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Abstract
Graph signal processing (GSP) is an emerging field that provides a new family of tools for
analyzing signals that could be modeled on vertices connected by edges. In this paper, we
describe two examples of how GSP is being applied for scene representation and analysis,
where the scene is either captured as video sequences or point clouds. In the first example,
we show that novel graph constructions can be used to robustly segment moving foreground
objects from the background of video sequences with ego-motions. In the second example,
we employ a graph-based transform to efficiently code attributes associated with the point
clouds. We demonstrate with the two examples the potential benefits of using GSP tools for
scene representation and analysis.
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Abstract—Graph signal processing (GSP) is an emerging field
that provides a new family of tools for analyzing signals that
could be modeled on vertices connected by edges. In this paper,
we describe two examples of how GSP is being applied for scene
representation and analysis, where the scene is either captured
as video sequences or point clouds. In the first example, we
show that novel graph constructions can be used to robustly
segment moving foreground objects from the background of video
sequences with ego-motions. In the second example, we employ
a graph-based transform to efficiently code attributes associated
with the point clouds. We demonstrate with the two examples
the potential benefits of using GSP tools for scene representation
and analysis.

I. INTRODUCTION

We address applications for deriving scene semantics that
help analyze the motion content of videos and finding com-
pact representations of visual point cloud data using graph-
based signal processing. Motion is an important cue in video
segmentation since rigid objects often exhibit similar motions
within their parts. Point cloud data captured by scanning the
3-D world is another type of data that is used to represent
the scene structure. There is a strong need to represent the
point cloud in an efficient way so as to facilitate its storage,
transmission and analysis.

In general graph signal processing [1], an undirected graph
G = (V,E) consists of a collection of nodes V = {1, 2, ..., N}
connected by a set of links E = {(i, j, wij)}, i, j ∈ V where
(i, j, wij) denotes the link between nodes i and j having
weights wij . The adjacency matrix W of the graph is an
N ×N matrix with weights wij as its entries, and the degree
di of a node i is the sum of link weights connected to node i.

In this paper, we describe our recent work on applying graph
signal processing tools for two applications in efficient scene
representation and analysis: motion segmentation and point
cloud coding. For image processing applications, a pixel may
be treated as a node in a graph; and for point clouds, each
point can be a node.

II. MOTION SEGMENTATION BASED ON
GRAPH CONSTRAINTS

A. Overview

Sparse subspace clustering (SSC) has recently been used
as a robust algorithm for motion segmentation using graph

spectral clustering techniques [2], where feature point trajecto-
ries are extracted from several video frames. The limitation is
its reliance on computing trajectories across multiple images.
Liu et al. [3] proposed a graph spectral clustering based on
feature descriptors of superpixels assuming that an object
appears in multiple images. In another related approach [4],
a “hypergraph” is built rather than a traditional graph where
the hypergraph is constructed based on similarities defined on
higher order tuples rather than pair of nodes.

A common limitation observed with the above methods is
their inability to cope well with complex motions, especially
with strong perspective effects appearing in the scene. In
this section, we enforce geometric constraints by defining a
graph structure where the signal on the graph is the set of
motion vectors (MVs) computed between every two frames
from a video encoder. Therefore, our approach does not rely
on detecting or tracking feature points or extracting pixel
trajectories over more than two frames.

B. Geometric-guided Graph Approaches

Unlike geometric vanishing points that are derived from
the lines appearing on objects in a scene, motion vanishing
points (MVP) are incurred at the intersections between motion
vectors.

Just as points from a rigid object with translational motion
share the same MVP in 3-D world, their corresponding motion
vectors in the image would share the same MVP in the 2-D
image plane. Based on this observation, the distances between
motion vanishing points can be used to distinguish moving
objects and to group together pixels from one object even
when parts of the object have motions in different directions
due to perspective effects. Therefore, we construct a graph as
shown in the left figure in Fig. 1, where the graph weights are
assigned as perspective distances based on MVP analysis as
shown in the right figure in Fig. 1.

The principle eigenvectors of the constructed graph,
i.e. those eigenvectors among the first K eigenvectors
{u1,u2, ...,uK} after removing the eigenvectors correspond-
ing to zero eigenvalues, could be used to cluster the pixels
into k groups [5].

Since spectral clustering does not provide direct semantic
meaning for each cluster, we further propose to utilize a
label propagation method to assign semantic meaning to the
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Fig. 1. Left: Graph structure; Right: Representation point of a MV and
distance between a MV pair.

Fig. 2. From left to right: Original image, result of using only PCA,
result of spectral clustering with the graph only clustering and the final result
assisted with label propagation.

segmented clusters by using PCA results as initial labels. Some
test results on Hopkins 155 Dataset are shown in Fig. 2.

III. GRAPH PROCESSING FOR POINT CLOUD
COMPRESSION

A. Background

3-D point clouds have become a practical way to represent
spatial data in many applications, such as virtual reality, mo-
bile mapping, and scanning of historical artifacts. In particular,
a point cloud comprises a set of coordinates or meshes, repre-
senting the point locations and some attributes attached to each
point. Earlier work from the computer graphics community
compressed or reduced the size of point clouds primarily by
leveraging the connectivity of structured point clouds. Such
approaches achieved compression by reducing the number of
vertices in triangular or polygonal meshes by, for example,
fitting surfaces or splines to the meshes [6].

In this section, we present a way to improve coding effi-
ciency when graph transforms are used for lossy compression
on blocks partitioned from a large or sparse point cloud.

B. Graph Transform with K- Nearest Neighbors

The graph transform for coding attributes in point clouds
has been studied in [7], which is limited in that the points are
aligned to grid positions, and only the points that are one unit
apart in any dimension are identified as being connected when
constructing the graph. This approach does not permit multiple
attributes to be co-located on one grid point, so resampling or
attribute averaging of those points would be needed. Sampling
the grid at a finer resolution would avoid this problem, but it
could lead to many disjoint sub-graphs in each block, which
can impact coding efficiency.

Here, we construct a graph with edges being more flexibly
placed between points, allowing the points being located on
quantized or fractional positions. Instead of limiting neighbors
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Fig. 3. Left: Illustration of process going from separate sub-graphs to one
graph by using K-NN with K = 3. Right: Performance of K-nearest-neighbor
graph transform for different values of K with pr = 1.0

to being one unit apart, we connect each point to its K nearest
neighbors and then prune any duplicated edges. In this way,
the K-nearest-neighbors method (K-NN) is able to incorporate
more regular connections within the graph, and thus leads to
a more appropriate graph transform.

On the left of Fig. 3, an example K-NN graph structure is
shown with K = 3, where the K-NN approach will make new
connections (P1, P8), (P2, P7) and (P3, P5), as compared to
the graph constructed using [7]. However, the K-NN graph
is not guaranteed to encompass all points of a block in
one sub-graph. Additional processes could be developed and
subsequently applied to determine how to connect multiple
disjointed sub-graphs. It is worth noting that in the K-NN
graph after pruning, there may exist some points which are
connected to more than K points. For example, P7 in Fig. 3
has 5 associated edges.

Finally, the weight of the graph edge is a function of
distance, e.g. e−

d
2σ2 , where d is a measured distance between

the connected points and σ denotes the variation in statistics
of the points.

Compression performance on Statue Klimt PointCloud for
varying K is shown in the right figure of Fig. 3. As expected,
severely limiting the connectivity of points to at most K =
3 neighbors hinders performance. K = 4 performs well for
lower rates, and the best performance is achieved with K ≥ 8.
Increasing K well above 8 or 16 yields the same performance.

IV. CONCLUSION AND OTHER WORK

We demonstrated two applications of graph signal pro-
cessing for visual scene representation and analysis. First, in
order to handle challenging motion segmentation for video
sequences with ego-motion, a geometric guided graph method
is proposed that utilizes graph spectral clustering. Second, for
point cloud processing, a K-NN graph transform is investigated
to efficiently code the attribute associated with each point.

We also use the GSP tools for other related applications, e.g.
motion analysis for car driving sequences, object tracking over
time, graph resampling for point cloud, etc. We expect GSP
tools to be useful for many applications in scene representation
and analysis, as graph could be viewed as a newer way to
represent constraints among the pixels/points in a scene.
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