||l« subject to h(A—P(L)) <o, (1.3)

1-1
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where the nuclear norm || X||. is equal to the sum of the singular values of the matrix
X. The attractiveness of the nuclear norm minimization problem lies in the ability to
derive efficient algorithms for solving it [LB09, CCS10, RFP10, AKM*13]. Moreover, Recht
et al. [RFP10] derived conditions for which the solution to the nuclear norm minimization
problem (1.3) coincides with that of the rank minimization problem (1.2) for the case where
P is a random matrix and A(-) is the Frobenius norm. Recovery guarantees for the case
where P is a matrix completion operator was also extensively studied in [CT10, Recl1].
Another approach (SpaRCS) was proposed in [WSB11] which follows a greedy approach
that iteratively estimates the low rank subspace of L as well as the support of S followed
by truncated SVD and least squares inversion to compute estimates for L and S.

The choice of the penalty function h(-) determines the sensitivity of the solution of
problem (1.3) to the noise model. For example, letting h(-) be the matrix Frobenius norm
assumes that there are no sparse outliers S and the error E is Gaussian distributed. In the
case where the observations A are contaminated with large sparse outliers, robust penalty
functions such as the ¢; norm, Huber or the Student’s t penalties have been shown to
produce more robust reconstructions [ABF13]. When the penalty function is the ¢; norm,
an equivalent formulation to (1.3) can be realized through the stable principal component
pursuit (SPCP) problem given by

Iiliél L]« + Al|S||1 subject to ||A—P(L)+ S||r < oE, (1.4)

where A is a regularization parameter that corresponds to the tolerance o in (1.3), and opg
is a bound on the noise level E. The SPCP problem has the advantage of also determining
the sparse component S which can be the real target in some applications such as video
background subtraction. When o = 0, the problem is also known as robust principal
component analysis (RPCA) or sparse matrix separation.

In this chapter, we discuss a factorization-based approach to robust matrix completion
in the context of solving (1.4). We begin our discussion with a gauge optimization per-
spective to robust matrix completion in Section 1.2. We then discuss in Section 1.3 how
our approach replaces the solution over the matrix L with its low rank factors U and V,
such that L = UV similar to the approach adopted by Aravkin et al. [AKM™13]. In this
context, we develop a gauge minimization algorithm and an alternating direction method
of multipliers algorithm that take advantage of the factorized matrix decomposition. We
then focus in Section 1.4 on the particular application of video background subtraction,
which is the problem of finding moving objects in a video sequence that move indepen-
dently from the background scene. The segmentation of moving objects helps in analyzing
the trajectory of moving targets and in improving the performance of object detection and
classification algorithms. In scenes that exhibit camera motion, we first extract the mo-
tion vectors from the coded video bitstream and fit the global motion of every frame to a
parametric perspective model. The frames are then aligned to match the perspective of the
first frame in a group of pictures (GOP) and use our factorized robust matrix completion
algorithm to fill in the background pixels that are missing from the individual video frames
in the GOP. We also discuss the case where additional depth information is available for
the video scene and develop a depth-weighted group-wise PCA algorithm that improves the
foreground /background separation by incorporating the depth information into the recon-
struction. Finally, we conclude the chapter with Section 1.5.

1.1.1 Notation

Throughout the chapter we use upper case letters to refer to matrices or their vectorization
interchangeably depending on the context. Consider a matrix X € R™*" of rank r <
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min{m,n} with singular values o;, i = 1...r indexed in decreasing order. We denote by

T
= s = o; an op = 01 the Frobenius norm and the operator norm o
X ij d | X|op the Frobeni d th t f

i=1

a matrix X respectlvely Also, we denote by || X|1 = Z | X5 and | X |loc = max|XU| the

¢1 norm and the /., norm of the vectorization of the matrlx X, respectively. For any two
matrices X, Y € R™*" we denote the trace of the inner product by (X,Y) =Tr [XTY].

1.2 Robust Matrix Completion

Consider the case where we are given incomplete measurements A of a data matrix X, €
R™*™ that is composed of the superposition of a low rank matrix Lo and a sparse outlier
matrix Sg, such that, Xo = Ly + Sy. Let Pg : R™*™ — RP be a restriction operator that
selects a subset 2 of size p of the mn samples in Xy. We define the robust matrix completion
problem as the problem of finding Lg from the incomplete measurements A = Pq(Lg) + So
using the following ¢1-norm constrained nuclear norm minimization problem

mLin IL||« subject to ||A—Pq(L)|1 <o, (1.5)

where the tolerance ¢ has to be set equal to an upper bound on the ¢;-norm of Sy. We may
also write problem (1.5) by introducing the variable S such that

Iiliél IL]|« subject to A =Pq(L)+ S,

1.6
18] <o (16)

Note that for an appropriate choice of A, problem is equivalent to the robust PCA problem
I?i;} IIL||« + Al|S||1 subject to A= L+ S. (1.7)

Problems (1.5) and (1.7) belong to the general class of constrained gauge minimization
problems [FMP14] for which a solution framework was developed by van den Berg and
Friedlander in [vdBF08,vdBF11] for the ¢5 constrained case and later extended by Aravkin
et al. [ABF13] for arbitrary convex constraints. A gauge (-) is a convex, nonnegative,
positively homogeneous function that vanishes at the origin. Moreover, we characterize a
general gauge optimization problem in L and S as

l'ili;l k(L,S) subject to h(L,S) < o, (1.8)

where h(-) is a convex function. Note that norms are special cases of gauge functions that are
finite everywhere, symmetric, and zero only at the origin [FMP14]. Following the framework
of [vdBF11], we can define the value function

o(1) = IBI:? h(L,S) subject to k(L,S) <, (1.9)

and update 7 using Newton’s method to find 7* that solves ¢(7) = o. The solution (L*,S*)
of ¢(7*) will then be the minimizer of (1.8). The jth Newton update of 7 is given by

¢(rj) —o
¢'(15)
which requires the evaluation of the derivative ¢/(7) with respect to 7. In particular, it

was shown in [vdBF11] that ¢'(7) = k°(h/(L, S)), where £° is the polar of x, and b’ is the
derivative of h with respect to L and S.

Tj+1 = Tj + (1.10)
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The framework described above is attractive when the optimization problem defining the
value function ¢(7) is easy to solve. Consider problem (1.5), the penalty function h(L,S) =
|A — Pa(L)||1, which is convex but non-differentiable. On the other hand, the penalty
function of problem (1.7) is the Frobenius norm h(L,S) = ||A — L — S||r and the Newton
step terminates when ¢(7) = 0. Consequently, [vdBF11] derives the RPCA value function
as

o(1) = I}Jnél |A—PqoL — S|l subject to ||L|«+ Al|S]1 <, (1.11)

where 7 is updated according to the Newton step

12|~

, (1.12)
max{||Pg Rjllop, | PG Rjlloc/A}

T+l =T

A—Pa(L;+5;)
. i IA=Pa(L;+5)IIF : )
iteration, and S; = PqS; since Po is a mask. Note here that the denominator
max{||Pd Rj|lop, | PE Rjlloc/A} is the expression for the polar of the gauge function
K(X,Y) = || X« + A|Y]]1, where X =Y =PI R, in this case.
Finally, we point out that it was shown in [CLYW11] that a choice of A = a~1/2 7 :=
max{m,n}, is sufficient to guarantee the recovery of Ly and Sy with high probability when

where R; = is the normalized residual matrix at the jth Netwon

the rank(Lo) < C# (logn) > for some constant C' that depends on the coherence of the
subspace of Lg.

1.3 Factorized Robust Matrix Completion

One drawback of problem (1.7) is that it requires the computation of full (or partial)
singular value decompositions of L in every iteration of the algorithm, which could become
prohibitively expensive when the dimensions are large. To overcome this problem, we adopt
a proxy for the nuclear norm of a rank-r matrix L defined by the following factorization
from Lemma 8 in [N.04]

1
L. = inf 5 (IUI% + V%) subject to UV = L. (1.13)

in
UeR™ ™, VeRmr

The nuclear norm proxy has recently been used in standard nuclear norm minimization
algorithms [RR13, AKM™13] that scale to very large matrix completion problems.

In this section, we discuss two algorithms that rely on the factorization in (1.13); the first
algorithm follows the gauge minimization technique described in section 1.2, whereas the
second is an alternating direction method (ADM) that minimizes the augmented Lagrangian
of problem (1.7).

1.3.1 Factorized gauge minimization algorithm

The gauge minimization framework discussed in section 1.2 is summarized in Algorithm 1
and requires the following three basic tools:

1. Defining and computing the value function ¢(7).
2. Solving the projection onto the gauge constraint x(-) < 7.
3. Specifying the polar function «° to update 7.
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Algorithm 1 Gauge minimization algorithm for factorized robust matrix completion
(Gauge-FRMC)

1: Input Measurement matrix A, measurement operator Pq, regularization parameter X,
mismatch tolerance o
Output Low rank factors U, V', and sparse component S
Initialize 79 = 0, residual signal Ry = A, j =0
while ||R;||r > o do
J=J+1
Update the gauge constraint 7;:

SN

|Rj-1llF
max{[|PE Rj1llop; PSR- 1lloo /A}

Tj = Tj-1+
7. Compute the value function ¢(7;) by solving for (U, V, S):
¢(7;) = min [[A - Po(UVT + 8)|F subject to % (IUNE + IVIIE) + XS] < 7
8:  Update the residual R;:

R;=A—Po(UVT +9)

9: end while

The value function ¢(7)

The factorization-based counterpart of the value function (1.11) is expressed as follows

. . 1
6(7) = min |4 = Po(UVT + 8)|p subject to < (IUI3+ [VIE) + XIS < 7. (1.14)

The applicability of the factorization (1.13) follows from Theorem 1.1 and Corollary 1.1
proved in [AKM™13] and listed below after specializing to our problem.
THEOREM 1.1 [AKM?" 13, Theorem 4.1] Consider an optimization problem of the form

min  h(Z) subject to k(Z) <0, rank(Z) <, (1.15)

Z=0

where Z € R™ ™ is positive semidefinite, and h,x are continuous. Using the change of
variable Z = SS™, take S € R™ ", and consider the problem

mgn h(SST)  subject to k(SST) <0 (1.16)

Let Z =7§§T, where Z is feasible for (1.15). Then Z is a local minimum of (1.15) if and
only if S is a local minimum of (1.16).

COROLLARY 1.1 [AKM™13, Corollary 4.2] Any optimization problem of the form

n}}n h(X) subject to || X[« <7, rank(X)<r (1.17)

where h is continuous, has an equivalent problem in the class of problems (1.15) character-
ized by Theorem 1.1.
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In particular, Corollary 1.1 implies that when the factors U and V have a rank greater
than or equal to the true rank of Lo, then a local minimizer of the value function in (1.9)
with a least squares objective and the factorization in (1.13) as a constraint coincides with
the solution of the same value function when the exact nuclear norm is in the constraint.
This result follows from the semidefinite programming (SDP) characterization of the nuclear
norm established in [RFP10].

In order to solve (1.14), we use a first-order projected gradient algorithm with a sim-
ple line search. The approach is similar to that developed in [vdBF08] without employing
the Barzilai-Borwein line-search method. In every iteration of the algorithm, the gradient
updates (U,V,S) of the variables (U, V,S) are projected onto the gauge constraint. The
following section describes an efficient Newton root-finding algorithm for performing this
projection.

Projecting onto the gauge constraint

A critical component for the success of the gauge optimization framework is the efficiency
of the projection onto the gauge constraint. Therefore, we developed a fast algorithm that
can efficiently solve the following projection problem

.1 ~ 1 =~ 1 ~ . 1
min 21U = Ol + 51V = VIE+ 5118 = S) subject to 5 (U1 + [VI3) + A8l < .

(1.18)
The projection can be realized as shown in Proposition 1.1 by finding a scalar variable
using the Newton method described in Algorithm 2. Clearly, the projection is only performed

when the current iterates (U, V, S) violate the constraint, i.e., when z (||(7||2F + H‘?H%) +
ISy > .

PROPOSITION 1.1 The solution to the projection problem (1.18) is given by
S() = Toa ()
= ﬁg (1.19)
_ 1
Vi(v) = mva
where Tw\(g) = sign(S) © max{0,|S| — yA} is the soft-thresholding operator, and v is the
scalar that satisfies the inequality m (Hﬁ”% + ||‘7H%) + A|S(vA)|l1 < 7. Moreover,

Algorithm 2 specifies a Newton’s method for computing ~.

PROOF 1.1 In order to evaluate the projection, we first form the Lagrange dual
L(U,V,S,v) of problem (1.18) with dual variable v > 0,

LUV.Sy) = il JIU =Tl + 351V - VIE+ 318 - 5%
+5 G (I01E+ VIF) + XIS =)
inf {3115 — 51 + 1 \lIS]1 }
+ inf {10 =013+ 31V =PI+ 3 (0I5 + VI3 } -7

The two infimums admit the closed form solutions shown in (1.19), where the expression
for S is a soft-thresholding of the signal S with threshold v\, and the symbol ® is an
element wise Hadamard product. Consequently, the projection is performed by finding ~y

that satisfies 51y <||(7H% + H‘A/HQF) +F IS £ 7.
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Denote by T the support of the elements in S with magnitude larger then v\, and let
k = |T| be the cardinality of the set T. The ¢; norm of the soft-thresholded signal S(y\)
is then equal to |[S(A)||1 = [|S7||1 — YAk, where Sy is a restriction of the signal S to the
support set T. The projection is then achieved using Newton’s method to find the root of
the function

F() = M1zl = vAk) + 7 (101 + V1) =7 =0. (1.20)

2(y+1)2

Algorithm 2 Newton’s method for solving the factorized RPCA projection

Input Current iterates Tj’ XA/ § parameter A\, T

1:
2: Output Projected iterates U, V, S
3: Initialize U=U,V =V, 5=8,7=0,C = (IU11% + V%)
4: while f(v) > 7 do
5. Compute the gradient: g(v) = —A?||S|jo — (y +1)73C
6:  Update v: v =7 —f(7)/9(7)
7:  Soft-threshold the sparse component: S = Slgn(S) ® max{0, |S| — v}
8  Scale the low-rank factors: U = ,Y_IHU V= V
9:  Update the function value f(v) =1 (|U[|% —|— ||V|| )+ IS -7
10: end while

The polar function

In determining the polar function, we follow the approach in [AKM™13] where the low rank
matrix L is evaluated from the current estimates of the factors U and V', and the Newton
update is treated in the nuclear norm of L sense as opposed to the Frobenius norm of the
factor U and V. The benefit of this approach is that it allows us to reuse the Newton update
shown in (1.12) for the standard RPCA problem.

1.3.2 Factorized ADM algorithm

The factorization approach can also be applied to the alternating direction method (ADM)
for minimizing the augmented Lagrangian of problem (1.7) resulting in the factorized aug-
mented Lagrangian shown below:
_ 2 2 T H T 2
LUV, 8Y) =5 (IUIF + IVIE) +MSh+, A=Po(UV T +8))+ 5 [ A=Pa UV +9)|E,
(1.21)

where Y € R™*™ is the dual multiplier, and p is the augmented Lagrangian smoothing
parameter. The above formulation (1.21) adds outlier robustness to the factorization-based
ADM method for matrix completion presented in [RFP10] by introducing the ¢; norm of the
sparse component S into the augmented Lagrangian. On the other hand, (1.21) improves the
stability of the reconstruction compared to the low rank matrix fitting (LMaFit) approach
[WYZ12] which also employs low-rank factors by introducing the nuclear norm proxy into
the augmented Lagrangian.

Algorithm 3 shows the alternating minimization steps of (ADM-FRMC) for optimizing
L(U,V,S,Y). The non-factorized nuclear norm formulation of ADM algorithms apply a
singular value thresholding of L

DN | =

Lijy1 =Dy (A= S; — E;j+u7'Y)),
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where E; is only supported on the complement of the set {2, and D,,-1 is the singular value
thresholding operator that soft-thresholds the singular values of A — S; — E; + u~'Y; by
p~t. On the other hand, Algorithm 3 replaces the singular value thresholding operation with
steps 5, 6, and 7 that require the inversion of r x r matrices. Consequently, when the rank
of the factors is relatively small compared to the dimensions m and n, the ADM-FRMC
algorithm can result in a significant reduction in computational complexity compared to
singular value thresholding based ADM algorithms.

Algorithm 3 Alternating direction method for factorized robust matrix completion (ADM-
FRMO).

1: Input Measurement matrix A, measurement operator Pq, regularization parameter \,
mismatch tolerance o, smoothing parameter p

2: Output Low rank factors U, V', and sparse component S

3: Imitialize V) = random n x r matrix, Yo =0, So =0, Ex =0, Ly =0, =0
4: while ||A — Lj+1 — Sj+1 — Ej+1||p > o do

5 Up = (Y + p(A = 85— Ep) V(L + pVyV) !

6 Vipr = (Y + (A= S5 — E)) Uppa (I + pUy 1 Uf )™

T Liy=UpnaVi

8  Eji1=Pac [A— Ljt1+p Y]

9: Sj+1 = Pq [7;\#71 (A — Lj+1 + M_I}/j)]

10: Vi =Y+ pu(A = Ljy — Sjp1 — Ej)

11: j=4+1
12: end while

1.3.3 Numerical Evaluation

To evaluate the performance of Gauge-FRMC and ADM-FRMC, we plot the reconstruc-
tion error versus runtime of the algorithms and compare the performance with respect to
PSPG [AGM13] and ADMIP [AI14] that use Lanczos SVDs for fast computation of partial
singular value decompositions*. We generate a synthetic data matrix A of size m x n that
is composed of the sum of a rank r matrix Ly, and a sparse matrix Sy with mn/5 non-zero
entries. In all test cases, we set the rank of the factors U and V in FRMC equal to 1.2 x r
and choose A = /y/max{m,n}. The tests were run in MATLAB on a 2.5 GHz Intel Core i5
machine. We define the relative error of variables (L;, S;) as follows

— Lol +1IS; — 50||%_

EI"I‘(Lj7 Sj) = \/”LJ
' [ LolI% + [1Soll%

(1.22)

In the first test, we assume the entries of A are fully observed and set m = n = 500, and
r = 20. The location of the non-zero entries of Sy are randomly chosen from a Bernoulli
distribution with probability % The magnitudes of the non-zero entires in Sy are drawn

from a standard normal distribution and scaled such that in one case ||Sollco < /2| Lol o
in order to blend the sparse components with the low rank signal, and in another case
[1Solloo < 4/200]| Lol so that the sparse component constitutes large outliers. The perfor-

mance evaluation for the two cases above are presented in Fig. 1.1 (a) and (b), respectively.

*ADMIP and PSPG codes available from http://www2.ie.psu.edu/aybat/codes. html
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The performance on a larger dataset m = n = 1500, » = 100 with small outliers is also pre-
sented in Fig. 1.1 (¢). A zoomed in frame that excludes Gauge-FRMC is shown in Fig. 1.1
(d) to highlight the difference between ADM-FRMC, ADMIP, and PSPG.

The figures show that ADM-FRMC and ADMIP have a comparable performance for
both small and large outliers and for the small dataset. As the data size increases, Fig. 1.1
(d) shows that ADM-FRMC converges quickly to a 10~ relative error point in one third of
the time it takes ADMIP or PSPG. After that the convergence slows down as is typical of
ADM type algorithms. On the other hand, the Gauge-FRMC algorithm is robust to large
outliers but converges relatively slowly compared to the other algorithms primarily due to
the slow projected gradient steps used to solve the value function ¢ (7). Using faster solvers
for the value function should improve the overall speed of the algorithm. Finally, we point
out that the PSPG algorithm fails to recover the correct signal when the variance of the
outliers is too large. This could be the result of a bad choice for the smoothing parameter
in the algorithm. We also tested the algorithms on the large dataset with large outliers
and found the performance to be similar to the small dataset. Therefore, we excluded the
corresponding figure from the chapter.

10°
) O Gauge-FRMC D Gauge-FRMC
I —6— ADM-FRMC N —&— ADM-FRMC
- - & - ADMIP a - - ADMIP
PSPG

o

PSPG

g
v!
i .
X
<

o?

Relative error
Relative error

20 25 30 35 0 o 5 10 15 20 25 30 35 0
Time (sec) Time (sec)

(a) (b)

‘0" Gauge-FRMC

—6— ADM-FRMC

- ® - ADMIP
PSPG

Relative error
3
>
Relative error

2 30 3 40

100 200 300 400 500 600 700 o 5 10 15 20
Time (sec) Time (sec)

(c) (d)
FIGURE 1.1: Performance evaluation on a synthetic dataset of size m = n = 500, r = 20
with (a) low variance sparse components, and (b) high variance sparse components. (c)
Performance on a larger dataset m = n = 1500, » = 100 for small outliers. (d) Zoomed in
version of (c¢) that excludes Gauge-FRMC to highlight the difference between ADM-FRMC,
ADMIP, and PSPG.

In the second test, we only observe 50% of the entries in A and run the experiment on
the m = n = 500, r = 20 data set. We exclude PSPG and ADMIP from the comparison
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since the available codes do not support missing data entries. The results for small and large
outliers are shown in Fig. 1.2 (a) and (b), respectively. The figures demonstrate that both
algorithms correctly solve the problem, however, Gauge-FRMC is significantly slower.

B Gauge-FRMC | b B Gauge-FRNC|]
—6— ADM-FRMC —6— ADM-FRMC

0 5 10 15 20

3
Relative error

Relative error

3

25 30 35 w0 45 50 o 10 20 30 40 50 60 70
Time (sec) Time (sec)

(a) (b)
FIGURE 1.2: Performance evaluation on a synthetic dataset of size m = n = 500, r = 20
with 50% missing entries for (a) low variance sparse components, and (b) high variance
sparse components.

1.4 Application to Video Background Subtraction

Video background subtraction algorithms can be classified into algebraic decomposition
techniques [WGRMO09, CLYW11, HBL11, HZBT13] and statistical motion flow techniques
[SM98,SJK09,EE13, NHLM13]. Algebraic approaches generally model the background scene
as occupying a low dimensional subspace. Moving objects in the video scene can then
be modeled as sparse outliers that do not occupy the same subspace as the background
scene. When the camera is stationary, the low dimensional subspace is also stationary and
the video signal can be decomposed into a low rank matrix representing the background
pixels as well as a sparse matrix representing the foreground moving objects. In this case,
robust PCA has been shown to successfully segment the foreground from the background
[WGRMO09,CLYW11,WSB11]. When the camera is moving, the low rank structure no longer
holds thus requiring adaptive subspace estimation techniques [HZBT13,QV11,MJ15] when
the change in the subspace is smooth. However, this is rarely the case in real world videos
which exhibit rotation, translation, and zoom among other types of motion. Therefore, a
more robust approach performs global motion alignment prior to the matrix decomposition
[MV14] when these significant motion distortions occur.

Once the video images are warped and aligned using global motion compensation, the
images are vectorized and stacked into a matrix A of size m X n, where m is the number of
pixels in the video frame and n is the number of frames in a group of pictures (GOP). The
warped images may contain large areas that have no content. Therefore, the problem can
be posed as a robust matrix completion problem where a restriction operator Pq identifies
the set of pixels (2 that contains intensity values. Our objective then is to extract a low-rank
component L from A that corresponds to the background pixels, and a sparse component
S that captures the foreground moving objects in the scene.

1.4.1 Stationary background
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For stationary background scenes, we apply the FRMC algorithm directly to the pixel do-
main, skipping the frame alignment. We test our algorithm on the Shopping Mall video
sequence® which is composed of 1000 frames of resolution 320 x 256. Fig. 1.3 compares
the qualitative separation performance of FRMC to that of the state-of-the-art algorithm
GRASTA [HBL11]. The FRMC algorithm completes the recovery 7 to 8 times faster than
GRASTA and results in a comparable separation quality. For a quantitative comparison,
we plot the ROC curves of the two algorithms in Fig. 1.4. The curves show that GRASTA
achieves a slightly better accuracy than FRMC, however, the computational cost is consid-
erably higher.

FIGURE 1.3: Background subtraction of four frames from the Shopping Mall sequence. Row
one shows the original four frames. Row two shows the ground truth foreground objects.
Row three shows the output of the GRASTA algorithm which required 389.7 seconds to
complete. Row four shows the output of our FRMC algorithm running in batch mode and
completing in 47.1 seconds. (©)(2014) IEEE

1.4.2 Depth-weighted Group-wise PCA

In practical image sequences, the foreground objects (sparse components) tend to be clus-
tered both spatially and temporally rather than evenly distributed. This observation led
to the introduction of group sparsity into RPCA approaches by [HHM09, DYZ13, JWL13]
pushing the sparse component into more structured groups. Our method utilizes the depth

* Available from:
http://perception.i2r.a-star.edu.sg/bk-model /bk_index.html
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ROC curves
T

—e— FRMC in 47.1 sec

— © — GRASTA in 389.73 sec
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FIGURE 1.4: ROC curves comparing the stationary background subtraction performance
between GRASTA and our FRMC algorithm. (©)(2014) IEEE

map of the video sequence to define the group structures in a depth-weighted group-wise
PCA (DG-PCA) method.

In order to deal with structured sparsity, we replace the [;-norm in the factorized RPCA
problem with a mixed Iy ;-norm defined as

I1Sll21 =Y wgllSgll2, (1.23)
g=1

where S, is the component corresponding to group g, g = 1,...,s, and wy’s are weights
associated to each group. The resulting problem is shown below:

1 1
(U, V,8,Y) =argmin_ || + S [V E+
UV,SsY 2 2 (1.24)
AlSllan + (Y A=UVT = 8) + £ A= UVT = S|}

Algorithm 4 Depth-weighted group-wise PCA (DGPCA) algorithm

Require: Input data A, A, p, error tolerance 7, maximum iteration number N, and depth
map D
1: Init: ¢ = 0, U; and V; < random matrix, G < G(D)
2: repeat
3 Ui = (u(A = 8;) + Y)Vi(I, + pV V) 7!

4 Vigr = (u(A = 83) +Y) Ui (I + pU Uigr) ™
5. Sigl,g = TA/u,g(Ag - Ui+179‘/iT|»1,g + Mlei,g)

6: E=A- Ui+1‘/ij_;_1 — SiJrl

7. Y=Y, +uk

8 i=1i+1

9: until i > Nor |E|lp <7
10: return U, V, S, i and | E||r

Algorithm 4 describes the proposed DG-PCA framework. In order to define pixel groups
G using the depth map D, an operator G(D) segments the depth map into s groups using
the following procedure. Suppose the depth level ranges from 0 to 255, a pixel with depth
value d will be classified into group g = [d/22¢| + 1. Consequently, the input data A can
be clustered into A, with g € {1,..,s}. Each A, is composed of elements from A which
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is marked into segment g. In the same way, Uy, V;, and Lagrangian multiplier Y, are also
grouped.
Next, the operator T,,, , in Algorithm 4 is a group-wise soft-thresholding, as shown
below,
e
T eq) = max(|leglls — wyA/pt, 0) ——L—o! 1.25
A/Mag( _l]) (H 9”2 g /.u“ )H€g||2+6 ( )
where e; = Ay — UngT + %Yg, and € is a small constant to avoid division by 0, and w,
defines group weights in (1.23). Since a foreground object has higher chances to be closer
to the camera, i.e., to have a higher depth value than a background object, we propose the
following equation to set group weights,

wy = '~z (1.26)

where c is some constant, and d, is the mean depth value of pixels in group g. wy is equal to
1 for objects nearest to the camera, d = 255, and it is equal to ¢ for objects farthest to the
camera, d = 0. The choice of ¢ controls the value of the threshold that permits foreground
pixels to be selected based on their location in the depth field. Finally, after S, is calculated
for each group g, the sparse component S is obtained by summing up all .S, together.

Note that the above setup favors group structures where the foreground objects are
closer to the camera. It is also possible within our framework to define the groups as the
sets of pixels that are spatially connected and have a constant depth, or connected pixels
where the spatial gradient of the depth is constant.

1.4.3 Global motion parametrization

In videos where the camera itself is moving, applying the FRMC algorithm directly to
the video frames fails in segmenting the correct motion since the background itself is non-
stationary. A non-stationary background does not live in a low rank subspace, therefore,
we can only expect the algorithm to fail. Therefore, we first estimate the global motion
parameters in the video in order to compensate for the camera motion. We then align the
background and apply the FRMC algorithm to segment the moving objects.

Global motion estimation received a lot of attention from the research community during
the development of the MPEG-4 Visual standard [FJ00]. One approach relates the coordi-
nates (x1,y1) in a reference image I to the coordinates (z2,y2) in a target image I using
an 8-parameter homography vector h such that

Lo = hothozi+hsy:

2 7 Athezithry
(1.27)

— hithazit+hsys

Y2 1+hezi+hryr °

Given the homography vector h = [hg h1 h2 hs hs hs he h7]T that relates two images,
we can warp the perspective of image I to match that of image I, thereby aligning the
backgrounds of both images. However, estimating h from the raw pixel domain requires
finding point-to-point matches between a subset of the pixels of the two images.

In order to compute h, we propose to use the horizontal and vertical motion vectors
(mg, my) that are readily available from the compressed video bitstream or during the en-
coding process. Here we assume that motion estimation is performed using the previous
video frame as the only reference picture. The motion vectors provide relatively accurate
point matches between the two images. Note, however, that we are only interested in match-
ing pixels from the moving background. Therefore, we first compute a 32 bin histogram of
each of the motion vectors m, and m,. Next, we extract a subset A of the indices of pixels
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that exclude foreground objects in order to capture the motion of the background and fit
the homography parameters to the background pixels alone. The homography parameter
vector h is computed by solving the following least squares problem:

[ w20 ] — Fh
YaA

where xop = 15 + MyA, Yor = Y1a + Map, and the matrix

7 (1.28)

h = arg min
h

B 1 0 za 14 O 0 —TopT1A  —T2AY1A
01 O 0  TiA YA —YoATIA  —Y2AY1A

where the subscript 5 indicates a restriction of the indices to the set A.

Next, we align the pictures relative to the perspective of the first frame in a GOP by
sequentially warping the pictures using the coordinates of the previously warped frame
I, as reference to warp the coordinates of the next frame Is by applying (1.27). Finally,
we note that due to the camera motion, the warped frames I generally occupy a larger
viewing area relative to the reference frame I5. Consequently, applying a forward map
f i (x1,91) = (&2, 92) often results in holes in the warped frame. To remedy this problem, we
compute the reverse mapping g : (&2,92) — (22,y2) as a function of h and warp the frame
to obtain fg(:%g,gg) = I5(g(&2,92)). Fig. 1.5 illustrates the global motion compensation
procedure applied to frame 26 of the Bus sequence.

For non stationary background sequences, we run our FRMC algorithm with global
motion compensation on the reference video sequence Bus composed of 150 CIF resolution
(352 x 288 pixels) frames*. The Bus sequence exhibits translation and zooming out. We
use the HEVC test model (HM) 11 reference software* [BHO'13] to encode the sequence
and run our FRMC with GME algorithm in batch mode with a batch size of 30 frames.
The recovery performance is illustrated in Fig. 1.6. Notice how the recovered background
expands and stretches relative to the original frames in order to cover the translation and
zoom of the 30 frame GOP. Notice also how stationary foreground objects are successfully
classified as part of the background subspace and are excluded from the segmented moving
objects.

1.4.4 Depth-Enhanced Homography Model

The eight parameter homography model assumes planar motion. However, motion in a video
sequence is generally not planar. Therefore, it is still very common to find large motion es-
timation errors in sequences that have a wide depth range. This could dramatically degrade
the detection rate in the separation problem. Therefore, we propose a depth-enhanced ho-
mography model. Specifically, 6 new parameters related to depth are added, and we have
h = [h1,...,hg, hg,...,h14]T. Let z; and 2z, stand for the depth of the corresponding pixels,
and the proposed depth-enhanced homography model is given as follows,

_ hi + hax1 + hayr + hozy

To =
? 1+ hrzy + hsyr
Yo = ho + hsx1 + hey1 + hio21 (1.29)
1+ hrzy + hsyr
o hi1 + hiawy + hizyr + hiaz
2 = .

1+ hrzy + hsyn

* Available from: http://trace.eas.asu.edu/yuv/
*Available from: https://hevec.hhi.fraunhofer.de/svn/svn_ HEVCSoftware/
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(c) (d)

FIGURE 1.5: Example of the global motion compensation procedure used to align the
backgrounds of images in a GOP. (a) First frame in the GOP aligned and scaled to its
relative location. (b) Original frame 26 as input image I». (¢) Frame 26 warped and aligned
as I»(#2,792), (d) Warped and reverse mapped frame Iy(g(i2,72)). ©(2014) IEEE

Note in the above equation, depth value 0 means the object is far from the camera. A larger
depth value means that the object is closer to the camera.

To evaluate the performance of the DG-PCA approach, we tested the separation on
fr3/walking_rpy sequence from the “dynamic objects” category in the RGB-D benchmark
provided by TUM [SEE*12]. The dataset contains dynamic objects with a low- to high-level
global motion.

The accompanying depth in the dataset is captured by a Microsoft Kinect sensor and
denoted by z. The depth map d is computed from z as follows

1
d =255 x —F— (1.30)

Znear Zfar

where zpear and zg,, denote the nearest and farthest depth extracted from the raw depth
data z.

In order to perform FG/BG separation, two consecutive video frames are first aligned
using global motion compensation with and without the depth-enhancement. The aligned
frames are then processed using FRMC and DG-PCA to separate the background L
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FIGURE 1.6: Background subtraction of four frames from the Bus sequence. Row one
shows the original four frames. Row two shows the motion aligned and FRMC separated
background relative to a 30 frame GOP. Row three shows the motion aligned and FRMC
separated foreground. The total runtime for global motion compensation and background
subtraction of 150 frames took 19.8 seconds. (©)(2014) IEEE

from the foreground S. The rank of the background is set equal to 2. We used se-
quence fr3/walking_static with minor camera motion to tune the algorithm parameters
and then run tests on the other three sequences with higher motion. We set the parameter
A = 0.05(||el|2/+/size(A)) x p, where a constant 0.05 is selected empirically to limit the
iteration step for a finer background subtraction. When updating the group-wise sparse
component in Algorithm 4, we use Ay = Ay/size(4;) instead of the image level A. This
scaling in A\, ensures the dependence on the size of the group since the thresholding opera-
tion is applied to the f5 norm of the group instead of the magnitudes of individual pixels.
Moreover, we set ¢ = 10 in (1.26). We set the number of groups s = 32 since we found to
significant difference in the performance of the algorithm when s was varied in the range
[16, 32]. We also denoised the depth-based grouping map G using a 5 x 5 median filter.

Fig. 1.7 shows 5 snapshots across fr3/walking rpy with 910 frames at VGA resolution
which has the greatest global motion in the dataset. The figures show that the two DG-
PCA methods (row 4 and 5) produce a much cleaner foreground segmentation compared to
FRMC (row 3). For example, in the third snapshot, the person walking at a further distance
behind the office partition can also be detected successfully by DG-PCA. Comparing DG-
PCA without depth-enhanced global MC (row 4) and with depth-enhanced global MC (row
5), shows that the depth-enhanced homography model helps improve the motion alignment
compared to the conventional homography model.

1.5 Conclusion

We developed a factorization-based approach to solving the robust matrix completion that
replaces the solution over the low rank matrix with its low rank factors. We showed how
the factorization approach can be applied in a gauge optimization framework resulting in
the Gauge-FRMC algorithm, and in an alternating direction method (ADM) of multiplier
framework resulting in the ADM-FRMC algorithm. Performance evaluation of the two al-
gorithms showed that while both algorithms correctly solve the robust matrix completion
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& Fth

FIGURE 1.7: Performance evaluation. Row 1: color images. Row 2: depth maps. Row 3:
Factorized RPCA. Row 4: DG-PCA w/o depth-refined global MC. Row 5: DG-PCA with
depth-refined global MC.

problem, the ADM approach enjoys faster convergence than the gauge optimization ap-
proach. Moreover, the speed of convergence and accuracy of the ADM-FRMC algorithms
matches and in some cases exceeds that of state of the art algorithms. The main bottleneck
for the gauge minimization approach comes from the use of a first-order projected gradient
step to evaluate the value function.

In the second part of the chapter, we focused on video background subtraction as an
application to factorized robust matrix completion. With the help of motion vector infor-
mation available from a coded video bitstream, we showed that our framework is capable
of subtracting the background from stationary and moving camera sequences. We also ex-
tended our model to incorporate scene depth information by assigning group structures to
the sparse data outliers corresponding to foreground objects. Finally, we demonstrated that
incorporating depth information into the problem formulation, we were able to improve the
foreground /background separation.
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