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Abstract
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Control of Dual-stage Processing Machines by Bounded Tracking-error MPC

S. Di Cairano, A. Goldsmith

Abstract— We consider a dual-stage precision manufacturing
machine where a worktool is actuated via a motion system
consisting of a “fast” stage with large bandwidth but small
operating range, and a “slow” stage with smaller bandwidth
but larger operating range. We design a controller based on
a recently developed tracking method for constrained systems
that guarantees enforcement of constraints and of an assigned
bound on the tracking error. For satisfying the controller as-
sumption, we design a reference trajectory generation algorithm
that is simple and can also be executed offline. The proposed
control system guarantees correct processing of the pattern and
finite processing time, for which bounds can be easily computed.

I. I NTRODUCTION

New high performance processing machines feature com-
plex electromechanical architectures, for instance with mul-
tiple actuation stages where actuators with different band-
widths and operating ranges are combined to process at high
rate large workpieces. Dual-stage machines are equipped
with two actuation stages, a “slow” stage with large operating
range but small bandwidth and acceleration limits, and a
“fast” stage with large bandwidth and acceleration limits but
small operating range. For each axis, the overall position of
the worktool is the sum of the positions of the two stages
along such axis, see Figure 1. Thus, the machine can rapidly
process small features of the workpiece by actuating the
“fast” stage, and is still able to process large features by
superimposing the motion of the “slow” stage.

Trajectory generation and control for dual-stage machines
is significantly more complicated than for single stage ones,
because it involves multiple input–single output systems
subject to constraints on position, velocity, and acceleration.
Thus, classical methods based on frequency separation [1]
are clearly suboptimal. Instead, model predictive control
(MPC) has been proven effective for constrained multivari-
able systems in several application domains [2], [3]. Nonlin-
ear spatial MPC has been proposed for contouring control
of single-stage machines, based on linearizing (implicitly
or explicitly) the dynamics along the given path [4], [5].
However, these techniques have limited applicability for
multistage machines because linearization causes errors,due
to the trajectory not being uniquely defined, and because the
time scale separation of the stages results in ill-conditioned
numerical optimization problems. For dual-stage processing
machines, [6], [7] propose to control only the slow stage
subject to additional constraints that limit the distance be-
tween the processing path and the slow axis position to be
within the range of the fast stage. For guaranteeing feasibility
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Fig. 1. Architecture of a dual-stage dual-axis processing machine.

of such reference-dependent constraints, a spatial reference
governor is developed in [7].

While effective, the method in [7] has still three limita-
tions: (i) the processing time and other performance metrics
are suboptimal due to using a reference governor [8], which
enforces future constraints by constant commands;(ii) the
reference manipulation must be performed in real-time based
on the predicted state at the end of the previous prediction
horizon, thus adding computations to the real-time control
algorithm;(iii) it is not possible to predict before execution
the time needed to complete the processing, and finite-time
termination may be difficult to enforce.

In this paper we propose a different method aimed at
overcoming the above limitations. The method exploits a re-
cently developed control design guaranteeing a tracking error
bound for trajectories being the output of constrained non-
autonomous linear systems [9]. The proposed method offers
the following advantages. First, it is based on robust control
invariant sets guaranteeing constraint satisfaction by varying
commands, and hence it achieves faster processing because
it is less conservative. Second, the reference generation can
be done offline (or in parallel) to the trajectory generation
and control, thus reducing the real-time computation time.
Third, the termination time is known before execution, and
a bound can be obtained even before trajectory generation,
independently of the chosen cost function. The only draw-
back is that the robust control invariant set may increase the
number of constraints in the MPC problem and hence the
computations. This is mitigated by the fact that recursive
feasibility is guaranteed for any prediction horizon.

Next, in Section II we describe the dual-stage dual-
axis machine and the related tracking control problem, in



Section III we discuss the bounded tracking-error algorithm
design for the dual-stage machine. In Section IV we syn-
thesize the controller as an MPC strategy, and discuss its
properties. Finally, in Section V we report simulations on
a processing pattern obtained from a CAD–CAM software,
and we discuss the improvements with respect to the method
in [9]. We summarize our conclusions in Section VI.

Notation: R, R0+, R+ and Z, Z0+, Z+ are the sets of
real, nonnegative real, positive real, and integer, nonnegative
integer, positive integer numbers, and we use notations like
Z[a,b) = {z ∈ Z : a ≤ z < b} to denote intervals. For
a ∈ R

n, b ∈ R
m, by [a]i we denote thei-th component of

a, (a, b) = [a′ b′]′ ∈ R
n+m is the stacked vector, andI and

0 are the identity and the zero matrices of appropriate size.
For a discrete-time signalx ∈ R

n with sampling periodTs,
x(t) is the value at sampling instantt, i.e., at timeTst, xk|t

denotes the predicted value ofx at samplet+ k, i.e., xt+k,
based on data at samplet, andx0|t = x(t). We denote the
time-domain convolution operator by∗.

II. D UAL -STAGE PROCESSINGMACHINES: MODELING

AND CONTROL ARCHITECTURE

The objective of the dual-stage dual-axis (i.e., 2D) process-
ing machine is to process with a specific worktool blocks
of raw material into finished parts. In order to process at
high rate the small features, e.g., less than a millimeter,
the worktool will be subject to large accelerations, up to
severalg. Due to the large features, e.g., up to a meter, and
possibly multiple parts in a single block, the worktool must
operate over a large range, e.g., some meters, and hence will
have a large mass. For achieving high precision under large
accelerations and with a large mass, the dual-stage machine
combines a slow stage and a fast stage, as shown by the
schematic in Figure 1.

For the machine in Figure 1, the operating range is the
combination of the slow stage and fast stage ranges. The
small features of the machined part can be processed by high
acceleration movements of the fast stage, which has small
mass and small range, while large features can be processed
by superimposing movements of the slow stage, which has
large range, large mass, and hence limited acceleration. The
model of the actuators in closed-loop with their servocon-
trollers can be described as

yij(t) = Gi
j(t) ∗ u

i
j(t), j ∈ {s, f}, i ∈ {x,y}, (1)

where y is the position,u is the position command,j ∈
{s, f} is the index of the stage (slow vs fast),i ∈ {x,y}
is the index of the axis (x vs y) and Gi

j are the closed-
loop transfer functions with dc-gain1. For the machine
architecture considered here,Gi

j are3rd order functions and
the position of the worktool is the sum of the stage positions,

yi(t) = yif(t)+yis(t) = Gi
f (t)∗u

i
f (t)+Gi

s(t)∗u
i
s(t), i ∈ {x,y}.

(2)
The stages are subject to symmetric upper and lower

bounds on operating ranges,

−yij ≤ yij ≤ yij , (3)

and on velocities and accelerations,

−ẏ
i

j ≤ ẏij ≤ ẏ
i

j , −ÿ
i

j ≤ ÿij ≤ ÿ
i

j . (4a)

The difference between the slow and fast stages are in
the bandwidth of the transfer functions in (1), where
BW(Gi

f ) ≫ BW(Gi
s), i ∈ {x,y}, and in the constraints

in (3) and (4), whereyfj ≪ ysj , ÿ
f

j ≫ ÿ
s

j . Instead, there is no
particular relation between the bounds on the velocities ofthe
slow and fast stage in (4) for the machine considered here.
Finally, (1) is controlled in discrete-time, and, according to
the bandwidths, the sampling period for the slow stage is
much longer than that for the fast stage,T s

s = M · T f
s ,

whereM ∈ Z+ andM ≫ 1.

A. Trajectory generation and control of dual-stage machines

The objective of the trajectory generation and control for
dual-stage machines with dynamics (1), (2) and subject to
constraints (3), (4) is to compute and make the worktool
reproduce a spatial path such that

‖(yx(σ), yy(σ))−(px(σ), py(σ))‖∞ ≤ ρ, ∀σ ∈ R[0,1], (5)

wherep(σ) = [px(σ) py(σ)]′ is the spatial curve represent-
ing the pattern to be processed andσ ∈ R[0,1] is the curve
parametrization variable. Condition (5) requires the worktool
to follow the spatial pattern within a small, e.g., micron-
range, toleranceρ ∈ R+.

As opposed to nonlinear spatial MPC [4], [5], we for-
mulate a time-based control algorithm and we exploit the
time-scale separation to reduce the computational load. By
standard methods that are currently implemented in single
stage machines, we can generate a trajectory{q(hT f

s )}h =
{(qx(hT f

s ), q
y(hT f

s ))}h, h ∈ Z0+, so thatỹi(t) = Gi
f (t) ∗

qi(t), i ∈ {x,y} satisfy (4) for j = f , (3) for j = s,
and (5) for the givenρ ∈ R0+. Here, {q(hT f

s )}h is the
trajectory of an ideal machine that has the strengths of
both stages, the large range of the slow stage and the large
bandwidth and high acceleration of the fast stage. Then,
we generate a trajectory for the slow stage and ensure that
the difference between the slow stage and the processing
pattern can be covered by the fast stage. Due to the way by
which{q(hT f

s )}h has been generated and sinceBW(Gi
f ) ≫

BW(Gi
s), it is enough to control the constrained slow stage

such that

−yif ≤ yis(t)− qi(t) ≤ yif , i ∈ {x,y}. (6)

To this end, we solve with sampling periodT s
s , the receding

horizon control problem

min
Ust

F (yiN |t, q
i
N |t) +

N−1∑

k=0

L(yisk|t, u
i
sk|t, q

i
k|t) (7a)

s.t. (1), (3), (4), where j = s (7b)

−yif ≤ yisk|t − qik|t ≤ yif , (7c)

G(yis k|t, ẏ
i
s k|t, ÿ

i
s k|t, q

i
k|t, u

i
k|t) ≤ 0 (7d)

wherei ∈ {x,y}, N ∈ Z0+ is the prediction horizon,U i
st =

[ui
s0|t . . . u

i
sN−1|t], F , L are the terminal and stage cost,



respectively, andG describes additional constraints. Since
in (7) the constraints depend on the reference trajectory,
recursive feasibility is in general not guaranteed. Here, we
aim at solving the following:

Problem 1: Given {q(hT f
s )}h, h ∈ Z0+ that satisfies (4)

for j = f , (3) for j = s, and ỹi(t) = Gi
f (t) ∗ q(t),

i ∈ {x,y}, satisfies (5), compute a modified reference tra-
jectory{r(tT s

s )}t = {(rx(tT f
s ), r

y(tT s
s ))}t such thaty(t) =

Gi
f (t) ∗ r(t), i ∈ {x,y}, satisfies (5), and designG in (7)

such that for any convexF , L, the resulting problem (7)
wherer is substituted forq is convex, recursively feasible,
and any finite time reference{q(hT f

s )}
h̄
h=0 is processed in

finite time with a known bound. �

Problem 1 involves simultaneous reference generation and
tracking control, and has attracted considerable interestin
recent years, see, e.g., [10]–[12]. The methods proposed in
[10], [11] ensure recursive feasibility by deforming the refer-
ence, and hence (5) may not be satisfied. Here we guarantee
that (5) is satisfied by basing our design on [9], which does
not require the online modification of the reference signal,
as long this is generated by satisfying certain assumptions.

III. B OUNDED TRACKING CONTROL DESIGN FOR

DUAL -STAGE MACHINES

First, we introduce the following useful definitions, see,
e.g., [13] for more details.

Definition 1: Given x(t+ 1) = f(x(t), u(t), w(t)) where
x ∈ X ⊆ R

n, u ∈ U ⊆ R
m andw ∈ W ⊆ R

d are the state,
input and disturbance vectors, respectively,C ⊆ X is said to
be a robust control invariant (RCI) if

∀xt ∈ C, ∃ut ∈ U : f(xt, ut, wt) ⊆ C, ∀wt ∈ W , ∀t ∈ Z0+.

ThemaximalRCI setC∞ in X contains all other RCI sets in
X . Given the RCI setC, the robustly admissible input (RAI)
set forx ∈ C is

Cu(x) = {u ∈ U : f(x, u, w) ∈ C, ∀w ∈ W}.

WhenW = {0}, C andCu are simply called control invariant
and admissible input set, respectively. �

A. Bounded tracking

The objective of the bounded tracking control algorithm
is to ensure that a given discrete-time linear plant system
subject to constraints tracks within a pre-assigned tracking
error bound a reference signal generated by a constrained
linear reference system driven by an unknown bounded input.
Such a reference system can provide a rich class of reference
signals due to being driven by a general input signal. We
consider a plant system

x(t+ 1) = Ax(t) +Bu(t)
y(t) = Cx(t),

(8)

wherex ∈ R
n, u ∈ R

m, y ∈ R
p are the state, input and

output vectors, respectively. System (8) is subject to

x ∈ X , u ∈ U . (9)

We want (8) to track within a given error boundǫ ∈ R+ the
reference signalr(t) generated by the reference system

η(t+ 1) = Aηη(t) +Bηγ(t)
r(t) = Cηη(t),

(10)

whereη ∈ R
nr , γ ∈ R

mr , r ∈ R
p are the reference system

state, input, and output vectors, respectively, subject to

η ∈ R, γ ∈ Γ. (11)

In order to enforce the constraints (11), the input to (10)
is selected by areference generator algorithm(RGA). At
every t ∈ Z0+, given η(t) ∈ Cη, whereCη is a known CI
set of (10), (11), the RGA enforcesη(t + 1) ∈ Cη ⊆ R by
selectingγ(t) ∈ Cγ(η(t)) ⊆ Γ.

Note that the RGA is independent from the controller
state. Furthermore, the RGA only guarantees that (10) will
satisfy (11), but gives no guarantees on the satisfiability of
the plant or the tracking constraints. In general, any specific
RGA that satisfies the above properties can be used.

Problem 2: Consider (8) subject to (9), (10) subject
to (11), and a given tracking error boundǫ ∈ R+. Let RN

t =
[η′0|t, . . . , η(t)

′
N |t]

′, N ∈ Z0+ be a predicted reference profile
generated by RGA. Design a control lawut = κ(xt, R

N
t )

and a setX0 ⊆ R
n × R

nr of initial states and references
(x0, η0) ∈ X0 from which (8) in closed-loop withκ(xt, R

N
t )

for all t ∈ Z0+ satisfies (9) and

‖y(t)− r(t)‖∞ ≤ ǫ, (12)

for any η(t) ∈ R obtained from the RGA. �

Let X x,η = {(x, η) : x ∈ X , η ∈ Cη, (Cx − Cηη) ∈
B(ǫ)}, and letCx,η ⊆ X x,η be a RCI set for (8), (10) subject
to (9), (11) such that

(x, η) ∈ Cx,η ⇒ ∃u ∈ U :

(Ax+Bu,Aηη +Bηγ) ∈ Cx,η, ∀γ ∈ Cγ(η). (13)

Indeed, if (x(t), η(t)) ∈ X0 ⊆ Cx,η, there existsu(t) ∈ U
such that(x(t + 1), η(t + 1)) ∈ X x,η for every admissible
η(t+ 1).

The maximal RCI in (13) is in general non-convex [14]
and very hard to compute, and to use in a control algorithms.
However in [9] an algorithm for computing apolyhedral
non-maximalCx,η has been proposed, which is significantly
easier to use in optimization-based control algorithms for
dual-stage processing machines.

B. Bounded tracking design for dual-stage machine

In order to apply the technique that solves Problem 2
for solving Problem 1 we formulate plant and reference
systems as in Section III-A, and design the polyhedral roust
control invariant set for tracking. Then, we implement the
reference generation algorithm that maximizes the execution
speed without deforming the spatial pattern, in order to
ensure (5). While the design process is applied to both
processing axes, from now on, when possible, we omit the
superscript indexing the axes,i ∈ {x,y}, for simplicity.

The slow stage dynamics is realized in state space
form (8). Since for the slow stage considered (1) is of3rd



order, we choosex = [ys ẏs ÿs]
′, and henceX = {x :

−[̄ȳs ¯̇ys ¯̈ys]
′ ≤ x ≤ [̄ȳs ¯̇ys ¯̈ys]

′}. We model the bound
on the difference between the reference and the slow stage
position (6) by (12) withǫ = ȳf .

For generating the reference, we formulate a reference
system (10) as the constrained integrator

η(t+ 1) = η(t) + γ(t)
r(t) = η(t).

(14)

wherer = η ∈ R = {η : |η| ≤ ȳs}, γ ∈ Γ = {γ : |γ| ≤
γ̄}, and γ̄ is determined as described next. For this choice,
Cη∞ = R andCη

γ
∞(η) = {γ ∈ Γ : η + γ ∈ R}. From now

on we can interchanger andη since by (14) they are equal.
The value ofγ̄ represents the maximum rate of change

of the reference. Thus, if it is too large, the reference may
be too fast for the machine to follow, which results in an
empty RCI setCx,η. On the other hand, if it is too small, the
reference moves slowly, which results in loss of productivity.
We choosēγ by

γ̄ = argmin
γ̄

Ψ(γ̄, Cx,η) (15a)

s.t. Cx,η 6= ∅ (15b)

gγ(γ̄) ≤ 0 (15c)

where (15c) formulates additional constraints onγ̄ and (15a)
determines the objective to be optimized. For the dual-
stage machine we considerΨ(γ̄, Cx,η) = −γ̄, which results
in the largest bound on the reference rate, and hence the
fastest reference motion. In general, (15) is nonconvex, but
since there is only one variable, it can be solved gridding
and bisection search. While this procedure may be time
consuming, it is performed only once at design, and by
computing the RCI as in [9] the solution is found in a
relatively short time.

C. Reference trajectory generation

The final component for implementing the control strat-
egy is the reference generation algorithm, RGA. As men-
tioned in Section II, from the spatial patternp(σ) =
[px(σ) py(σ)]′, σ ∈ R[0,1], an ideal trajectory{q(hT f

s )}h =
{(qx(hT f

s ), q
y(hT f

s ))}h, h ∈ Z0+ is generated for an ideal
single stage machine that has the favorable features of both
stages. Such an ideal trajectory will in general be infeasible
for the actual machine that has a limited range fast stage and
a slowly moving slow stage. Thus, the reference generation
algorithm needs to slow down the ideal trajectory to make
it feasible. For bounded tracking error control, a feasible
reference trajectory satisfies (10), (11) for the reference
dynamics described in Section III-B.

Let the functionκ(µ, {q(h)}h) be defined by

κ(µ, {q(h)}h) = max
ς∈Z[0,M]

µ+ ς (16a)

s.t. |qi(ς + µ)− qi(µ)| ≤ γ̄ (16b)

qi(ς + µ) ∈ Cη∞, (16c)

i ∈ {x,y},

whereM is the maximum number of commands, i.e., pro-
cessing points, that can be executed by the fast stage in a
sampling period of the slow stage, and letµ(t) ∈ Z0+ denote
the index of the last processed point within thetth sampling
interval, i.e.,r(t) = q(µ(t)). We compute the reference at
time t as

µ(t) = κ(µ(t− 1), {q(h)}h) (17a)

ri(t) = qi(µ(t)), i ∈ {x,y} (17b)

Equation (17) selects as reference the point in the sequence
that:(1) is less thanM points away from the last point,(2) is
at a distance smaller than̄γ from the previous point, in each
axis, (3) satisfies the reference system constraints, and(4),
maximizes the progress, i.e., the point that makes the counter
µ grow larger. Conditions(1)–(4) provide as next reference
the point that maximizes the progress in processing, due
to (4), while being an admissible value for the reference
system, due to(2) and (3), and ensuring that the fast stage
can receive the required commands to track the points during
the next slow stage sampling period, due to(1). Thus, (17),
gives the fastest trajectory that can be processed by the dual-
stage machine by the bounded tracking control method in
Section III-A.

The optimization problem in (16) is trivial to solve by
scanning the ideal trajectory backwards fromM points ahead
of the last processed points and verifying the satisfaction
of the constraints. Verification of the constraints is also
simple, because all the constraints are linear. Note that the
references are chosen among the points in{q(h)}h, which
means that the reference generation process does not modify
the positions of processing points, but only their timing. This
is of key importance because it means that the spatial pattern
is not deformed, only its processing speed is reduced to
enforce constraints. Hence, starting from an ideal trajectory
that satisfies (5), the reference trajectory will also satisfy (5).

Remark 1: It is important to notice that (17), is completely
independent of the plant system state, which means that, as
opposed to the reference generation method in [7], the RGA
does not need to be executed during processing, but it can
be performed even before the control algorithm starts.

IV. MPC FOR BOUNDED TRACKING CONTROL FOR

DUAL -STAGE PROCESSINGMACHINES

Next, we formulate the control problem (7) using the
robust control invariant for bounded tracking (13) designed
for the dual-stage machine according to Section III-B, to
track there reference generated according to (17).

We formulate the dynamics in input incremental form,

x̄(t+ 1) = Āx̄(t) + B̄v(t) (18)

wherex̄ = [x′ ν]′, ν is the1-step delayed position command
for the slow stage, i.e.,ν(t) = us(t − 1). Thus, the
input to (18) is the step-to-step change in the reference
v(t) = us(t) − us(t − 1). Given the reference trajectory
Rt = [r0|t . . . rN |t] generated by the RGA (17), the bounded



tracking MPC finite horizon optimal control problem is

V(x(t)) =

min
Υt

F (x̄N |t, rN |t) +

N−1∑

k=0

L(x̄k|t, rk|t, vk|t) (19a)

s.t. x̄k+1|t = Āx̄k|t + B̄vk|t (19b)

(xk|t, rk|t) ∈ Cx,η (19c)

x̄0|t = x̄(t). (19d)

whereF (x̄, η) ≥ 0 for all x, r, andL(x̄, η, v) ≥ 0 are convex
terminal and stage cost, respectively,Υt = [v0|t . . . vN−1|t] is
the optimizer,Υ∗

t = [v∗0|t . . . v
∗
N−1|t] is the optimal solution,

andU∗
t = Ut(Υ

∗
t , ν(t)) is the optimal control input sequence

at time t computed fromν(t) andΥ∗
t . Next, we discuss the

properties of the proposed control design, where the proofs
are omitted due to limited space.

Theorem 1: Consider the MPC controller that at any time
t ∈ Z0+ solves (19), whererk|t = rk+1|t−1 and rN |t =
q(µN |t), µN |t = κ(µN |t−1, {q(h)}h). If (19) is feasible at
t ∈ Z0+, then (19) is feasible at anyτ ∈ Z0+, τ ≥ t. �

Theorem 2:Let {q(hT f
s )}

h̄
h=0 be a finite-time trajec-

tory such that for all h, q((h + 1)T f
s ) − q(hT f

s ) ∈
Cη
γ
∞(q(hT f

s )). Then, the total processing time obtained
by (17), (19) is T̄ ≤ h̄T s

s . Furthermore, if for allh ∈
Z[0,h̄] minh |Cη

γ
∞(q(hT f

s ))| ≥ ϕ > 0, then the total pro-
cessing time is also bounded as̄T ≤ T s

s (h̄/M + L/ϕ),
whereL =

∑
i∈{x,y} Li, and Li is the traveled distance

along ith axis for {q(hT f
s )}

h̄
h=0. A value of ϕ is ϕ =

min{γ̄,mini∈{x,y},h∈Z[0,h̄]
{|qi(h)− ȳsi |, |qi(h)− ys

i
|}. �

Theorem 1 follows from the properties of the RCI set
and of the RGA. Theorem 2 follows from the RGA, from
the properties ofCη

γ
∞(r), and provides a valid bound when

{q(hT f
s )}

h̄
h=0 does not reach a border of the slow stage

range. The bounds computed from Theorem 2 are conser-
vative, but they apply even before the RGA is executed on
the pattern, which can be done offline since the RGA does
not use the plant system state. Note that for bounding the
processing time, besides the pattern length, only the number
of points h̄ is needed. If the latter is available, the bound
on the processing time can be computed from only the
patternp(σ), even before the ideal trajectory{q(hT f

s )}
h̄
h=0

is generated. Based on Theorems 1, 2, the following holds
directly.

Corollary 1: The control strategy based on (17), (19)
solves Problem 1. �

V. SIMULATION RESULTS

The algorithm based on (17), (19) has been designed
for a real machine with2 orders of magnitude time-scale
separation between the stages. The simulation pattern is
obtained from a CAD design of multiple parts. As previously
discussed,{q(hT f

s )}h is generated by a standard CAM
algorithm using the dynamics of the fast stage and the
operating range of the slow stage. The algorithm based
on (17), (19) is implemented with a prediction horizon of
N = 20 steps, a ratio of the stage sampling periodM = 150,
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Fig. 2. Processed pattern (red) covering the desired pattern within ρ, slow
stage motion (black), and points where the RGA imposes to process less
than M=150 points (red).
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Fig. 3. Position of the slow stagex, y axes (blue) and constraints (black)
due to the reference and fast stage range

andT s
s = 30ms. For the given machine wherēyf = 25mm,

ȳs = 1m, ¯̇ys = 1m/s, ¯̈ys = 19.6m/s2, (15) results in
γ̄ = 0.0183, giving a maximum reference speed of611mm/s.
The results are reported in Figures 2–5.

Figure 2 shows the processed pattern, which covers the
desired pattern withinρ = 50µm, the motion of the slow
stage obtained by the proposed method, and the points
where the RGA reduces the processed points per sample
to guarantee that (11) is satisfied. Based on Theorem 2, an
upper bound to the processing time of58.6s is obtained,
while the actual processing time is43.2 seconds. The bound
is larger, due to the conservativeness of the computations,
but still indicative.

Figure 3 shows the slow stage position forx andy axes,
and the constraints related to the allowed distance from
the RGA reference, which guarantees that the pattern is
effectively processed by the fast stage.

Table I compares the results obtained by the method
proposed here with those obtained by the method in [7],



Method time[s] max accel.[m/s2] mean accel. [m/s2] mean vel. [mm/s] mean track error[mm]
RG-MPC(N = 20) 45.42 (10.64, 17.97) (0.75, 0.96) (19.13, 24.72) (12.80, 14.96)
BT-MPC(N = 20) 43.20 (11.14, 11.82) (0.83, 1.05) (21.52, 27.17) (11.81, 13.40)
BT-MPC(N = 1) 43.20 (19.52, 19.52) (1.06, 1.23) (27.26, 31.78) (11.88, 13.71)

TABLE I

RESULTS(x, y) FOR THE METHOD PROPOSED HERE(BT-MPC)FORN = 20, N = 1 AND THE METHOD IN [7] (RG-MPC)FORN = 20.
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Fig. 4. Velocity and acceleration of the slow stagex axis (blue) and
constraints (black).
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Fig. 5. Velocity and acceleration of the slow stagey axis (blue) and
constraints (black)

both forN = 20, and with those obtained with the method
proposed here withN = 1. WhenN = 20 is considered,
the new method reduces the processing time by about4.5%.
Also, the mean tracking error of the slow stage is reduced.
To achieve that, the mean acceleration and mean velocity of
the slow stage are slightly higher, but still significantly lower
than those that would be obtained by a single stage machine.
When the horizon is reduced toN = 1, the processing
time does not change, but the mean acceleration and velocity
increase significantly, due to the shorter preview. Finally, it is
worth mentioning that despite the RCI constraints introduc-
ing some additional effort, the controller implemented with

the solver in [15] executes in real time.

VI. CONCLUSIONS

We have proposed a control design for dual-stage dual-axis
processing machines for precision manufacturing based on
RCI sets. With respect to previously proposed methods, the
advantages are the possibility of executing the RGA offline,
the use of less conservative constraints, and the guaranteed
finite-time termination with an easily computable bound.
These result in improved processing time as shown in a
realistic case study.
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