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Abstract—This work studies control-theory-enabled intelligent
charging management for battery systems in electric vehicles
(EVs). Charging is crucial for the battery performance and
life as well as a contributory factor to a user’s confidence
in or anxiety about EVs. For existing practices and methods,
many run with a lack of battery health awareness during
charging, and none includes the user needs into the charging loop.
To remedy such deficiencies, we propose to perform charging
that, for the first time, allows the user to specify charging
objectives and accomplish them through dynamic control, in
addition to suppressing the charging-induced negative effects on
battery health. Two charging strategies are developed using the
linear quadratic control theory. Among them, one is based on
control with fixed terminal charging state, and the other on
tracking a reference charging path. They are computationally
competitive, without requiring real-time constrained optimization
needed in most charging techniques available in the literature.
A simulation-based study demonstrates their effectiveness and
potential. It is anticipated that charging with health awareness
and user involvement guaranteed by the proposed strategies will
bring major improvements to not only the battery longevity but
also EV user satisfaction.

Index Terms—Intelligent charging, battery management, fast
charging, electric vehicles, linear quadratic control, linear
quadratic tracking

I. INTRODUCTION

HOlding the promise for reduced fossil fuel use and air
pollutant emissions, electrified transportation has been

experiencing a surge of interest in recent years. Over 330,000
plug-in electric vehicles (EVs) are on the road in the United
States as of May 2015 [1], with strong growth foreseeable in
the coming decades. Most EVs rely on battery-based energy
storage systems, which are crucial for the overall EV perfor-
mance as well as consumer acceptance. Associated with this
trend, the past years have witnessed a growing body of work
on battery management research, e.g., state-of-charge (SoC)
estimation to infer the amount of energy available in a battery,
state-of-health (SoH) estimation to track the battery’s aging
status, thermal monitoring to avoid abnormal heat buildup [2–
11]. Another essential yet less explored problem in the battery
use is the charging strategies. Improper charging, e.g., charging
with a high voltage or current density, can induce the rapid
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buildup of internal stress and resistance, crystallization and
other negative effects [12–15]. The consequence is fast capac-
ity fade and shortened life cycle, and even safety hazards in the
extreme case, eventually impairing the consumer confidence.

Literature review: The popular charging ways, especially for
inexpensive lead-acid batteries used for cars and backup power
systems, are to apply a constant voltage or force a constant
current flow through the battery [16]. Such methods, though
easy to implement, can lead to serious detrimental effects for
the battery. One improvement is the constant-current/constant-
voltage charging [16; 17], which is illustrated in Figure 1.
Initially, a trickle charge (0.1C or even smaller) is used for
depleted cells, which produces a rise of the voltage. Then a
constant current between 0.2C and 1C is applied. This stage
ends when the voltage increases to a desired level. The mode
then switches to constant voltage, giving a diminishing current
to charge. Yet the implementation is empirical here, with
the optimal determination of the charge regimes remaining
in question [18]. In recent years, pulse charging has gained
much interest among practitioners. Its current profile is based
on pulses, as shown in Figure 2. Between two consecutive
pulses is a short rest period, which allows the electrochemical
reactions to stabilize by equalizing throughout the bulk of the
electrode before the next charging begins. This brief relaxation
can accelerate the charging process, reduce the gas reaction,
inhibit dendrite growth and slow the capacity fade [19–21]. Its
modified version, burp charging, applies a very short negative
pulse for discharging during the rest period , see Figure 2,
in order to remove the gas bubbles that have appeared the
electrodes.

A main issue with the above methods is the lack of an
effective feedback-based regulation mechanism. With an open-
loop architecture, they simply take energy from power supply
and put it into the battery. As a result, both the charging
dynamics and the battery’s internal state are not well exploited
to control the charging process for better efficiency and health
protection. This motivates the deployment of closed-loop and
model-based control. Constrained optimal control is applied
in [12; 22–24], in conjunction with electrochemical or equiv-
alent circuit models, to address fast charging subject to input,
state and temperature constraints. In this direction, fast con-
strained optimization has been leveraged recently in [25; 26]
to reduce the computational cost and push forward real-time
charging control. With the ability of dealing with uncertain
parameters, adaptive control is used for energy-efficient fast
charging in [27]. Based on the Pontryagin minimum princi-
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Fig. 1: Constant-current/constant-voltage charging.

Fig. 2: Pulse charging and burp charging.

ple, optimal control design of charging/discharging is studied
in [28] to maximize the work that a battery can perform over a
given duration while maintaining a desired final energy level.
However, we observe that the research effort for feedback-
controlled charging has remained limited to date. The existing
works are mostly concerned with the fast charging scenario
and employ a restricted number of investigation tools, thus
presenting much scope for further work.

Research motivation: In this paper, we propose to perform
control-based EV charging management in a health-aware
and user-involved way. Since the battery system is the heart
as well as the most expensive component of an EV, health
protection during charging is of remarkable importance to
prevent performance and longevity degradation. As such, it has
been a major design consideration in the controlled charging
literature mentioned above. Furthermore, we put forward that
the user involvement, entirely out of consideration in the state
of the art, will bring significant improvements to charging.
Two advantages at least will be created if the user can
give the charging management system some commands or
advisement about the charging objectives based on his/her
immediate situation. The first one will be improved battery
health protection against charging-induced harm. Consider two
scenarios: 1) after arriving at the work place in the morning,
a user leaves the car charging at the parking point with a
forecast in mind that the next drive will be in four hours;
2) he/she will have a drive to the airport in one hour, and a
half full capacity will be enough. In both scenarios, the user
needs can be translated into charging objectives (e.g., charge
duration and target capacity). The charger then can make
wiser, more health-oriented charging decisions when aiming to
meet the user specifications with such information, rather than
pumping, effectively but detrimentally, the maximum amount
of energy into the batteries within the minimum duration.
Second, a direct and positive impact on user satisfaction will

result arguably, because offering a user options to meet his/her
varying and immediate charging needs not only indicates a
better service quality, but also enhances his/her perception of
level of involvement.

Statement of contributions: We will build health-aware and
user-involved charging strategies via exploring two problems.
The first one is charging with fixed terminal charging state.
In this case, the user will give target SoC and charging dura-
tion, which will be incorporated as terminal state constraint.
The second problem is tracking-based charging, where the
charging is implemented via tracking a charge trajectory. The
trajectory is generated on the basis of user-specified objectives
and battery health conditions. The solutions, developed in
the framework of linear quadratic optimal control, will be
presented as controlled charging laws expressed in explicit
equations. The proposed methods differ from those in the
literature, e.g., [12; 22–24; 27; 28] in either of both of the
following two aspects: 1) from the viewpoint of application,
they keep into account both user specifications and battery
health — such a notion is unavailable before and will have
a potential impact on improving the existing charging prac-
tices; 2) technically, they, though based on optimization of
quadratic cost functions, do not require real-time constrained
optimization needed in many existing techniques [12; 22–24]
and thus are computationally more attractive. In addition, the
linear quadratic control is a fruitful area, so future expansion
of this work can be aided with many established results and
new progresses, e.g., [29–32].

Organization: The rest of the paper is organized as follows.
Section II introduces an equivalent circuit model oriented
toward describing the battery charging dynamics. Section III
presents the development of charging strategies. Section III-A
studies the charging with fixed terminal charging state speci-
fied by the user. In Section III-B, tracking-based charging is
investigated. Section IV offers numerical results to illustrate
the effectiveness of the design. Finally, concluding remarks
are gathered in Section V.

II. CHARGING MODEL DESCRIPTION

While the energy storage within a battery results from
complex electrochemical and physical processes, it has been
useful to draw an analogy between the battery electrical
properties and an equivalent circuit which consists of multiple
linear passive elements such as resistors, capacitors, inductors
and virtual voltage sources. While plenty of equivalent circuit
models have been proposed, we focus our attention throughout
the paper on a second-order resistance-capacitance (RC) model
shown in Figure 3.

Developed by Saft Batteries, Inc., this model was intended
for the simulation of battery packs in hybrid EVs [33; 34].
Identification of its parameters is discussed in [35]. As shown
in Figure 3, it consists of two capacitors and three resistors.
The resistor Ro represents the electrolytic resistance within a
battery cell. The double RC circuits in parallel are meant to
simulate the migration of the electric charge during the charg-
ing (or discharging) processes. Specifically, the Rs-Cs circuit
accounts for the electrode surface region, which is exposed to
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Fig. 3: The battery RC model, where Ro, Rs-Cs and Rb-
Cb, respectively, simulates the resistance of the electrolyte,
the surface region and the bulk inner part of an electrode.

the electrode-electrolyte interface; the Rb-Cb circuit represents
the bulk inner part of the electrode. Seeing a fast-speed transfer
of the electric charge, the electrode surface is responsible for
the high-frequency behavior during the charging processes and
associated with the immediate amount of charge the battery
can absorb. It, however, has a rather limited storage capacity.
By contrast, the bulk electrode is where the majority of the
electric charge is stored in chemical form. Since the diffusion
of ions within the electrode proceeds at a relatively slower
speed, the Rb-Cb circuit makes up the low-frequency part
of the charging response. This implies that Rb � Rs and
Cb � Cs. Note that it has been a significant effort to use
the RC circuits to approximate electrochemical processes at
different scales of time and frequency [36; 37]. The state-space
representation of the model is shown in (1). It can be verified
that this system is controllable and observable, indicating the
feasibility of both controlled charging and state monitoring.

Based on the model, the overall SoC is given by

SoC =
Qb −Qb +Qs −Qs
Q̄b −Qb + Q̄s −Qs

, (2)

where Qj and Q̄j for j = b, s denote the minimum and the
maximum allowed charge held by the capacitor Cj , which rep-
resent the operating limits of the battery. When the equilibrium
Vb = Vs is reached, the SoC can be simply expressed as the
linear combination of SoCb and SoCs, i.e.,

SoC =
Cb

Cb + Cs
SoCb +

Cs
Cb + Cs

SoCs. (3)

The RC model can well grasp the “rate capacity effect”,
which means that the total charge absorbed by a battery goes
down with the increase in charging current as is often stated
as the Peukert’s law. To see this, consider that a positive
current is applied for charging. Then both Qb and Qs, and
their voltages, Vb and Vs, will grow. However, Vs increases
at a rate faster than Vb. When the current I is large, the

terminal voltage V , which is largely dependent on the fast
increasing Vs, will grow quickly as a result. Then V will
reach the cut-off threshold in a short time. This will have
the charging process terminated, though Qb still remains at
a low level. Another essential phenomenon that can be well
approximated by this RC model is the “recovery effect”. upon
an interruption of charging. That is, when the charging stops,
the terminal voltage V will see a transient decrease due to the
charge transfer from Cs to Cb.

To develop a digitally controlled charging scheme, the
model in (1) is discretized with a sampling period of ts. The
discrete-time model takes the following standard form:{

xk+1 = Axk +Buk

yk = Cxk +Duk
. (4)

where x =
[
Qb Qs

]>
, u = I , y = V , and A, B, C and D

can be decided according to the discretization method applied
to (1).

Despite being linear and straightforward, the above RC
model can satisfy the practical needs in many applications.
This is because battery systems, e.g., those in electric vehicles,
need to limit the minimum and maximum SoC during opera-
tion [38; 39] for the purposes of safety, life, and a consistent
power capability. Within this favorable SoC range, the battery
behavior can be approximated as linear due to battery open-
circuit-voltage profiles.

For health consideration, we need to constrain the difference
between voltages across Cs and Cb, denoted as Vs and Vb
respectively, throughout the charging process. Note that Vs−Vb
is the force that drives the migration of the charge from Cs
to Cb during charging. It shares great resemblance with the
gradient of the concentration of Li ions within the electrode
created during charging causing the diffusion of ions. This
observation is further investigated in the Appendix. where
the analogy between the voltage difference and the Li-ion
concentration gradient is validated through a proof approx-
imate equivalence between the model in (1) and the well-
known single particle model (SPM) under certain conditions.
Too large a gradient value will cause internal stress increase,
heating, solid-electrolyte interphase (SEI) formation and other
negative side effects [40–42]. Mechanical degradation in the
electrode and capacity fade will consequently happen. Thus
to reduce the battery health risk, non-uniformity of the ion
concentration should be suppressed during charging, and this
implies the necessity of suppressing the voltage difference. It is
also noteworthy that such a restriction should be implemented
more strictly as the SoC increases, because the adverse effects
of a large concentration difference on the battery would be
stronger then.
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Fig. 4: The schematic diagram for charging based on linear quadratic control with fixed terminal charging state.

Next, we will build the charging strategies on the basis of
the above RC model. The development will be laid out in the
framework of linear quadratic control, taking into account both
health awareness and user needs.

III. HEALTH-AWARE AND USER-INVOLVED CHARGING
STRATEGIES

In this section, we will develop two charging strategies.
For both, the user specifies the desired charging duration and
target capacity. The first strategy accomplishes the task via
a treatment based on linear quadratic control subject to fixed
terminal state resulting from the user objective. In the second
case, charging is managed via tracking a charging trajectory
which is produced from the user objective. A discussion of
the strategies will follow.

A. Charging with Fixed Terminal Charging State

A charging scenario that frequently arises is: according
to the next drive need, a user will inform the charging
management system of his/her objective in terms of target SoC
and charging duration. This can occur for overnight parking
at home and daytime parking at the workplace, or when a
drive to some place will set off in a predictable time. As afore
discussed, the objective offered by the user, if incorporated into
the dynamic charging decision making process, would create
benefits for health protection compared to fast charging. This
motivates us to propose a control-enabled charging system
illustrated in Figure 4. The charging objective given by the user
is taken and and translated into the desired terminal charging
state. A linear quadratic controller will compute online the
charging current to apply so as to achieve the target state
when the charging ends. Meanwhile, a charging state estimator
will monitor the battery status using the current and voltage
measurements, and feed the information to the controller.
In the following, we will present how to realize the above
charging control.

From the perspective of control design, the considered
charging task can be formulated as an optimal control problem,
which minimizes a cost function commensurate with the harm
to health and subject to the user’s goal. With the model
in (4), the following linear quadratic control problem will be

of interest:

min
u0,u1,··· ,uN−1

1

2
x>NSNxN

+
1

2

N−1∑
k=0

(
x>k G

>QkGxk + u>k Ruk
)
,

subject to xk+1 = Axk +Buk, x0

xN = x̄.

(5)

where SN ≥ 0, Qk ≥ 0, R > 0 and

G =
[
− 1
Cb

1
Cs

]
.

In above, Gxk represents the potential difference between
Cb and Cs, and the time range N and the final state x̄ are
generated from the user-specified charging duration and target
SoC. Note that the battery should be at the equilibrium point
with Vb = Vs in the final state and that using (2)-(3), x̄
can be easily determined from the specified SoC value. The
quadratic cost function thus intends to constrain the potential
difference and magnitude of the charging current during the
charging process. The minimization is subject to both the state
equation and the fixed terminal state. The weight coefficient
Qk should be chosen in a way such that it increases over time,
in order to offer stronger health protection that is needed as the
SoC builds up. It is noted that x>NSNxN represents a general
formulation of the terminal cost, to which different options can
be assigned. It vanishes, for example, if SN = 0. Or it can be
set as SN = G>QNG to constrain the voltage difference in
the end state. However, since subjected to the hard constraint
xN = x̄, the end state would reach the desired point regardless
of SN .

Resolving the problem in (5) will lead to a state-feedback-
based charging strategy, which can be expressed in a closed-
form [29]:

Kk = (B>SNB +R)−1B>Sk+1A, (6)

Sk = A>Sk+1(A−BKk) +Qk, (7)

Tk = (A−BKk)>Tk+1, TN = I, (8)

Pk = Pk+1 − T>k+1B(B>Sk+1B +R)−1B>Tk+1,

PN = 0, (9)

Ku
k =

(
B>Sk+1B +R

)−1
B>, (10)
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uk = −
(
Kk −Ku

kTk+1P
−1
k T>k

)
xk

−Ku
kTk+1P

−1
k x̄. (11)

This procedure comprises offline backward computation of the
matrices Kk, Sk, Tk, Pk and Ku

k from the terminal state and
online forward computation of the control input (i.e., charging
current) uk.

The state variable xk is not measurable directly in practice,
so its real-world application necessitates the conversion of
the above state-feedback-based strategy to an output-feedback-
based one. One straightforward avenue to achieve this is
to replace xk by its prediction x̂k. This is justifiable by
the certainty equivalence principle, which allows the optimal
output-feedback control design to be divided into the separate
designs of an optimal state-feedback control and an optimal
estimator [43]. The optimal estimation can be treated via
minimizing

min
x0,x1,··· ,xk

1

2
(x0 − x̂0)>Σ−1

0 (x0 − x̂0)

+
1

2

k−1∑
i=0

w>i Π−1wi +
1

2

k∑
i=0

v>i Λ−1vi, (12)

where Σ0 > 0, Π > 0, Λ > 0, and

wk = xk+1 −Axk −Buk,
vk = yk − Cxk −Duk.

The one-step-forward Kalman predictor will result from solv-
ing (12), which is given by

Lk = AΣkC
>(CΣkC

> + Λ)−1, (13)
x̂k+1 = Ax̂k +Buk + Lk(yk − Cx̂k −Duk), (14)

Σk+1 = AΣkA
> + Π−AΣkC

>

· (CΣkC
> + Λ)−1CΣkA

>. (15)

Substituting xk with its estimate x̂k, the optimal control law
in (11) will become

uk = −
(
Kk −Ku

kTk+1P
−1
k T>k

)
x̂k −Ku

kTk+1P
−1
k x̄. (16)

Putting together (6)-(10), (13)-(15) and (16), we will obtain
a complete description of the charging method via linear
quadratic control with fixed terminal state, which is named
LQCwFTS and summarized in Table I. The LQCwFTS method
performs state prediction at each time instant, and then feeds
the predicted value, which is a timely update about the
battery’s internal state, to generate the control input to charge
the battery. Much of the computation for LQCwFTS can be
performed prior to the implementation of the control law. The
sequences, Kk, Sk, Tk, Pk and Ku

k can be computed offline,
and then Kk, Ku

kTk+1P
−1
k T>k and Ku

kTk+1P
−1
k are stored for

use when the control is applied. On the side of the Kalman
prediction, offline computation and storage of Lk can be done.
Then the only work to do during charging is to compute the
optimal state prediction and control input by (14) and (16),
reducing the computational burden.

B. Charging Based on Tracking

Tracking-control-based charging is another way to guarantee
health awareness and user objective satisfaction. A schematic
of its realization is shown in Figure 5. When a user specifies
the charging objective, a charging trajectory can be generated.
A charging controller will be in place to track the path. The
trajectory generation will be conducted with a mix of prior
knowledge of the battery electrochemistries, health awareness
and user needs. It is arguably realistic that an EV manufac-
turer can embed trajectory generation algorithms into BMSs
mounted on EVs, from which the user can select the one
that best fits the needs when he/she intends to charge the EV.
Leaving optimal charging trajectory generation for our future
quest, we narrow our attention to the focus of path-tracking-
based charging control here.

Suppose that the user describes the target SoC and duration
for charging, which are translated into the final state x̄. Then
a reference trajectory rk for k = 0, 1, · · · , N is calculated
with rN = x̄. Note that the trajectory should constrain
the difference between Vb and Vs to guarantee health. A
linear quadratic state-feedback tracking can be considered for
charging:

min
u0,u1,··· ,uN−1

1

2
(xN − rN )

>
SN (xN − rN )

+
1

2

N−1∑
k=0

[
(xk − rk)

>
Q (xk − rk) + u>k Ruk

]
,

subject to xk+1 = Axk +Buk, x0

(17)

where SN ≥ 0, Q ≥ 0 and R > 0. Referring to [29], the
optimal solution to the above problem is expressed as follows:

Kk = (B>Sk+1B +R)−1B>Sk+1A, (18)

Ks
k = (B>Sk+1B +R)−1B>, (19)

Sk = A>Sk+1(A−BKk) +Q, (20)

sk = (A−BKk)>sk+1 +Qrk, sN = SNrN , (21)
uk = −Kkxk +Ks

ksk+1. (22)

Resembling (6)-(11), the execution of the above procedure
is in a backward-forward manner. Specifically, (18)-(21) are
computed offline and backward prior to charging, and (22)
online and forward from the moment when charging begins.

Following lines analogous to the development of LQCwFTS,
the output-feedback tracker for charging can be created based
on (18)-(22) running with the Kalman predictor in (13)-
(15). That is, (22) will use x̂k rather than xk in practical
implementation, i.e.,

uk = −Kkx̂k +Ks
ksk+1. (23)

Summarizing (18)-(21), (13)-(15) and (23) will yield the
linear quadratic tracking strategy, or LQT, for charging, see
Table II. Similar to the aforeproposed LQCwFTS, the LQT
can have much computation completed offline. Then only the
Kalman state prediction and optimal tracking control (23) need
to be computed during the actual control run.

The computational cost of LQT can be further reduced if we
use its steady-state counterpart, making it more desirable in
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Offline backward computation (from time N to 0)
Kk = (B>SNB +R)−1B>Sk+1A
Sk = A>Sk+1(A−BKk) +Qk
Tk = (A−BKk)>Tk+1, TN = I
Pk = Pk+1 − T>k+1B(B>Sk+1B +R)−1B>Tk+1, PN = 0

Ku
k =

(
B>Sk+1B +R

)−1
B>

Online forward computation (from time 0 to N )
Battery state prediction
Lk = AΣkC

>(CΣkC
> + Λ)−1

x̂k+1 = Ax̂k +Buk + Lk(yk − Cx̂k −Duk)
Σk+1 = AΣkA

> + Π−AΣkC
>(CΣkC

> + Λ)−1CΣkA
>

Charging decision
uk = −

(
Kk −Ku

kTk+1P
−1
k T>k

)
x̂k −Ku

kTk+1P
−1
k x̄

TABLE I: The LQCwFTS charging strategy (Linear Quadratic Control with Fixed Terminal State).

Fig. 5: The schematic diagram for charging based on linear quadratic tracking.

the charging application. The steady-state tracker is deduced as
follows. It is known that, if (A,B) is stabilizable and (A,Q

1
2 )

is detectable, Sk, as N − k → ∞, will approach a unique
stabilizing solution of the discrete algebraic Riccati equation
(DARE)

S = A>SA−A>SB(B>SB +R)−1B>SA+Q.

Then Kk and Ks
k will approach their respective steady-state

values, K̄ and K̄s. In a similar way, the Kalman gain Lk
will achieve steady state L̄ as k →∞ given the detectability
of (A,C) and stabilizability of (A,Q

1
2 ), which is the unique

stabilizing solution to the DARE

Σ = AΣA> −AΣC>(CΣC> + Λ)−1CΣA> + Π.

According to the DARE theory, S and Σ can be solved for
analytically. With the steady-state gains K̄, K̄s and L̄, the
optimal prediction and control for charging will be

uk = −K̄x̂k + K̄ssk+1, (24)
x̂k+1 = Ax̂k +Buk + L̄(yk − Cx̂k −Duk). (25)

If (A − BK̄) is invertible, the backward computation of sk

can be substituted by the forward computation governed by

sk+1 = (A−BK̄)−>sk − (A−BK̄)−>Qrk. (26)

Its implementation is initialized by s0 computed offline
by (21). We refer to this suboptimal charging strategy (24)-
(26) as the steady-state LQT, or SS-LQT and outline it
in Table III. The SS-LQT strategy, due to its exceptional
simplicity, has more computational appeal in terms of time
and space complexity.

C. Discussion

The following remarks summarize our discussion of the
proposed charging strategies.

Remark 1: (Soft-constraint-based health awareness). As is
seen, the proposed LQCwFTS, LQT and SS-LQT strategies
incorporate the health awareness as part of the cost functions
rather than hard constraints. This soft-constraint-based treat-
ment will bring the primary benefit of computational efficiency
and convenience. This compares with the techniques based
on real-time constrained optimization, which are relatively
more time-consuming and on occasions, face the issue that
no feasible solution exists in the constrained region. In the
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Offline backward computation (from time N to 0)
Kk = (B>Sk+1B +R)−1B>Sk+1A
Ks
k = (B>Sk+1B +R)−1B>

Sk = A>Sk+1(A−BKk) +Q
sk = (A−BKk)>sk+1 +Qrk, sN = SNrN

Online forward computation (from time 0 to N )
Battery state prediction
Lk = AΣkC

>(CΣkC
> + Λ)−1

x̂k+1 = Ax̂k +Buk + Lk(yk − Cx̂k −Duk)
Σk+1 = AΣkA

> + Π−AΣkC
>(CΣkC

> + Λ)−1CΣkA
>

Charging decision
uk = −Kkx̂k +Ks

ksk+1

TABLE II: The LQT charging strategy (Linear Quadratic Tracking).

Offline computation of DAREs and gains
S = A>SA−A>SB(B>SB +R)−1B>SA+Q
Σ = AΣA> −AΣC>(CΣC> + Λ)−1CΣA> + Π
K̄ = (B>SB +R)−1B>SA
K̄s = (B>SB +R)−1B>

L̄ = AΣC>(CΣC> + Λ)−1

Offline computation of s0 (from time N to 0)
sk = (A−BK̄)>sk+1 +Qrk, sN = SNrN

Online forward computation (from time 0 to N )
Battery state prediction
x̂k+1 = Ax̂k +Buk + L̄(yk − Cx̂k −Duk)

Charging decision
sk+1 = (A−BK̄)−>sk − (A−BK̄)−>Qrk
uk = −K̄x̂k + K̄ssk+1

TABLE III: The SS-LQT charging strategy (Steady-State Linear Quadratic Tracking).

meantime, soft constraints are acknowledged as less powerful
than hard constraints, e.g., [12; 22–26], in terms of preventing
violation of certain physical limits during charging. However,
we argue that the use of soft constraints does not compromise
the effectiveness of the proposed strategies to protect the
battery health. This is fundmentally because the usual cause
of an actual limit violation is too aggressive a charging current
and an essential part of the proposed strategies is to suppress
the magnitude of the charging current. For instance, it is
noted that the harm to health is associated with a weighted
penalty for the LQCwFTS. When a proper weight Qk is
selected, minimizing the penalty cost will ensure a sufficient
consciousness of the health.

Remark 2: (Robustness of SS-LQT). The SS-LQT strategy
is based on a combination of linear quadratic tracker and a
Kalman filter. Such a design may engender weak robustness in

terms of gain and phase margins. To overcome this limitation,
the loop transfer recovery can be used to build robust control
design on the linear quadratic control structure [29].

Remark 3: (Choice of Qk and R for LQCwFTS). When
the weight coefficients Qk and R take different values, the
charging profiles generated by the LQCwFTS strategy will
change accordingly. This implies the importance of finding
appropriate Qk of R for the implementation. A basic guideline
is as follows:

• Qk should increase over time to suppress the use of
a large current when SoC becomes larger, because of
a battery’s susceptibility increasing with SoC to the
charging current.

• Qk � R, because the Q-weighted term in J is much
smaller than the R-weighted term.
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• The larger Qk is, the less aggressive charging action will
be. However, the overall charging action also depends on
the final state constraint.

It should be noted that the selection of α and β is a multi-
faceted issue, because it needs to account for both battery
health protection and charging speed and more broadly, the
economic cost and user satisfaction. Since these factors depend
on specific application scenarios, we leave this issue for
practitioners to resolve based on the above guideline.

Remark 4: (Generality to other models). The proposed de-
velopment has a potential applicability to other battery models.
First, the investigation, though based on a linear model, can
be extended to nonlinear battery models. It is observed that,
for variaous control-oriented battery models, the nonlinearity
exists only in measurement equation that relates the state
and applied current with the measured output voltage. Thus,
an extension can be readily made by deploying a nonlinear
Kalman filter for state estimation without changing the control
structure. We can also generalize the design to the well-
known single particle model (SPM). This model represents
each battery electrode as a spherical particle and delineates the
migration of ions in and between the particles as a diffusion
process [44]. The PDE-based SPM can be converted into
the standard linear state-space form, as shown in [2]. Then
following similar lines to this work, linear quadratic problems
can be established and solved for charging tasks, where the
difference of ion concentration gradients are constrained to
penalize charging-induced harm. It is also worth pointing out
that extensions can be made to accommodate the temperature
dynamics as a means to suppress the charging-induced heat
build-up. Specifically for the considered model in Equation
(1), a thermal coupling can be performed as shown in [35]. We
can then follow similar lines to accomplish the linear quadratic
charging design based on the modified model.

IV. NUMERICAL ILLUSTRATION

In this section, we present two simulation examples to
illustrate the performance of the proposed charging strategies.
Let us consider a lithium-ion battery described by the RC
model in (1) with known parameters provided by Saft Inc. for
hybrid electric vehicles, with Cb = 82 kF, Rb = 1.1 mΩ,
Cs = 4.074 kF, Rs = 0.4 mΩ, and Ro = 1.2 mΩ [33]. It
has a nominal capacity of 7 Ah. The model is discretized by a
sampling period of ts = 1 s. The initial SoC is assumed to be
30%. The user will specify that certain SoC must be achieved
within certain duration.

Example 1 - Application of LQCwFTS: Suppose that the
user wants to complete the charging in 2 hours. The total
number of time instants thus is N = 7200. Meanwhile, he/she
specifies the target SoC value. For the simulation purpose,
different target SoC values, 55%, 65%, 75%, 85% and 95%,
are set here. We apply the LQCwFTS method to carry out the
charging tasks. For the control run, Qk = 0.1 · (5 × 107)k/N

and R = 0.1. The exponential increase of Qk is due to the
growing vulnerability of the battery to a larger charging current
when the SoC increases. The practical system will be subject
to certain noises, the covariances of which should be included

in the Kalman filter implementation. Here, we assume that
W = 10−4I and V = 10−4.

The computational results are illustrated in Figure 6. It is
shown in Figure 6a that the different target SoCs are satisfied
when the charging ends right after two hours, meeting the
user-specified objectives. The SoC increases approximately
proportionally with time for the first 1.25 hours. Then the
rate slows down gradually to zero as the charging objective
is being approached. This results from a much larger weight
Qk in the later stage for health protection. The charging
current is kept at almost a constant level initially during each
charging implementation, as illustrated in Figure 6b. For a
higher target SoC, the magnitude of the current is larger
accordingly. However, the current drops quickly in each case
as the SoC grows further. The profiles of the corresponding
output voltage is shown in Figure 6c. They in general follow
a similar trend with the SoC trajectories, rising steadily at first
and then at gradually declining rates. The voltage difference
between Cs and Cb, which quantifies the harm incurred to the
battery, is characterized in Figure 6d. In each case, Vs − Vb
remains around a constant value in the first hour, despite
high-frequency fluctuations due to noise. This is because
a battery can accept a higher current at a low SoC level.
Yet the differences decreases drastically as more charge is
sent into the battery, in order to maximize the health of
the battery’s internal structure. For comparison, we enforce a
constant current of appropriate magnitude to flow through the
battery for 2 hours to reach the desired SoC. The consequent
potential differences are shown in Figure 6e, which are kept
at a fixed level unsurprisingly. This, however, will cause much
more detrimental effects to the battery when SoC grows, thus
expediting the aging processes.

Example 2 - Application of SS-LQT: We consider the use
of SS-LQT for charging in this example, which is an upgraded
version of LQT but more computationally efficient. The prob-
lem setting and the tasks are the same as in Example 1 —
charging the battery from an SoC of 30% to 55%, 65%, 75%,
85% and 95% in 2 hours for the same battery. The charging
trajectory is generated based on the task. For simplicity and
convenience, we assume that the desired trajectories for x1

and x2, denoted as rb and rs, are generated by

rj,k =
1− e−kts/τj
1− e−Nts/τj

(rj,N − rj,0) + rj,0,

where j = b or s, k = 1, 2, · · · , N − 1 and rj,0 is the initial
charge, rj,N the target charge, and τj the time coefficient for
j = b or s. Note that rj,0 and that rj,N can be calculated from
the initial SoC and user-specified target SoC. The resultant
trajectories have a steep increase followed by a gentle slope,
which are reasonable in view of health protection. Letting
τb = τs = Nts/4, Vs and Vb are forced to be equal through
the charging process. Thus at the trajectory design stage,
we put the minimization of the detrimental effects well into
consideration.

With the reference trajectories generated, the SS-LQT strat-
egy is applied to charging. The actual SoC increase over time
is demonstrated in Figure 7a. All the targets are reached. In
each case, the SoC grows at a fast rate when the SoC is
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Fig. 6: Example 1 - Application of LQCwFTS to charge the battery from an initial SoC at 30% to 55%, 65%, 75%, 85%
and 95%: (a) the SoC trajectories over time; (b) the charging current profiles; (c) the output voltage profiles; (d) the potential
differences as health indicator; (e) potential difference due to constant current charging.
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Fig. 7: Example 2 - Application of LQT to charge the battery from 30% to 55%, 65%, 75%, 85% and 95%: (a) the SoC
trajectories over time; (b) the charging current profiles; (c) the output voltage profiles; (d) the potential differences; (e) tracking
of x1 (i.e., Qb) for 95% target SoC; (f) tracking of x2 (i.e., Qs) for 95% target SoC.
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at a low level but at a slower rate when the SoC becomes
higher. Figure 7b shows the current produced by SS-LQT. The
current usually begins with a large magnitude but decreases
quickly. Figure 7c demonstrates the output voltage profiles of
the battery, which see a progressively decelerating growth. The
potential difference, given in Figure 7d, has a similar trend to
the current profiles. It is relatively high when the charging
starts, and then reduces fast. The state tracking for the task
of 95% SoC is shown in Figures 7e and 7f. It is observed
that tracking of rb by x1 exhibits high accuracy. Tracking of
rs by x2, however, is increasingly accurate, despite a minor
deviation in the first hour. Overall, the closer the target SoC
is approached, the smaller the tracking error becomes.

In the above examples, different charging current profiles
are generated for the same charging task. While the contrib-
utory factors include the selection of Q and the reference
charging trajectory generation, such a difference poses another
important question: how to assess and compare the charging
strategies? There is no clear-cut answer yet as it involves a mix
of battery electrochemisitry, charging performance, computa-
tional complexity, economic cost, and even user satisfaction.
Though beyond scope of this paper, evaluation of charging
strategies through theoretical analysis and experimental vali-
dation will be part of our future quest.

V. CONCLUSIONS

Effective battery charging management is vital for the devel-
opment of EVs. Recently, fast charging control has attracted
some research effort. However, the problem of health-aware
and user-involved charging has not been explored in the
literature. In this paper, we propose a set of first-of-its-kind
charging strategies, which aim to meet user-defined charging
objectives with awareness of the hazards to health. They are
developed in the framework of linear quadratic control. One
of them is built on control with fixed terminal state, and
the other two on tracking a reference charging trajectory.
In addition to the merits of health consciousness and user
involvement, they are more computationally competitive than
most existing charging techniques requiring online real-time
optimization solvers. The usefulness of the proposed strategies
is evaluated via a simulation study. This work will provide
further incentives for research on EV charging management
and is also applicable to other battery-powered applications
such as consumer electronics devices and renewable energy
systems. Our future research will include battery-type-specific
voltage difference limit identification, optimal charging tra-
jectory generation, and a comprehensive assessment of the
charging strategies.

APPENDIX

ON APPROXIMATE EQUIVALENCE BETWEEN (1) AND SPM

This appendix is to present a proof of approximate math-
ematical equivalence between the RC model in (1) and the
SPM. This will demonstrate that the difference in voltages
across Cb and Cs in Figure 3 approximates the Li-ion con-
centration gradient in the SPM.

(a) (b)

Fig. 8: (a) Subdivision of the spherical particle representing
the positive electrode into multiple finite volumes along the
radial coordinate; (b) subdivision of the particle into two finite
volumes, named the core and shell, respectively.

The SPM simplifies each electrode as a spherical particle
with area equivalent to the active area of this electrode [45].
Striking a balance between mathematical complexity and
fidelity toward capturing key physical and electrochemical
phenomena, it has found significant use in the study battery
management, e.g., [2; 3; 10]. At the core of the SPM is the
conservation of Li ions in the electrode phase. Specifically, the
migration of Li ions inside a solid particle is caused by the
gradient-induced diffusion. It follows from the Fick’s laws of
diffusion that

∂cj(r, t)

∂t
=

1

r2

∂

∂r

(
Djr

2 ∂cj(r, t)

∂r

)
, (A.1)

where c is the concentration of Li ions in the solid electrode, D
the diffusion coefficient, r the radial dimension of the spherical
particle representing the electrode, and j = n, p with n for the
negative electrode and p for the positive one. The associated
initial and boundary conditions are given by

cj(r, 0) = c0,
∂cj
∂r

∣∣∣∣
r=0

= 0,
∂cj
∂r

∣∣∣∣
r=Rj

= − 1

Ds,j
Jj .

(A.2)

Here, Jj is the molar flux at the electrode/electrolyte interface
of a single particle. When j = n and p, respectively,

Jn(t) = − I(t)

FSn
, Jp(t) =

I(t)

FSp
, (A.3)

where I is the charging (I > 0) or discharging (I < 0) current,
S the surface area, and Rj the radius of the particle.

Next, we consider convert the PDE-based diffusion equa-
tion into a system of ODE equations using a finite-volume
approach. That is, we subdivide the particle along the radial
coordinate into a set of continuous finite volumes, as shown
in Figure 8a. The finite volume at the center is a ball with
a radius r0, and the rest hollow spheres. The i-th sphere for
i = 0, 1, · · · , N has an outer radius of ri with rN = R. Note
that r−1 = 0.

The total Li-ion amount within the i-th finite volume can
be quantified as

Qj,i(t) =

∫ ri

ri−1

cj(r, t)dV
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=

∫ ri

ri−1

cj(r, t) · 4πr2dr. (A.4)

Inserting (A.1) into (A.4), we have

Q̇j,i(t) =

∫ ri

ri−1

∂cj(r, t)

∂t
· 4πr2dr

=

∫ ri

ri−1

d

(
4πDjr

2 ∂cj(r, t)

∂r

)
= 4πDjr

2 ∂cj(r, t)

∂r

∣∣∣∣ri
ri−1

= −4πDjr
2
i−1

∂cj(r, t)

∂r

∣∣∣∣
ri−1

+ 4πDjr
2
i

∂cj(r, t)

∂r

∣∣∣∣
ri

.

(A.5)

To proceed, we assume that the Li ions are uniformly dis-
tributed within each finite volume. That is, the Li-ion concen-
tration for the i-th sphere is

cj(r, t) =
Qj,i(t)

∆Vi
for ri−1 < r ≤ ri,

where ∆Vi = 4π(r3
i − r3

i−1)/3. Then, the concentration
gradient at ri can be approximated as

∂cj(r, t)

∂r

∣∣∣∣
ri

=

Qj,i+1(t)
∆Vi+1

− Qj,i(t)
∆Vi

ri+1−ri−1

2

=
Qj,i+1(t)

∆Vi+1∆ri+1
− Qj,i(t)

∆Vi∆ri+1
, (A.6)

where ∆ri+1 = (ri+1 − ri−1)/2. Then, according to (A.5)-
(A.6) and the boundary conditions in (A.2), we obtain

Q̇j,0(t) = − 4πDjr
2
0

∆V0∆r1
Qj,0(t) +

4πDjr
2
0

∆V1∆r1
Qj,1(t), (A.7)

Q̇j,i(t) =
4πDjr

2
i−1

∆Vi−1∆ri
Qj,i−1(t)

− 4πDj

(
(r2
i−1

∆Viri
+

r2
i

∆Vi∆ri+1

)
Qj,i(t)

+
4πDjr

2
i

∆Vi+1∆ri+1
Qj,i+1(t),

for 1 ≤ i < N, (A.8)

Q̇j,N (t) =
4πDjr

2
N−1

∆VN−1∆rN
Qj,N−1(t)−

4πDj(r
2
N−1)

∆VN∆rN
Qj,N (t)

± 4πr2
N

FSp(n)
I(t). (A.9)

Now let us consider only the positive electrode without loss
of generality and suppose that its particle is subdivided into
only two finite volumes, the bulk inner domain (core) and
the near-surface domain (shell), with r0 � r1 − r0. This
approximates the charge diffusion at the interface between the
near-surface area and the inside of the particle. By (A.7)-(A.9),
we have[

Q̇p,0(t)

Q̇p,1(t)

]
=

[
−η0 η1

η0 −η1

] [
Qp,0(t)
Qp,1(t)

]
+

[
0
γ

]
I(t) (A.10)

where η0 = 4πDpr
2
0/∆V0∆r1, η1 = 4πDpr

2
0/∆V1∆r1, and

γ = 4πr2
0/FSp.

It is seen that η0 � η1 in (A.10) due to ∆V0 � ∆V1 and
that Rs/(Rb+Rs) is close to 0 because Rs � Rb+Rs in (1).
With this observation and comparing (A.10) with (1), we can
find that they share an approximately equivalent mathematical
form. Thus, from the perspective of physical abstraction, we
can associate the shell of the particle with the surface capacitor
Cs and the core with the bulk capacitor Cb. Meanwhile,
an analogy can be drawn between the voltage difference
Vs − Vb = Qs/Cs − Qb/Cb and the gradient of the Li-ion
concentration in the two finite volumes, which is expressed as
Qp,1/∆V1 − Qp,0/∆V0. This finding justifies the use of the
voltage difference in Sections II and III.
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