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Abstract

We extend a recently developed design for indirect adaptive model predictive control (IAMPC)
and presents additional results on its stability properties. IAMPC guarantees constraints sat-
isfaction including during the learning transient, is input-to-state stable (ISS) with respect
to the parameter estimation error, and has computational burden comparable to that of
non-adaptive MPC. In this paper we extend ITAMPC to the case of uncertain input-to-state
matrix, we provide a new method to design robust constraints, and we show additional stabil-
ity results, in particular that asymptotic stability does not require the parameter estimation
error to be zero, which also allow us to derive a tighter ISS Lyapunov function.
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Further Results and Properties of Indirect Adaptive Modeldietive Control
for Linear Systems with Polytopic Uncertainty

Donglei Fan, Stefano Di Cairano

Abstract— We extend a recently developed design for indi- enforce constraint satisfaction, and terminal cost andiset
rect adaptive model predictive control (IAMPC) and presens  signed from parameter-dependent Lyapunov functions [12],
additional results on its stability properties. IAMPC guar antees [13] for obtaining stability properties. The plant in clase

constraints satisfaction including during the learning transient, . NP .
is input-to-state stable (ISS) with respect to the paramete loop with IAMPC satisfies input and state constraint even

estimation error, and has computational burden comparable during the learning transient, and is input-to-state stgl3S)
to that of non-adaptive MPC. In this paper we extend IAMPC  with respect to the parameter estimation error. Since ISS

to the case of uncertain input-to-state matrix, we provide anew  “parametrizes” the closed-loop behavior with respect ® th
method to design robust constraints, and we show additional estimation error, IAMPC makes only minimal assumptions

stability results, in particular that asymptotic stabilit y does not . . . )
require the parameter estimation error to be zero, which al® on the estimator, basically, that the estimator provides a

allow us to derive a tighter ISS Lyapunov function. convex combination vector, which allows to separate the
estimator and the control design.
|. INTRODUCTION In this paper, we extend IAMPC to the uncertainty present

The interest on model predictive control (MPC) in severa®!SO in the input-to-state matrix (i.e3), and show that with
applications domains [1]-[3] is due to its capability of2PPropriate changes to the design procedures, the IAMPC
achieving high performance control for multivariable gyss ~ Properties still hold. Then, we prove a more stringent éitgbi
subject to constraints. However, MPC requires a reliablgsult, where asymptotic stability (AS) is achieved also
prediction model, which may be hard to obtain beforéN'th qsmall, yet, non-zero, estimation error, which result
controller deployment, especially in applications dorsainin @ tighter ISS Lyapunov function. Also, we propose an
such automotive, factory automation, and aerospace [B], [@Iterpat|ve methqd for deS|gn|ng robu.st constraints to the
due to part-to-part variability, aging, and manufacturimg rr_1aX|maI RCI_set_ in [10], which results_ln a computanonally
precisions. Thus, often MPC needs to operate with uncertaffmpler, albeit slightly more conservative, design.
models and, for cost and verification requirements, it needs N the rest of the paper, in Section Il we describe the
to be restricted to execute with limited computational gffo !AMPC and the related control problem. In Section Il we

When the model parameters are unknown but constaftend the unconstrained IAMPC design to the case of
or slowly varying, a robust MPC approach [4]-[6] may beXncertainty in the input-to-state matrix, and derive teght
unnecessarily conservative and computationally expensistability results showing AS even under a (small) non-
e.g., due to assuming continuous changes in the paranf&f0 estimation error. In Sec_t|0n IV we de_scrlbe the new
ters or requiring solving linear matrix inequalities (LNIs de5|gn for the robust constrgmt for constrained IAMPC. In_
Instead the uncertain parameters can be learned and ffction V we show a numerical example and a case study in
prediction model, constraints and cost function COrrecte%atellne_orb|t control. Conclusion are drawn in Section VI
accordingly, resulting in adaptive MPC. Some adaptive MPC Notation: R, Roy, Ry, Z, Zoy, Z are the sets of
algorithms have been recently proposed [7]-[9], based df&l nonnegative real, positive real, and integer, noatheg
different model assumptions and computational framework§t€ger, positive integer numbers. We denote intervalsgusi

In [10], an Indirect Adaptive MPC (IAMPC) method was Notations likeZ, ;) = {z € Z: a < z < b}. co{X'} denotes
proposed for uncertain systems modeled as polytopic linef{le convex hull of the sef’, and int(X) its interior. For
difference inclusions (pLDIs), where the uncertainty is@ms VECtors, inequalities are intended componentwise, wiite f
ciated to the convex combination vector by which the verte§iatrices indicate (semi)definiteness, ahgi.(Q) denotes
models of the pLDI are combined to produce the actud® smallest eigenvalue @p. By [z]; we denote the-th
system dynamics. The unknown vector is assumed to (§@mponent of vector, and by and0 the identity and the
constant or slowly varying, motivating the use of adaptatio all-zero” matrices of appropriate dimensiof: [, denotes
To achieve a computational burden similar to standard Mp&€p-norm, and| - || = || - [l B.(0) C R" denotes the open
IAMPC only solves online a quadratic programming (Qppall centered at the origin with radius For a discrete-time

problem, exploits robust control invariant (RCI) sets [td] Signalz € R™ with sampling periodr’, z(t) is the state a
sampling instant, i.e., at timeTt, =, denotes the predicted
D. Fan is with Dept of ECE, the Johns Hopkins University, Batre, ~ value ofz at samplet + k, i.e., 2(t + k), based on data at
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1. PRELIMINARIES AND PROBLEM DEFINITION whereé(g) = {5: € —¢,€ € =} is the set of admissible

We introduce definitions and results used in the subseque‘?ﬁt?maﬂon errors. The 1AMPC doef not require a specific
developments, see, e.g., [14, Appendix B] for detalils. estlmgtor choice, bgt only tha(t) < = for all t € Zo-
Definition 1: Given «(t + 1) = f(x(t),w(t)), € R, At time ¢t € Zy4, given the sequence of estimatggt)}.,
w e W C R, asetS ¢ R is robust positive invariant the IAMPC constructs estimate prediction sequetite €
(RPI) for_f iff %or all z €8, f(z,w) €S, forall w e W. =N+1 and solves the finite time optimal control problem

If w = {0} Sis galled positive invariant (PI). O Vé\,ﬁvpc(a:(t)) — (3a)
Definition 2: Given z(t + 1) = f(z(t),u(t), w(t)), = € ¢ : ,
R, u e U CR™ we W CR? asetS C R is robust o TP Evi)enge + (3b)
control invariant (RCI) forf iff for all « € S, there exists N—-1
u € U such thatf(z, u,w) € S, forallw € W. If w = {0}, > Qe + up Ruge  (3¢)
S is called control invariant (Cl). O k=0
Definition 3: Given z(t + 1) = f(z(t)), z € R™, and a ¢
Pl setS for f, with 0 € S, a functionV : R” — Rg, such s.t. Ty = Z[Ek\t]i(z‘lixk\t + Biugy) (3d)
that there existsvi, as, an € Koo and o (||z]) < V(z) < i=1
aa(||z]), V(f(z)) = V(z) < —aa(]z|) for all z € S is a (ks Ukjt) € Cou, k € Zig n—1)  (3€)
Lypaunov function forf in S. O Ty € Xy (3f)
Definition 4: Given z(t + 1) = f(z(t),w(t)), x € R, o = a(t), (39)

w € W C RY and a RPI setS for f, with 0 € S, a
functionV : R — R, such that there exisis;,as,an € WhereN € Z, is the prediction horizong) € R"*", R €
Ko andy € K such thatos(|z])) < V(z) < ao(|zf), R™™ QR >0, P(§) € R™™, P(§) > 0, for all £ €
V(f(x)) — V() < —aa(lz]) + y(|w|) forall w e W E, Cou € X xU, Uy = [ug); ...un—1)4 is the sequence
and for allz € S is an input-to-state stable (ISS) Lyapunovof control inputs along the prediction horizon, abgf =
function for f in S with respect tow. 0 [u;‘)'t "‘u*Nfl\t] is the optimal solution of (3). The control
Result 1:Givenz(t + 1) = f(x(t)), » € R", and a PIS  input at timet € Zo,. by IAMPC s thenu(t) = ug,. The
for f, with 0 € S, if there exists a Lyapunov function for IAMPC design problem can be formalized as follows.
fin S, the origin is asymptotically stable (AS) fgt with Problem 1: Given (1) and an estimator producifg(t) },
domain of attractionS. Given z(t + 1) = f(x(t),w(t)), such that{(t) € Z for all ¢t € Zo, design the (causal)
z € R", weW CR? and a RPIS for f, with 0 € S, if  sequence of predicted convex combination vec@‘s the
there exists a ISS Lyapunov function fgrin S, the origin  terminal costP(¢), the robust terminal se’y, and the
is 1SS for f with respect tow with domain of attractions.  robust constraint sef,,, in (3) so that the IAMPC that at
O anyt € Zoy solves (3) and applies(t) = u;‘)'t achieves:
(i) ISS of the closed-loop with respect f@‘t, (74) robust
satisfaction of the constraints including whéﬂt #0, (idi)
IAMPC was developed in [10] for systems with uncerruntime computational load comparable to a (non-adaptive)
tainty in the state matrix. Here we extend the framework tMPC requiring only the solution of QPsjv) AS of the
the case where the uncertainty is present also in the inpitigin of the closed-loop system whélg(t) — £, < A for
matrix. Thus, we consider the class of constrained uneertasomeA > 0.

A. Indirect adaptive model predictive control

discrete-time systems In [10] a design that achievés$) — (iii) of Problem 1 was
‘ proposed for when3; = B for all i € Z 4 in (1). Next
z(t+1) = Z[é]i(Aix(t) + Bu(t)), (1a) we modify such design to overcome such restriction, which
i=1 results in a more conservative design for the terminal sgt, b
reX, ueld (1b)  enables enable an alternative simpler calculation of thasb

constraint<,.,,. We show here that the design achieves also

. nxn . nxm o
where 4; € R™, B; € R, i € Zp, are known (iv). As in [10] we select as parameter prediction rule

matrices, andt’ C R™, &/ C R™ are constraints on system
states and inputs. In (1), the uncertainty is associated to Eopp = E(t— N + k), Vk € Zg,ny, (4)
¢ € 2 C R, which is unknown and constant or changin

g .
much more slowly than the system dynamics, &nhet {¢ € ENSUMNGxe = Eepape—r, for allt € Zy, k € Zjo v -1y. _
RC:0<E<1 Zl‘—l[é.]i = 1}. Essentially= contains all In what follows only sketches of the proofs of the main

convex combination vectors of dimensidnfor the vertex results are shown, due to limited space.

systemsA;x(t) + B;u(t).
It is assumed that an estimator generates a (time varying) I1l. UNCONSTRAINEDIAMPC:
estimate¢(t) of £ such thaté(¢) € = for all t € Zo, and DESIGN AND STABILITY RESULTS

we define the (parameter) estimation error . S
(P ) Due to the increased uncertainty in (1), the procedure for

& =E6—&, E(t) € 2(&) (2) the design of the terminal cost is more conservative than



in [10].The terminal cost is designed from the parameteProof (sketch)let 1,25 € B,.(0), U} = [u;‘)'t “7\771@]
dependent Lyapunov function be the solution of (3) whemg, = 1, anda},, kZj ]
l be the corresponding the predicted state trajectory:c%gt
Ve(z) =o' <Z[§]ipi> x=2'P(&)x, (5) k € [0,N] be the predicted state trajectory obtainedfyy

i=1 from x4, = x2. From the value function one can show

whereP; > 0, forall i € Z[_u], but the associated stabilizing Hffi\t _ xllc‘t” < max(y4, )N||zs — 21|, Zonp,  (10)
control law needs to be linear
wherey, := max{i € Zp j : | A }.

It can be shown thdtflec\tﬂ is bounded for alk € Zy ).
Given (1a), the following gives a design of (5), (6) for (3).From the predicted unforced responsk,,

Proposition 1: Given system (la), let7,S; € R"*™, MPC < N 2
Si >0,i¢€ Z[l,l]v Ec Rmxn, be such that Ven (xl) = (/YP + N||Q||)(max(7A7 1) ”‘Tl”) . (11)

u= Kzx. (6)

G+G -5, (AG+BE) E & where p - maﬁ; € Zpy : |BI}. and
AG + BiE S; 0 0 | Lo okl < (S tmaxGa )Ml ekl <
E 0 R~ 0 1/2
e 0 0 Q! (7P+19NP_HQH) (max(ya, 1)V)||x1]|, wheredp := min{i €

Z g = Amin(Pi)}. Thus,
for all i, € Zp . Then,G is full rank, andP; = S; ', (.4 (P)}

i€ Zpy, K =EG! satisfy e ll < Cillzall, k € Zio,, (12)

l l

(Z[ﬂi(z‘li + BiK))I(Z[C]iPi)(

i=1 =1 7

1/2
whereCy = (Gt T ) (max(ya, 1)Y).

For z1, 22 € B,(0), [lzf,,]l < Cir + max(ya, 1)V2r =
Cor. HenCGng{;PC(ng) — V%PC (,Tl) < ((Cl + CQ)T(’YP +

[€]i(A; + BiK))

M- L0M-

+Q+ K'RK — ) [¢]:P; <0, ®)  N|QI)(max(va, V) ||z2 — a1]| = Csllza — x1]|. The
i=1 reverse inequality is shown in a similar way to conclude
for any ¢, s € =. O that for everys™ € ENTL [VRFPC (21) — VAP (22)] <
For the subsequent developments we assume that théri — x2|| where L = Cs. u
following holds for (1a). Next, we obtain the ISS property of IAMPC .
Assumption 1:For the givenA;, By, i € Zj 4, Q, R, Theorem 1:Let Assumption 1 hold, and let; be any
(7) admits a feasible solution. ' [J compact set inR™. For the IAMPC with parameter up-

flate (4), that at every step solves (3) whexg) is designed
according to (5) and (")Ay = X = R, U = R™,
Couw =R, U =R™, VIC((t)) is such that

Assumption 1 is related to the existence of an (unco
strained, local) stabilizing linear control law for the ent@in
system (1a), see, e.g., [4], [5], [12]. Indeed, if the uraety

is too large, i.e., the vertex systems are excessivelyrdifie MPC MPC

" T S t+1))— t)) <
(7) may be infeasible, because a stabilizing controlletlier £ (2(t +1)) Vﬁi\’ (2(t)) < )
uncertain system does not exist. Being solved at design time — Amin (Q)[|z(®)[|* + vrss|opell (13)

the infeasibility of (7) will be recognized before contll

MPC ; )
execution and the system can be re-engineered, or a differdf'€7€ 77ss € Ry Thus, Vey (x) is an 1SS-Lyapunov

control method can be chosen. function with respect to the estimation eré@[t = §_—§O|t €
E(&o)¢) for (1) in closed loop with the IAMPC based on (3)
A. ISS with respect to Parameter Estimation Error in any &, C A7, whereX;, is RPI with respect td, for

the closed loop.
First, we observe that the value functionin (3) is Lipschitz  proof (sketch): The prediction error is ||e,|| <

continuous in any bounded set. While such property ma’YA||5~0|t||1Hx(t)|| +WB||5~0|t||1||U3|tH' where4 is defined in

be inferred from the case of linear systems with knowgne proof of Lemma 1, ands = max;—1. 1 ||Bill.

parameters, an explicit derivation for (1a) allows to obtai By | emma 1 we obtain

useful intermediate results that will be exploited later. PO PO )
Lemma 1:Consider problem (3), wher&y = X = R", Ven' (@t +1)) = Ver ™ (2(1) < =Amin(Q)[2(0)

U =R", Cpy = R, andlf = R™. For everyr € R, * 5

there isL € R, such that for every" ¢ ZN+*! the value T LOale@l + VBHUOHH)MO“”L (14)

function V" (z) of (3), whereP(¢) is designed according and by the bounds on the value function we hiug,, || <

to (5), is Lipschitz-continuous with constahtin B,.(0) for N 1/2
(). is Lip O (3t NI ™ (a4, DY) a(®)] = Lalla(t)]. Due
any finiter € R4, .
to compactness oft;, , there existsy € R, such that
|VMFC (21) = VMFC (29)] < L2y — 22|, Va1, 22 € B,(0).  ||z| < ~, and, due to the norm equivalence in finite dimen-

(9) sional spaces, there exists such that||€o|l1 < 7, || €ojel-



Combining with (14), we conclude thaVMPC( (t + Assumption 2:X, U are compact polyhedra with €
t+1 : :
MPC (1.(4)) < Amin(Q 2 ith int(X), 0 € 1r_1t(Z/{). _ o N _D
1)) = Ven L( (f%) < | (@z@)* + vrssll€ojell, wi For achieving recursive feasibility and stability propest
155 = EATA wYB) Y in presence of constraints, appropriate designs for thmeiter
B. Asymptotic stability with bounded estimation error nal setty and the robust constraint sef,, are needed. For
By the ISS result in Theorem 1, if eventually the estjCeu: the maximal RCI set for (1a) was used in [10]. Such
mation error vanishes, i.e&(t) = 0 for all ¢ > 7, the design achieves the least restrictive §gf, which however
closed loop of (1a) with IAMPC is AS. Next we show ¢a@n be arbitrarily complex in terms of number of describing
thatVMPC( (1)) is a Lyapunov function for the closed-loop inequalities, and hence very expensive to compute and use.

~ ] o Further, using the maximal RCI imposes a lower bound on
system wherﬂgo‘tH is sufficiently small, and therefore the 4 prediction horizorV € Z in the MPC problem (3).

closed loop is AS even in presence of a small, yet non-zero, Here, by exploiting the LMI (7) we propose an alternative
estimation error. _ _  based on constructing thE€-step backward reachable set of
Theorem 2:Given system (1) with unknown parameter specific RPI set. Le,, — X x U be a set of feasible

let the assumptions of Theorem 1 hold, anddet) = ug,  states and inputs with € int(X,,). Let K be determined
be determined by the IAMPC with parameter update (4) thaj

om Proposition 1 and construct the set sequence
at every step solves (3), whef®(¢) is designed according
to (5), Xy = X =R", U = R™, Cp, = R"*™. There exists X0 ={z: (z,Kz) € Xpu}
6 > 0 such that if[| o [l1 < A < 6 for someA >0, forall  y(h+1) — (01 (4, + B;K)z e x| Vi e Zp gl nx®
t € Zo+, the closed loop is AS.

0o 1; (h)
Proof (sketch):For any 1,z € R™, ||:1:,1€|t + :z:zltH < A = JLH;OX ’ (19)
2C1 [|a1[| + max(y.4, 1)V |Jz2 — 21|, for k € Zjg, n). Hence, |n [13] it was proved that the sequence in (19) reaches a
pMPC _yMPC < N 20 fixpoint in a finite number of steps, i.e., there exists a finite
~ (w2) . (z1) < (vp + HQH)(N Uzl he Zo, such thatt®+) — x( — y.
+ max(ya, 1) [|z2 — z1]]) - max(ya, 1) [|z2 — 21| Lemma 2:Consider (1), for which (6) is computed
= Cyllmr|| - |lze — 21| + Csl|lz2 — 1] (15) from (7), andX¥ > is computed from (19) withi,,, = X xU.
Then, x> is RPI for (1) in closed loop with (6) for ever
From (15),Vé\14vpc(x(t + 1)) = VEPC (1) = Callzagell - §o\t € E(&opr)- W b © 0 y
lex|l + Cs]lex||*. From the bounds oa, with Cg := L. The proof of Lemma (2) follows from the definition and

VMPC a1 VMPC C,.C +~pC the convexity ofX,,, and from usingu = Kz.
(a( )= (@ye) < (CaC1(7a +75C6) X is RPI for (1) in closed loop with (6) for every

+2Cs5(va +78Cs))lEojell1 (1) (18) &, € Z(¢y) because (6) is a linear feedback, as op-
Let posed to the parameter-dependent linear feedback in [10].
Aenin(Q) Using a parameter-dependent feedback does not guarantee,

€l < A <

5 in general, robustness in the case of errors in the parameter
CaCi(va +78C6) + 205 (74 + 7306)(17) estimate, i.e., if the parameter used for the input comjmutat
then VMPC( (t+ 1)) — VMPC( (t)) < —e||z(t)||2, hence is diﬁerent_from the one in t_he actual system dynamics.
However, since here we restrict ourselves to use (6), such
an issue cannot occur.
We construct an RCI set for (1), from the RPI sgt°.
Compute the robust backward reachable set sequence

&N,
the origin of the closed- Ioop system is AS.

The next result follows directly from Theorem 2 and [10].

Result 2:IAMPC based on (3), (4), wher@(¢) is de-
signed according to (5), achievés — (iv) in Problem 1.
O RO = xo, (20)

Based on Theorem 2, an alternative ISS Lyapunov funCtl%(h+1) (reX: Juell, A+ Bue RM Vi e Zpg)s
can be constructed for the closed-loop system.

Corollary 1: Given (1), let the assumptions of Theorem whereR(") is the set of states that can be broughtt
hold. For anya € (0, 1), there existsA(a) € R, such that in h steps by using state feedback, while satisfying state

and input constraints, for any unknowt ¢ =" and any
VMPC( (t+1))— VMPC( (1)) < —a- Amin(Q)||2(1)]|* &h e éh(gh), Due toR(® being RPI,R("tD O R(" and

+vrss max{0, [lEopls — A@}  (28) R™) is RCIfor everyh € Zoy. |
/ From X> and {R("}, we design the terminal sety
wherev;gg € Ry U and the robust constraint sét,, in (3) as
V. CONSTRAINEDIAMPC: ROBUST CONSTRAINT Xy =X, (21)

DESIGN AND STABILITY RESULTS

. . . Cou :{(x,u):xe'R(N),ueu,
Next we consider the case when (1) is subject to con- A (N) s
straints, i.e..X x U C R" x R™, and make the following it + Bu e RV, Vi€ Zn gty (22)

assumption on the constraint sets. respectively, that are shown next to achiéii in Problem 1.



Lemma 3:Consider (3), (6) computed from (7), and

Xy = X computed from (19) with¥,, = X x U. Given
N € Z,, let C,, in (3e) be defined by (22) wittR™Y)
defined in (20). Ifz(t) € RN att € Zo,, and¢y € EN+L,

50‘7 E(&o)-) for all 7 > t, (3) is feasible for allr > . D

The proof of Lemma (3) follows from the RCI properties,

andRY) being theN-steps backward reachable setyf.

When compared to the design based on the maximal RCI

set proposed in [10], the advantages of the desigrCiar
proposed here are that the prediction horizenis a free
design variable, and, since all the s&§" are RCI,N can
be chosen to control the complexity©f,,, which is finite for
any finite N [11]. On the other hand,, will be in general
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smaller than the maximal RCI, thus reducing the domain (Hig. 1. Simulation of the IAMPC in closed loop with the nunoafiexample

attraction of the closed loop.

A. Asymptotic stability with bounded estimation error

Theorem 3:Given system (1) with unknown parameter
let Assumptions 1 and 2 hold, and givéhe Z., consider
the optimal control problem (3). LeP(£) be designed
according to (5),Awn,C., be determined by (21), (22),
respectively. Letu(t) = u;‘)'t be determined by the IAMPC
that at every step solves (3) with parameter update (4).

z(t) € RW) att € Zo,, then the constraints (1b) are§ —

satisfied for allr > ¢. Furthermore, there exists> 0 such
that if |\§O‘T||1 < A < ¢ for all 7 > ¢, for someA > 0, then
the origin of the closed-loop system is AS.

Proof (sketch):The proof follows the lines of that of

Theorem 2. We consider again the predicted state sequen

xk‘t, xk‘t from the proof of Lemma 1 which here need also
to satlsfy( ), xk‘t e X, xklt € &, forall k € Zpn_y,
(11), xmt € XN,let € Xn, (xk‘t,uk‘t) € Cypu, (:Eklt, 0) €
Cou, k € Zjg,ny—1)- Note that, by construction) € int(Cy,,).
By the properties oft,., there exists; > 0 such that

B, (0) C Xy C X.From the intermediate steps of Lemma 10.6 - A1+5z, Aprsi =999 6] Asisi = (4%

if max(’yA, D21 < 1, thenxk‘t € X for k € Zyp,n—1),
x?\mt € Xy. From ||a:i|t|| < Ch||z1]| + max(ya, V)V |22 —
x1|| if Chllx1]] < r1/2 andmax(ya, 1)V ||z — 21| < r1/2,
aj, € X for k € Zy y—1), anday;, € Xy. Thus (i), (ii)
hold locally.

Conditions for(ii7) to hold are found similarly, using the
fact, from previous proofs||(a7,, uy )|l < (C1[[1 0)'[| +
Cslllo IDller] + I O max(ya, )V ez — 1],
Since 0 € int(C,.), there existsro > 0 such that
B, (0) € Cou I (CLIL O)[| + C[[[0 TV [Pl < 72/2,
and [ 0| max(ya, )Nz — 21| < 72/2 then
(:ci‘t,u,’glt) € Cpu for k € Zgn_y. Similarly, if
I[Z 0)|| max(ya, )N||z1]] < 7o, then (172”,0) € Cuu
for & € Zpwn-1. Combining the above, there
exist 7 > 0, & > 0 such that if ||z1] < 7,
|z — :c1|| < &, then (iz‘i) is satisfied. In particularf =
min{

m&x(’YA DN 2(ChllT or’ H+Cs||[0 I’ H[I oJ’]| de(Wm N
= min 2111@)((7,4 O~ 2T o] max('yA,l)N

|f III( )H < min{r, Z} =7 and|[§pl[1 < (015)/((”YA+
'YBCG) ) thenVMPC( (f-f—l)) VMPC(I'”t) < 04”,@1‘,5”

with R(Y), N = 8, phase plane trajectories (blacky,> (green), R(N)
(blue), X (red).

Theorem 2 there i\ > 0 such that if||«(¢)|| < 7, and
H§O\tH1 < A < § then

Ve C(a(t + 1)) = VT (2 (1)) < —el|2()|]?,

some ¢ > 0, thus, AS s proved. Here
min{ 5w, Amin(Q))/(CaCi(ya + 75C6) +
2C5(ya +7v8C6)*)}- L
The next result follows directly from Theorem 3 and [10].
Result 3:IAMPC based on (3), (4), wher@(&) is de-
ned according to (5) antly, C..,, are determined by (21),
ffq?) achievegiv) in Problem 1. O

1ér

V. NUMERICAL SIMULATIONS

Example 1:We consider (1), wheré= 10, and the vertex

matrices areA; 5, = [ %2], Aogsi = 1.1- A1454, Azysi =

6% 1020, 1 €{0,1}
and B; = [-0.035 —0.905]', Bjy5 = 0.9- By, j € 2y ,5)-
While being only oR2"? order, the challenges in this example
are in some of the vertex systems being unstable, and some
vertex matrices being significantly different from the athe
For a similar system with uncertainty only i it was shown
in [13] that without proper cost adaptation, the closedsloo
may not be AS, even if the perfect model was estimated.
The constraints are defined by (1b), whe¥e= {x € R? :
[z];| <15, i=1,2}, U = {u e R: [[u]] < 10}.

We have implemented a simple estimator that computes
the least squares solutieiit) based on past data window of
N,, steps and applies a first order filter on the projection of
o(t) ONto =, i.e., £t +1) = (1 — E(t) + < - projz(o(t)),
wheres € Ry, and [{(0)]; = 1/4, i € Zp 4. Such
simple estimator guarantees tht) € = for all t € Zo,
because projection and summation guarantee that the result
is a convex combination vector. We set 1/8, N,,, =

We design the controller according to Theorem 3, where
we imposeN = 8, where RY) is determined by (20).
Figure 1 shows the simulations where the initial condition
lies within RY) and for each initial cond|t|0n4 simulations

lle]l + 05||5m||2 and with an argument similar to that for with different (random) values of € = are executed.



-50] 1

0 50 t[mln] 100 150 20C

6 - 2 £1[m/3] 4 6 ) ) ) ) . )
1 Fig. 3. Simulations of input (bottom) and state (top) tregeies against
time, [z]1 blue, [x]2 black. Constraints as dash lines

Fig. 2. Simulation of the IAMPC in closed loop with the satellexample
with RXY) | N = 8, phase plane trajectories (blacky,> (green), R (™)
(blue), & (red). allows to maintain the MPC prediction horizon as a free

design choice, it is in general faster to compute, and has
Example 2:We consider the out-of-orbital-plane dynam-a reduced complexity. In t_he future we plan to exte_nd the
: . . roposed method to tracking problems and to consider the
ics of a satellite, which are naturally decoupled from thd . . )
: . : . L Case of partial state information.
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turbations for orbits within Earth’s orbital plane [15]. ke, REFERENCES

the satellite may drift *far” from its desired value alongchu 131 5. qin and T. Badgwell, “A survey of industrial model pietive
axis. By the HCW equations of relative motion [15], the out- ~ control technology,"Control Engineering Practicevol. 93, no. 316,

of-orbital-plane (z-axis in HCW) dynamics are pp. 733-764, 2003. , _
[2] S. Di Cairano, “An industry perspective on MPC in largeluroes
. 0 —n? 4 applications: Potential Benefits and Open Challenges,Prioc. 4th
x(t) = 1 0 x(t) + 76 u(t) (23) IFAC Conf. Nonlinear Model Predictive Contra?012, pp. 52-59.
[3] D. Hrovat, S. Di Cairano, H. E. Tseng, and I. V. KolmanoyskThe

. Ay . P Cavi development of model predictive control in automotive isigy A
where [I]l is the z-axis VeIOCIty [m/s], [x]Q is the z-axis survey,” inIEEE Conf. Control Applications2012, pp. 295-302.

position [km], u is the z-axis thrust [N],n is the orbital  [4] m. V. Kothare, V. Balakrishnan, and M. Morari, “Robustrsirained

frequency andn is the mass of the satellite. We consider model predictive control using linear matrix inequalifie8utomatica
: : : : : vol. 32, no. 10, pp. 1361-1379, 1996.

uncer_talnty in the o_rb|tal frequenc_y, i.e., the orbit, and[5] F. A. Cuzzola, J. C. Geromel. and M. Morari, “An improvepipaoach

satellite mass. In particular, the nominal and vertex \alfe for constrained robust model predictive contrditomatica vol. 38,

n andm are :ng = 9.5 x 1074, n; = 0.8-n1,n0 = 1.2-n4; - C\;J-LZ pp. 11?35%189, 2g02- S. Rakovic, and D. O. MagReb

o o ) o ) . Langson, I. Chryssochoos, S. Rakovi¢, and D. Q. May ust
mo = 2000, mq = Q.?5 mi,me = 1.25 - mq, where th.e model predictive control using tubesutomatica vol. 40, no. 1, pp.
nominal valueny is in low earth orbit (LEO). The dynamics 125-133, 2004.

are formulated in discrete time in the form of (1) with a [7] V. Adetola, D. DeHaan, and M. Guay, "“Adaptive model privie

: : _ _ control for constrained nonlinear systemSystems & Control Letters
sampling period of7s = 300 seconds, and = 4. The vol. 58, no. 5, pp. 320-326, 2009,

constraints are defined by (1b), whet¢ = {z € R? : [8] A. Aswani, H. Gonzalez, S. S. Sastry, and C. Tomlin, “Rioy

[[z]1] < 6m/s, |[x]2] <4km}, U ={ueR: |u] <50N}. safe and robust learning-based model predictive contfalfomatica
We design the controller according to Theorem 3, wherg, 'O 49 n0: 5. pp. 121671226, 2013.

9 9 ! e[9] M. Tanaskovic, L. Fagiano, R. Smith, and M. Morari, “Adxe

we imposeN = 8, whereR(") is determined by (20). We receding horizon control for constrained mimo systemsitomatica
use the same parameter estimator as in Example 1, now with_ vol. 50, no. 12, pp. 3019-3029, 2014.

- o . . ] S. Di Cairano, “Indirect-adaptive model predictiventw! for linear
Nm =3, ¢ = 1/16’ which are EXpeCted to give slower systems with polytopic uncertainty,” iRroc. American Contr. Conf.

convergence. Figure 2 and Figure 3 report the simulation 2016.

results, showing both constraint satisfaction and staddithpn.  [11] F. Blanchini and S. MianiSet-theoretic methods in controlSpringer
Science & Business Media, 2007.

[12] J. Daafouz and J. Bernussou, “Parameter dependentargapfunc-
tions for discrete time systems with time varying pararsetmcer-
VI. CONCLUSIONS ANDFUTURE WORK tainties,” Systems & control letteysvol. 43, no. 5, pp. 355-359, 2001.
[13] S. Di Cairano, “Model adjustable predictive control thvistability
We have extended the recently developed IAMPC  guarantees.” irProc. American Contr. Conf2015, pp. 226-231.

; ; ; i14] J. B. Rawlings and D. Q. Maynélodel Predictive Control: Theory
method [10] to account for uncertainty in the input matrix and Design Nob Hill 2000.

(B), and_ we have provided additional design procedurqﬁ] A. Weiss, U. Kalabic, and S. Di Cairano, “Model predieticontrol
and stability results. We have shown that the closed-loop for simultaneous station keeping and momentum managenfiém-o

is AS even for small yet non-zero, parameter estimator thrust satellites,” inProc. American Contr. Conf.2015, pp. 2305—
. ’ : " 2310.

errors, which also allowed to derive a tighter ISS Lypaunov

function. We have also proposed an alternative method to

design constraints based on constructing a RCI set as the

N-steps backward reachable set of the terminal set, which



	Title Page
	page 2

	/projects/www/html/publications/docs/TR2016-044.pdf
	page 2
	page 3
	page 4
	page 5
	page 6


