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Abstract
We propose fast O(N) preconditioning, where N is the number of gridpoints on the prediction
horizon, for iterative solution of (non)-linear systems appearing in model predictive control
methods such as forward-difference Newton-Krylov methods. The Continuation/GMRES
method for nonlinear model predictive control, suggested by T. Ohtsuka in 2004, is a specific
application of the Newton-Krylov method, which uses the GMRES iterative algorithm to
solve a forward difference approximation of the optimality equations on every time step.
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Sparse preconditioning for model predictive control

Andrew Knyazev1 and Alexander Malyshev2

Abstract— We propose fast O(N) preconditioning, where
N is the number of gridpoints on the prediction horizon,
for iterative solution of (non)-linear systems appearing in
model predictive control methods such as forward-difference
Newton-Krylov methods. The Continuation/GMRES method
for nonlinear model predictive control, suggested by T. Ohtsuka
in 2004, is a specific application of the Newton-Krylov method,
which uses the GMRES iterative algorithm to solve a forward
difference approximation of the optimality equations on every
time step.

I. INTRODUCTION

The paper deals with a novel sparse preconditioning for
model predictive control (MPC) using, as a specific example,
the Continuation/GMRES method for on-line prediction sug-
gested by T. Ohtsuka [9] in 2004. The method becomes popu-
lar in solving industrial applications; see, e.g. [2]. The recent
work by A. Knyazev and A. Malyshev [6] gives guidelines
how to use the method in cases, when the system dynamics
obeys a geometric structure, e.g. the symplectic one, or when
the state lies on a smooth manifold. The structure-preserving
solver may increase accuracy of the numerical solution. The
work by A. Knyazev and A. Malyshev [7] presents an initial
study of problems with the particle solutions for nonlinear
MPC using Continuation/GMRES.

The Continuation/GMRES method is based on Newton-
type optimization schemes. The exact Newton method re-
quires an analytic expression of a corresponding Jacobian
matrix, which is rarely available in practice and is often
replaced with a forward difference (FD) approximation;
see, e.g., [3]. Such approximate Newton-type optimization
schemes utilize the FD approximation of the original non-
linear equation at every time step. T. Ohtsuka uses the
GMRES algorithm to solve a finite-difference approximation
Ax = b to the optimality conditions. To cope with possible
ill-conditioning of A, the authors of [14] propose a precon-
ditioning strategy, which proved to be not very efficient.

In our previous publications [4] and [5], we systematically
search for better preconditioners to accelerate the GMRES
and MINRES convergence in the C/GMRES method. In
the present paper, we propose a sparse efficient O(N)
preconditioner for this method, where N is the number of
gridpoints on the prediction horizon.
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Another popular approach to numerical solution of MPC
problems is developed in [11], [12], [13], [15] and based
on the interior-point method. The authors of [15] develop a
direct method for a linear MPC model with the O(N) arith-
metic complexity. The papers [12], [13] apply the MINRES
iteration with special preconditioners to similar linear MPC
problems and prove the O(N) arithmetical complexity of the
preconditioned iteration. In contrast to the above methods,
which use the Newton or quasi-Newton approximations, the
recent papers [1] and [8] investigate performance of the first-
order methods and their Nesterov’s acceleration.

Our proposed preconditioning technique is concerned with
a finite-difference approximation Ax = b to the optimality
conditions of the prediction problem, where certain elements
of the unknown vector x contain the control input for the
next step of the system. The operator A is symmetric and
coincides with the Schur complement of the Hessian of the
Lagrangian function, associated with the prediction problem.
We have discovered that A is close to a sparse matrix M
with O(N) nonzero elements such that its LU factors L
and U , computed by Gaussian elimination, also have only
O(N) nonzero entries. Therefore, application of the new
preconditioner, M−1r = U−1(L−1r), to a vector r is almost
as fast as that of diagonal preconditioners and can be used
as preconditioning of the GMRES iteration for the system
Ax = b. Moreover, we observe a very fast convergence of
the preconditioned GMRES in our numerical tests.

The rest of the paper is organized as follows. In Section II,
we derive a nonlinear equation that solves the model predic-
tion problem on a horizon, following papers [4], [9]. We
prove the symmetry of the Jacobian matrix for the function
defining this equation. Section III describes the continuation
method for solving the above mentioned nonlinear equa-
tion. Section IV formulates the preconditioned GMRES, as
in [4]. Section V describes our new preconditioner. The
preconditioner construction is the main result of the paper.
Section VI illustrates all details of the preconditioner setup
on a representative example. Section VII displays plots of
numerical results.

II. MODEL PREDICTION PROBLEM

The model predictive control (MPC) method solves a
receding horizon prediction problem along a fictitious time
τ ∈ [t, t + T ]. Our model finite horizon problem consists,
following [4], [9], in choosing the control u(τ) and parameter
vector p, which minimize the performance index J :

min
u,p

J,



where

J = φ(x(τ), p)|τ=t+T +

∫ t+T

t

L(τ, x(τ), u(τ), p)dτ

subject to the equation for the state dynamics

dx

dτ
= f(τ, x(τ), u(τ), p), (1)

and the constraints

C(τ, x(τ), u(τ), p) = 0, (2)

ψ(x(τ), p)|τ=t+T = 0. (3)

The initial value condition x(τ)|τ=t for (1) is the state vector
x(t) of the dynamic system. The control vector u = u(τ),
solving the problem over the horizon, is used as an input to
control the system at time t. The components of the vector
p(t) are parameters of the system. Equation (1) describes the
system dynamic that may be nonlinear in x and u. Equations
(2) and (3) give equality constraints for the state x and the
control u. The horizon time length T may in principle also
depend on t.

The continuous formulation of the finite horizon problem
stated above is discretized on a time grid τi over the horizon
[t, t + T ] partitioned into N time steps of size ∆τi =
τi+1 − τi, and the time-continuous vector functions x(τ)
and u(τ) are replaced by their indexed values xi and ui
at the grid points τi, i = 0, 1, . . . , N . The integral of the
performance cost J over the horizon is approximated by the
rectangular quadrature rule. The time derivative of the state
vector is approximated by the forward difference formula.
The discretized optimal control problem is as follows:

min
ui,p

[
φ(xN , p) +

N−1∑
i=0

L(τi, xi, ui, p)∆τi

]
,

subject to

xi+1 = xi + f(τi, xi, ui, p)∆τi, i = 0, 1, . . . , N − 1,
(4)

C(τi, xi, ui, p) = 0, i = 0, 1, . . . , N − 1, (5)

ψ(xN , p) = 0. (6)

The necessary optimality conditions for the discretized
finite horizon problem are obtained by means of the discrete
Lagrangian function

L(X,U) = φ(xN , p) +

N−1∑
i=0

L(τi, xi, ui, p)∆τi

+λT0 [x(t)− x0]

+

N−1∑
i=0

λTi+1[xi − xi+1 + f(τi, xi, ui, p)∆τi]

+

N−1∑
i=0

µTi C(τi, xi, ui, p)∆τi + νTψ(xN , p),

where X = [xi λi]
T , i = 0, 1, . . . , N , and U = [ui µi ν p]

T ,
i = 0, 1, . . . , N − 1. Here, λ is the costate vector, µ is the

Lagrange multiplier vector associated with the constraint (5).
The terminal constraint (6) is relaxed by the aid of the
Lagrange multiplier ν. For further convenience, we also
introduce the Hamiltonian function

H(t, x, λ, u, µ, p) = L(t, x, u, p)

+ λT f(t, x, u, p) + µTC(t, x, u, p).

The necessary optimality conditions are the (KKT) sta-
tionarity conditions: Lλi

= 0, Lxi
= 0, i = 0, 1, . . . , N ,

Luj
= 0, Lµj

= 0, i = 0, 1, . . . , N − 1, Lνk = 0, Lpl = 0.
The KKT conditions are reformulated in terms of a map-

ping F [U, x, t], where the vector U combines the control
input u, the Lagrange multiplier µ, the Lagrange multiplier
ν, and the parameter p, all in one vector:

U(t) = [uT0 , . . . , u
T
N−1, µ

T
0 , . . . , µ

T
N−1, ν

T , pT ]T .

The vector argument x in F [U, x, t] denotes the current
measured or estimated state vector, which serves as the initial
vector x0 in the following procedure.

1) Starting from the current measured or estimated state
x0, compute xi, i = 0, 1 . . . , N − 1, by the forward
recursion

xi+1 = xi + f(τi, xi, ui, p)∆τi.

Then starting from

λN =
∂φT

∂x
(xN , p) +

∂ψT

∂x
(xN , p)ν

compute the costates λi, i = N,N−1, . . . , 1, by the
backward recursion

λi = λi+1 +
∂HT

∂x
(τi, xi, λi+1, ui, µi, p)∆τi.

2) Calculate F [U, x, t], using just obtained xi and λi, as

F [U, x, t]

=



∂HT

∂u (τ0, x0, λ1, u0, µ0, p)∆τ0
...

∂HT

∂u (τi, xi, λi+1, ui, µi, p)∆τi
...

∂HT

∂u (τN−1, xN−1, λN , uN−1, µN−1, p)∆τN−1

C(τ0, x0, u0, p)∆τ0
...

C(τi, xi, ui, p)∆τi
...

C(τN−1, xN−1, uN−1, p)∆τN−1

ψ(xN , p)

∂φT

∂p (xN , p) + ∂ψT

∂p (xN , p)ν

+
∑N−1
i=0

∂HT

∂p (τi, xi, λi+1, ui, µi, p)∆τi



.

The equation with respect to the unknown vector U(t)

F [U(t), x(t), t] = 0 (7)



gives the required necessary optimality conditions.
Theorem 1: The Jacobian matrix FU [U, x, t] is symmetric

for all U , x, and t.
Proof: The equation LX(X,U) = 0 is always solvable

with respect to X by the forward recursion for xi and
backward recursion for λi. Let us denote its solution by
X = g(U). Then F [U ] = LU (g(U), U) and

FU = LUU (g(U), U) + LUX(g(U), U)gU .

Differentiation of the identity LU (g(U), U) = 0 with respect
to U gives the identity

LUU (g(U), U) + LUX(g(U), U)gU (U) = 0.

Differentiation of the identity LX(g(U), U) = 0 with respect
to U gives the identity

LXU (g(U), U) + LXX(g(U), U)gU (U) = 0.

Hence gU = −L−1
XX(g(U), U)LXU (g(U), U) and

FU [U ] =LUU (g(U), U) (8)

− LUX(g(U), U)L−1
XX(g(U), U)LXU (g(U), U),

which is the Schur complement of the symmetric Hessian
matrix of L at the point (X,U) = (g(U), U). The Schur
complement of any symmetric matrix is symmetric.

III. CONTINUATION ALGORITHM

The controlled system is sampled on a uniform time grid
tj , j = 0, 1, . . .. Solution of equation (7) must be found
at each time step tj on the controller board, which is a
challenging part of implementation of NMPC.

Let us denote xj = x(tj), Uj = U(tj), and rewrite the
equation F [Uj , xj , tj ] = 0 equivalently in the form

F [Uj , xj , t]− F [Uj−1, xj , tj ] = bj ,

where
bj = −F [Uj−1, xj , tj ]. (9)

Using a small h, which may be different from ∆t =
maxj(tj+1 − tj) and ∆τ = maxi ∆τi, we introduce the
forward difference operator

aj(V ) = (F [Uj−1 + hV, xj , tj ]− F [Uj−1, xj , tj ])/h. (10)

We note that the equation F [Uj , xj , tj ] = 0 is equivalent to
the equation aj(∆Uj/h) = bj/h, where ∆Uj = Uj −Uj−1.

Let us denote the k-th column of the m×m identity matrix
by ek, where m is the dimension of the vector U , and define
an m×m matrix Aj with the columns Ajek, k = 1, . . . ,m,
given by the formula Ajek = aj(ek). The matrix Aj is an
O(h) approximation of the Jacobian matrix FU [Uj−1, xj , tj ].
The Jacobian matrix FU is symmetric by Theorem 1.

Suppose that an approximate solution U0 to the equation
F [U0, x0, t0] = 0 is available. The first block entry of U0 is
then taken as the control u0 at the state x0. The next state
x1 = x(t1) is either sensor estimated or computed by the
formula x1 = x0 + f(t0, x0, u0)(t1 − t0); cf. (1).

At the time tj , j > 1, we have the state xj and the vector
Uj−1 from the previous time tj−1. Our goal is to solve the
following equation with respect to V :

aj(V ) = bj/h. (11)

Then we set ∆Uj = hV , Uj = Uj−1 + ∆Uj and choose
the first block component of Uj as the control uj . The next
system state xj+1 = x(tj+1) is either sensor estimated or
computed by the forward Euler formula

xj+1 = xj + f(tj , xj , uj)(tj+1 − tj).

A direct way to solve (11) is generating the matrix Aj and
then solving the system of linear equations Aj∆Uj = bj ;
e.g., by the Gaussian elimination.

A less expensive alternative is solving (11) by the GMRES
method, where the operator aj(V ) is used without explicit
construction of the matrix Aj ; cf., [3], [9].

IV. PRECONDITIONED GMRES

We recall that, for a given system of linear equations
Ax = b and initial approximation x0, GMRES constructs
orthonormal bases of the Krylov subspaces

Kn = span{r0, Ar0, . . . , An−1r0}, n = 1, 2, . . . ,

given by the columns of matrices Qn, such that AQn =
Qn+1Hn with the upper Hessenberg matrices Hn and then
searches for approximations to the solution x in the form
xn = Qnyn, where yn = argmin‖AQnyn − b‖2.

The convergence of GMRES may stagnate for an ill-
conditioned matrix A. The convergence can be improved
by preconditioning. A matrix M that is close to the matrix
A and such that computing M−1r for an arbitrary vector
r is relatively easy, is referred to as a preconditioner. The
preconditioning for the system of linear equations Ax = b
with the preconditioner M formally replaces the original
system Ax = b with the equivalent preconditioned lin-
ear system M−1Ax = M−1b. If the condition number
‖M−1A‖‖A−1M‖ of the matrix M−1A is small, conver-
gence of iterative solvers for the preconditioned system can
be considerably faster than without preconditioning.

A typical implementation of the preconditioned GMRES
is given by Algorithm 1. GMRES without preconditioning
is the same algorithm with z = r. In the pseudocode, we
denote by Hi1:i2,j1:j2 the submatrix of H with the entries
Hij such that i1 ≤ i ≤ i2 and j1 ≤ j ≤ j2.

It is a common practice to compute the LU factorization
M = LU by the Gaussian elimination and then compute the
vector M−1r by the rule M−1r = U−1(L−1r).

V. SPARSE PRECONDITIONER

Our finite horizon model prediction problem allows us
to construct sparse preconditioners Mj with a particular
structure. These preconditioners are highly efficient, which
is confirmed by the numerical experiments described below.

We first observe that the states xi, computed by the
forward recursion, and the costates λi, computed by the
subsequent backward recursion, satisfy, in practice, the



Algorithm 1 Preconditioned GMRES(kmax)
Input: a(v), b, x0, kmax, M
Output: Solution x of a(x) = b

1: r = b− a(x0), z = M−1r, β = ‖z‖2, v1 = z/β
2: for k = 1, . . . , kmax do
3: r = a(vk), z = M−1r
4: H1:k,k = [v1, . . . , vk]T z
5: z = z − [v1, . . . , vk]H1:k,k

6: Hk+1,k = ‖z‖2
7: vk+1 = z/‖z‖2
8: end for
9: y = arg miny‖H1:kmax+1,1:kmaxy − [β, 0, . . . , 0]T ‖2

10: x = x0 + [v1, . . . , vkmax
]y

following property: ∂xi1/∂ui2 = O(∆τ), ∂λi1/∂ui2 =
O(∆τ), ∂xi1/∂µi2 = 0 and ∂λi1/∂µi2 = O(∆τ). It is a
corollary of theorems about the derivatives of solutions of
ordinary differential equations with respect to a parameter;
see, e.g., [10].

Now we assume that the predicted states xi and costates
λi are computed by the forward and backward recursions
for the vector Uj−1 at the current system state xj = x(tj)
during computation of the right-hand side vector bj and use
the predicted xi and λi to form the blocks Huu, Huµ, Hµu,
Hµµ of the symmetric matrix

Mj =

 Huu(Uj−1, xj , tj) Huµ(Uj−1, xj , tj) M13

Hµu(Uj−1, xj , tj) Hµµ(Uj−1, xj , tj) M23

M31 M32 M33

 ,
where [M31,M32,M33] coincides with the last l rows of Aj .
The integer l denotes the sum of dimensions of ψ and p.

In the notation of Theorem 1, the above construction is ex-
plained as follows. We discard the second term in formula 8
and use the truncated expression FU [U ] = LUU (g(U), U)
for the entries of Mj apart from the last l columns and last l
rows. The last l columns are computed exactly, the last l rows
equal the transposed last l columns because of the symmetry
of Mj . The possibility to use the truncated expression is
due to the above observation that ∂xi1/∂ui2 = O(∆τ),
∂λi1/∂ui2 = O(∆τ), ∂xi1/∂µi2 = 0, ∂λi1/∂µi2 = O(∆τ).
Moreover, the norm of Aj −Mj is of order O(∆τ).

The matrix Mj is sparse since the blocks Huu, Huµ,
Hµu, Hµµ are block diagonal and l is small. The particular
structure of Mj is convenient for efficient LU factorization. It
is possible to simultaneously permute the rows and columns
of Mj and to obtain an arrow-like pattern of nonzero ele-
ments, which admits a fast LU factorization. A representative
example of the sparse preconditioners Mj and their LU
factorization is given in the next section.

As a result, the setup of Mj , computation of its LU
factorization, and application of the preconditioner all cost
O(N) floating point operations. The memory requirements
are also of order O(N).

VI. EXAMPLE

We consider a test nonlinear problem, which describes
the minimum-time motion from a state (x0, y0) to a state
(xf , yf ) with an inequality constrained control:

• State vector ~x =

[
x
y

]
and input control ~u =

[
u
ud

]
.

• Parameter ~p = [p], where p = tf − t is the length of the
evaluation horizon [t, tf ], and tf is the terminal time.

• Nonlinear dynamics is governed by the system of ODE

~̇x = f(~x, ~u, ~p) =

[
(Ax+B) cosu
(Ax+B) sinu

]
.

• Constraints: C(~x, ~u, ~p) = [(u − cu)2 + u2d − r2u] = 0,
where cu = c0 + c1 sin(ωt), i.e., the control u always
stays within the curvilinear band cu−ru ≤ u ≤ cu+ru).

• Terminal constraints: ψ(~x, ~p) =

[
x− xf
y − yf

]
= 0 (the

state should pass through the point (xf , yf ) at t = tf )
• Objective function to minimize:

J = φ(~x, ~p) +

∫ tf

t

L(~x, ~u, ~p)dt,

where

φ(~x, ~p) = p, L(~x, ~u, ~p) = −wdud

(the state should arrive at (xf , yf ) in the shortest time;
the function L serves to stabilize the slack variable ud)

• Constants: A = B = 1, x0 = y0 = 0, xf = yf = 1,
c0 = 0.8, c1 = 0.3, ω = 20, ru = 0.2, wd = 0.005.

The horizon [t, tf ] is parameterized by the affine mapping
τ → t+ τp with τ ∈ [0, 1].

The components of the corresponding discretized problem
on the horizon are given below:

• ∆τ = 1/N , τi = i∆τ , cui = c0 + c1 sin(ω(t+ τip));

• the participating variables are the state
[
xi
yi

]
, the

costate
[
λ1,i
λ2,i

]
, the control

[
ui
udi

]
, the Lagrange

multipliers µi and
[
ν1
ν2

]
, the parameter p;

• the state is governed by the model equation{
xi+1 = xi + ∆τ [p (Axi +B) cosui] ,
yi+1 = yi + ∆τ [p (Axi +B) sinui] ,

where i = 0, 1, . . . , N − 1;
• the costate is determined by the backward recursion

(λ1,N = ν1, λ2,N = ν2) λ1,i = λ1,i+1

+ ∆τ [pA(cosuiλ1,i+1 + sinuiλ2,i+1)] ,
λ2,i = λ2,i+1,

where i = N − 1, N − 2, . . . , 0;
• the equation F (U, x0, y0, t) = 0, where

U = [u0, ud,0, . . . , uN−1, ud,N−1,

µ0, . . . , µN−1, ν1, ν2, p],



has the following rows from the top to bottom: ∆τ [p(Axi +B) (− sinuiλ1,i+1 + cosuiλ2,i+1)
+ 2 (ui − cui)µi] = 0

∆τ [2µiudi − wdp] = 0{
∆τ
[
(ui − cui)2 + u2di − r2u

]
= 0{

xN − xr = 0
yN − yr = 0
∆τ [

N−1∑
i=0

(Axi +B)(cosuiλ1,i+1 + sinuiλ2,i+1)

− 2(ui − cui)µic1 cos(ω(t+ τip))ωτi
−wdudi] + 1 = 0.

The matrices Aj have the sparsity structure as in Fig. 4.
The preconditioner Mj is the symmetric matrix

Mj =


M11 0 M13 M14 M15

0 M22 M23 0 M25

M31 M32 0 0 M35

M41 0 0 0 M45

M51 M52 M53 M45 M55


having the diagonal blocks M11, M13 = MT

31, M22, M23 =
MT

32. The diagonal entries of M11 equal

∆τ [2µi − p(Axi +B)(cosuiλ1,i+1 + sinuiλ2,i+1)].

The diagonal entries of the blocks M22, M13, and M23 equal
∆τ2µi, ∆τ2(ui−cui), and ∆τ2udi, respectively. The entries
of the vectors M15, M25, and M35 are, respectively,

∆τ(Axi +B)(− sinuiλ1,i+1 + cosuiλ2,i+1)

−∆τ2µic1 cos(ω(t+ τip))ωτi,

−∆τwd, and − 2∆τ(ui − cui)c1 cos(ω(t+ τip))ωτi.

The blocks M14, M45, and M55 equal to the respective
blocks of A and have to be computed exactly. The sparsity
pattern of Mj is displayed in Fig. 4.

To compute the LU factorization of Mj with O(N)
floating point operations, we first repartition Mj as

Mj =

[
K11 K12

K21 K22

]
,K11 =

 M11 0 M13

0 M22 M23

M31 M32 0

 ,
where K11 is usually nonsingular. Using the representation

K−1
11 =

 M23M32 −M13M32 M13M22

−M23M31 M13M31 M11M23

M22M31 M11M32 −M11M22


×

 D
D

D

 ,
where D = (M11M23M32+M13M22M31)−1, we obtain the
block triangular factors

L =

[
I 0

K21K
−1
11 I

]
, U =

[
K11 K12

0 S22

]
,

where S22 = K22 − K21K
−1
11 K12. The application of the

preconditioner costs O(N) operations.
An alternative construction of the LU factorization uses a

suitable simultaneous permutation of the rows and columns
of Mj with the permutation indices 1, 1 + N, 1 + 2N ,. . . ,
i, i + N, i + 2N ,. . . ,N, 2N, 3N, 1 + 3N, 2 + 3N, 3 + 3N .
The sparsity patterns of the permuted matrix and its lower
triangular factor L are displayed in Fig. 5, the sparsity pattern
of the upper triangular factor U is the transpose of that of
the factor L.

VII. NUMERICAL RESULTS

In our numerical experiments, carried out in MATLAB,
the system of weakly nonlinear equations (11) for the test
problem from Section VI is solved by the GMRES method.
The error tolerance in GMRES is tol = 10−5. The number
of grid points on the horizon is N = 100, the sampling time
of the simulation is ∆t = 1/500, and h = 10−8.

The sparse preconditioners for GMRES are constructed
as in Section VI, and the LU factorization is computed as
proposed in the last paragraph of Section VI.

Figure 1 shows the computed trajectory for the test ex-
ample and Figure 2 shows the optimal control by the MPC
approach using GMRES with preconditioning.

GMRES with preconditioning executes only 2 iterations
at each step while keeping ‖F‖2 close to 10−4. For compar-
ison, we show the number of iterations in GMRES without
preconditioning in Figure 3, which is 4-14 times larger.
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Fig. 1. Trajectory by NPMC using GMRES with preconditioning

VIII. CONCLUSION

We propose an efficient sparse preconditioner for the
Continuation/GMRES method for nonlinear MPC problems.
The arithmetical cost of preconditioning is O(N), memory
storage is O(N), where N is the number of gridpoints on
the prediction horizon.
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Fig. 2. NMPC control u using GMRES with preconditioning
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Fig. 3. The number of GMRES iterations without preconditioning, N =
100, ∆t = 1/500, kmax = 100
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