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Abstract
Iterative shrinkage/thresholding algorithm (ISTA) is a well-studied method for finding sparse
solutions to illposed inverse problems. In this letter, we present a data-driven scheme for
learning optimal thresholding functions for ISTA. The proposed scheme is obtained by re-
lating iterations of ISTA to layers of a simple feedforward neural network and developing
a corresponding error backpropagation algorithm for fine-tuning the thresholding functions.
Simulations on sparse statistical signals illustrate potential gains in estimation quality due to
the proposed data adaptive ISTA.
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Learning optimal nonlinearities for iterative
thresholding algorithms

Ulugbek S. Kamilov, Member, IEEE and Hassan Mansour, Member, IEEE

Abstract—Iterative shrinkage/thresholding algorithm (ISTA)
is a well-studied method for finding sparse solutions to ill-
posed inverse problems. In this letter, we present a data-driven
scheme for learning optimal thresholding functions for ISTA.
The proposed scheme is obtained by relating iterations of ISTA
to layers of a simple feedforward neural network and developing
a corresponding error backpropagation algorithm for fine-tuning
the thresholding functions. Simulations on sparse statistical
signals illustrate potential gains in estimation quality due to the
proposed data adaptive ISTA.

Index Terms—Compressive sensing, sparse recovery, ISTA,
neural networks, error backpropagation

I. INTRODUCTION

THE problem of estimating an unknown signal from noisy
linear observations is fundamental in signal processing.

The estimation task is often formulated as the linear inverse
problem

y = Hx + e, (1)

where the objective is to recover the unknown signal x ∈
RN from the noisy measurements y ∈ RM . The matrix H ∈
RM×N models the response of the acquisition device and the
vector e ∈ RM represents the measurement noise, which is
often assumed to be independent and identically distributed
(i.i.d.) Gaussian.

A standard approach for solving ill-posed linear inverse
problems is the regularized least-squares estimator

x̂ = arg min
x∈RN

{
1

2
‖y −Hx‖2`2 + λR(x)

}
, (2)

whereR is a regularizer that promotes solutions with desirable
properties and λ > 0 is a parameter that controls the strength
of regularization. In particular, sparsity-promoting regulariza-
tion, such as `1-norm penalty R(x) , ‖x‖`1 , has proved to
be successful in a wide range of applications where signals
are naturally sparse. Regularization with the `1-norm is an
essential component of compressive sensing theory [1], [2],
which establishes conditions for accurate estimation of the
signal from M < N measurements.

The minimization (2) with sparsity promoting penalty is a
non-trivial optimization task. The challenging aspects are the
non-smooth nature of the regularization term and the massive
quantity of data that typically needs to be processed. Proximal
gradient methods [3] such as iterative shrinkage/thresholding
algorithm (ISTA) [4]–[6] or alternating direction method of
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Fig. 1. Visual representation of the optimization scenario considered in this
letter. ISTA with a pointwise nonlinearity ϕ is initialized with a signal x0

which results in the estimate xT after T iterations. The algorithm proposed
here allows to efficiently refine ϕ by comparing xT against the true signal x
from a set of training examples.

multipliers (ADMM) [7], [8] are standard approaches to cir-
cumvent the non-smoothness of the regularizer while simpli-
fying the optimization problem into a sequence of computa-
tionally efficient operations.

For the problem (2), ISTA can be written as

zt ← (I− γHTH)xt−1 + γHTy (3a)
xt ← T (zt; γλ), (3b)

where xt is the estimate at iteration t, I is the identity matrix,
and γ > 0 is a step-size that can be set to γ = 1/λmax(H

TH)
to ensure convergence [9]. Here, the symbol T denotes the
matrix transpose operator, and λmax(H

TH) denotes the largest
eigenvalue of the matrix HTH. Iteration (3) combines the
gradient descent step (3a) with a proximal operator (3b) that
reduces to a pointwise nonlinearity

T (z;λ) = proxγR(z) (4a)

, arg min
x∈R

{
1

2
(x− z)2 + λR(x)

}
. (4b)

for convex and separable regularizers such as the `1-norm
penalty.

In this letter, we consider the problem of learning an optimal
nonlinearity T for ISTA given a set of L training examples
{x`,y`}`∈[1,...,L]. Specifically, as illustrated in Fig. 1, we inter-
pret iteration (3) as a simple feedforward neural network [10]
with T layers and develop an efficient algorithm that allows
to determine optimal T directly from data. Simulations on
sparse statistical signals show that data adaptive ISTA sub-
stantially improves over the `1-regularized reconstruction by
approaching the performance of the minimum mean squared
error (MMSE) estimator.



2 LEARNING OPTIMAL NONLINEARITIES FOR ISTA

II. RELATED WORK

Starting from the early works [4]–[6], iterative thresholding
algorithms have received significant attention in the context
of sparse signal estimation. Accelerated variants of ISTA were
proposed by, among others, Bioucas-Dias and Figueiredo [11],
and Beck and Teboulle [9]. Additional extensions were pro-
posed by replacing soft-thresholding with alternative sparsity-
promoting nonlinearities [12]–[16]. The method has also in-
spired the approximate message passing (AMP) algorithm by
Donoho et al. [17], as well as its Bayesian extensions [18],
[19]. In particular, it was shown that, in the compressive
sensing setting, one can obtain an optimal estimation quality
by adapting the thresholding function of AMP to the statistics
of the signal [20], [21]. The primary difference of the work
here, to the traditional approaches based on Bayesian signal
modeling, is that the optimal thresholding functions are learned
directly from independent realizations of the data, rather than
being explicitly designed to the assumed statistics. Accord-
ingly, the scheme presented here is particularly useful when
the statistical distribution of the signals is not known.

More recently, several authors have considered relating
iterative algorithms to neural networks. For example, in the
context of sparse coding, Gregor and LeCun [22] proposed to
accelerate ISTA by learning the matrix H from data. The idea
was further refined by Sprechmann et al. [23] by considering
an unsupervised learning approach and incorporating a struc-
tural sparsity model for the signal. In the context of the image
deconvolution problem, Schmidt and Roth [24] proposed a
scheme to jointly learn iteration dependent dictionaries and
thresholds for ADMM. Similarly, Chen et al. [25] proposed
to parametrize nonlinear diffusion models, which are related
to the gradient descent method, and learned the parameters
given a set of training images. A general application of deep
learning to compressive sensing was presented in [26], while
the idea of learning the activation functions was discussed
in [27]. This letter extends those works by specifically learning
separable thresholding functions for ISTA. Unlike the matrices
H, thresholding functions relate directly to the underlying
statistical distributions of i.i.d. signals x. Furthermore, by op-
timizing for the same nonlinearity across iterations, we obtain
the MSE optimal ISTA for a specific statistical distribution of
data, which, in turn, allows us to evaluate the best possible
reconstruction achievable by ISTA.

III. MAIN RESULTS

By defining a matrix S , I− γHTH, vector b , γHTy,
as well as nonlinearity ϕ(·) , T (·, γλ), we can re-write ISTA
using element-wise update steps as follows

ztm ←
N∑
n=1

Smnx
t−1
n + bm (5a)

xtm ← ϕ(ztm), (5b)

where m ∈ [1, . . . , N ].

A. Problem Formulation
Our objective is now to design an efficient algorithm for

adapting the function ϕ, given a set of L training examples

{x`,y`}`∈[1,...,L], as well as by assuming a fixed number of
ISTA iterations T . In order to devise a computational approach
for tuning ϕ, we adopt the following parametric representation
for the nonlinearities

ϕ(z) ,
K∑

k=−K

ckψ
( z

∆
− k
)
, (6)

where c , {ck}k∈[−K,...,K], are the coefficients of the
representation and ψ is a basis function, to be discussed
shortly, positioned on the grid ∆[−K,−K+1, . . . ,K] ⊆ ∆Z.
Here, the constant ∆ > 0 denotes the distance between two
grid points. We can reformulate the learning process in terms
of coefficients c as follows

ĉ = arg min
c∈C

{
1

L

L∑
`=1

E(c,x`,y`)

}
(7)

where C ⊆ R2K+1 is a set that incorporates prior constraints
on the coefficients and E is a cost functional that guides the
learning. The cost functional that interests us in this letter is
the MSE defined as

E(c,x,y) ,
1

2
‖x− xT (c,y)‖2`2 , (8)

where xT is the solution of ISTA at iteration T , which depends
on both the coefficients c and the given data vector y. Given
a large number of independent and identically distributed
realizations of the signals {x`,y`}, the empirical MSE is
expected to approach the true MSE of ISTA for nonlinearities
of type (6). Thus, by solving the minimization problem (7)
with the cost (8), we are seeking the MMSE variant of
ISTA for a given statistical distribution of the signal x and
measurements y.

B. Optimization

For notational simplicity, we now consider the scenario
of a single training example and thus drop the indices `
from the subsequent derivations. The generalization of the
final formula to an arbitrary number of training samples L
is straightforward.

We would like to minimize the following cost

E(c) ,
1

2
‖x− xT (c)‖2`2 =

1

2

N∑
m=1

(xm − xTm(c))2, (9)

where we dropped the explicit dependence of xT on y for
notational convenience. The optimization of the coefficients is
performed via the projected gradient iterations

ci = projC(c
i−1 − µ∇E(ci−1)), (10)

where i = 1, 2, 3, . . . , denotes the iteration number of the
training process, µ > 0 is the step-size, which is also called the
learning rate, and projC is an orthogonal projection operator
onto the convex set C.

We now devise an efficient error backpropagation algorithm
for computing the derivatives of E with respect to coefficients
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Algorithm 1 Backpropagation for evaluating ∇E(c)

input: measurements y, signal x, current value of coefficients
c, and number of ISTA iterations T .
output: the gradient ∇E(c).
algorithm:

1) Run T iterations of ISTA in eq. (5) by storing interme-
diate variables {zt}t∈[1,...,T ] and the final estimate xT .

2) Initialize: Set t← T , rT ← xT − x, and gT ← 0.
3) Compute:

gt−1 ← gt + [Ψt]Trt (11a)

rt−1 ← STdiag(ϕ′(zt))rt (11b)

4) If t = 0, return ∇E(c) = g0, otherwise, set t ← t − 1
and proceed to step 3).

c. First, note that we can write the iteration (5) with the
nonlinearity (6) as follows

xtm = ϕ(ztm) =

K∑
k=−K

ckψ

(
ztm
∆
− k
)
, (12)

for all m ∈ [1, . . . , N ]. The gradient can be obtained by
evaluating

∇E(c) =

[
∂

∂c
xT (c)

]T

(xT (c)− x), (13)

where we define the Jacobian

∂

∂c
xt(c) ,


∂xt

1

∂c−K
. . .

∂xt
1

∂cK

...
. . .

...
∂xt

N

∂c−K
. . .

∂xt
N

∂cK

 . (14)

By differentiating (12) with respect to ck and simplifying the
resulting expression, we obtain

∂xtm
∂ck

= Ψt
mk + ϕ′(ztm)

N∑
n=1

Smn

[
∂xt−1n

∂ck

]
, (15)

where we defined a matrix Ψt
mk , ψ(ztm/∆− k), and ϕ′ is

the derivative of ϕ with respect to ztm. Then, for any vector
r ∈ RN , we obtain

N∑
m=1

[
∂xtm
∂ck

]
rm =

N∑
m=1

Ψt
mkrm (16)

+

N∑
n=1

[
∂xt−1n

∂ck

] N∑
m=1

Smnrmϕ
′(ztm),

which translates to the following vector equation[
∂xt

∂c

]T

r = [Ψt]Tr +

[
∂xt−1

∂c

]T

STdiag(ϕ′(zt))r, (17)

where the operator diag(g) creates a matrix and places the
vector g into its main diagonal. Note that since the initial
estimate x0 does not depend on c, we have that

∂x0

∂c
= 0. (18)

Algorithm 2 Online learning for solving (7)
input: set of L training examples {x`,y`}`∈[1,...,L], learning
rate µ > 0, and constraint set C ⊆ R2K+1.
output: nonlinearity ϕ specified by learned coefficients ĉ.
algorithm:

1) Initialize: Set i← 1 and select c0 ∈ C.
2) Select a small subset {x`} and {y`} with an equal

probability, from the set of L training examples.
3) Using the selected training examples, update ϕ as fol-

lows
ci ← projC(c

i−1 − µ∇E(ci−1)) (19)

4) Return ĉ = ci if a stopping criterion is met, otherwise
set i← i+ 1 and proceed to step 2).

By applying the equation (17) recursively starting from t = T
and using (18), we obtain[
∂xT

∂c

]T

rT = [ΨT ]TrT︸ ︷︷ ︸
, gT−1

+

[
∂xT−1

∂c

]T

STdiag(ϕ′(zT ))rT︸ ︷︷ ︸
, rT−1

= gT−1 +

[
∂xT−1

∂c

]T

rT−1 = gT−1 + [ΨT−1]TrT−1︸ ︷︷ ︸
, gT−2

+

[
∂xT−2

∂c

]T

STdiag(ϕ′(zT−1))rT−1︸ ︷︷ ︸
, rT−2

= gT−2 +

[
∂xT−2

∂c

]T

rT−2 = · · · = g0 +

[
∂x0

∂c

]T

r0 = g0.

This suggests the error backpropagation algorithm summarized
in Algorithm 1 that allows one to obtain (13).

The remarkable feature of Algorithm 1 is that it allows one
to efficiently evaluate the gradient of ISTA with respect to
the nonlinearity ϕ. Its computational complexity is equivalent
to running a single instance of ISTA, which is a first-order
method, known to be scalable to very large scale inverse prob-
lems. Finally, equipped with Algorithm 1, nonlinearity ϕ can
easily be optimized by using an online learning approach [28]
summarized in Algorithm 2.

C. Representation with B-Splines

In our implementation, we represent the nonlinearity ϕ in
terms of its expansion with polynomial B-Splines (see an
extensive review of B-Spline interpolation by Unser [29],
[30]). The main advantage of the B-Spline representation is
that it can approximate any nonlinearity with an arbitrary
precision for a sufficiently small ∆. Accordingly, our basis
function corresponds to ψ = βd, where βd refers to a B-Spline
of degree d ≥ 0. Within the family of polynomial splines,
cubic B-Splines

β3(z) =


2
3 − |z|

2 + |z|3
2 when 0 ≤ |z| ≤ 1

1
6 (2− |z|)3 when 1 ≤ |z| ≤ 2

0 when 2 ≤ |z|,
(20)
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Fig. 2. Quantitative evaluation on sparse signals. Average SNR is plotted
against the measurement rate M/N when recovering N = 512 Bernoulli-
Gaussian signal x from measurements y under i.i.d. H.
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Fig. 3. Illustration of the learning process for M/N = 0.7. Left: SNR of
training is plotted for each training iteration. Right: the final learned shrinkage
(solid) is compared to the standard soft-thresholding under optimal λ.

tend to be the most popular in applications—perhaps due to
their minimum curvature property [29]. B-Splines are very
easy to manipulate. For instance, their derivatives are com-
puted through the following formula

d

dz
βd(z) = βd−1(z + 1

2 )− βd−1(z − 1
2 ), (21)

which simply reduces the degree by one. By applying this
formula to the expansion of ϕ, we can easily obtain a closed
form expression for ϕ′ in terms of quadratic B-Splines

β2(z) =


3
4 − |z|

2 when 0 ≤ |z| ≤ 1
2

9
8 −

1
2 |z|(3− |z|) when 1

2 ≤ |z| ≤
3
2

0 when 3
2 ≤ |z|.

(22)

IV. EXPERIMENTS

To verify our learning scheme, we report results
of ISTA with learned MSE optimal nonlinearities (de-
noted MMSE-ISTA) on the compressive sensing recov-
ery problem. In particular, we consider the estimation of
sparse Bernoulli-Gaussian signals x with an i.i.d. prior
px(xn) = ρN (xn, 0, 1) + (1− ρ)δ(xn), where ρ ∈ (0, 1] is
the sparsity ratio, N (·, µ, σ2) is the Gaussian probability
distribution function of mean µ and variance σ2, and δ is
the Dirac delta distribution. In our experiments, we fix the
parameters to N = 512 and ρ = 0.2, and we numer-
ically compare the signal-to-noise ratio (SNR) defined as
SNR (dB) , 10 log10

(
‖x‖2`2/‖x− x̂‖2`2

)
, for the estimation

of x from linear measurements of form (1), where e has vari-
ance set to achieve SNR of 30 dB, and where the measurement
matrix H is drawn with i.i.d. N (0, 1/M) entries.

We compare results of MMSE-ISTA against four alternative
methods. As the first reference method, we consider standard
least absolute shrinkage and selection operator (LASSO) [31]
estimator, which corresponds to solving (2) with an `1-norm
regularizer. In addition to LASSO, we consider the accelerated
iterative hard thresholding (AIHT) algorithm [14] that seeks
minimum `0-norm solution to the linear inverse problem. We
also consider the MMSE variant of the generalized AMP
(GAMP) algorithm [19], which is known to be nearly optimal
for recovery of sparse signals from random measurements.
Finally, we consider a support-aware MMSE estimator (ge-
nie), which provides an upper bound on the reconstruction
performance of any algorithm.

The regularization parameter λ of LASSO was optimized
for the best SNR performance. Similarly, the parameters
of AIHT and GAMP were set to their statistically optimal
values. The implementation of LASSO is based on FISTA [9].
FISTA, AIHT, and GAMP were run for a maximum of 1000
iterations or until convergence that was measured using the
relative change in the solution in two successive iterations
‖xt − xt−1‖`2/‖xt−1‖`2 ≤ 10−4. The number of layers of
MMSE-ISTA was set to T = 200. Learning was performed
by using online learning in Algorithm 2 that was run for 1000
iterations with µ = 10−4. The nonlinearity ϕ was defined
with 8000 basis functions that were spread uniformly over the
dynamic range of the signal and was initialized to correspond
to the soft-thresholding function with optimal λ.

Figure 2 reports the SNR performance of all algorithms
under test after averaging the results of 1000 random trials.
The results show that the quality of the estimated signal
can be considerably boosted using the learnt nonlinearities ϕ
that are adapted to the training data. In particular, the SNR
performance of MMSE-ISTA is significantly better than that
of LASSO and AIHT at the lower values of M/N , and is about
1 dB away from the SNR obtained by GAMP at higher values
of M/N . Note that while the SNR performance of MMSE-
ISTA is slightly inferior to that of GAMP, the former does
not require randomness of H [32] and avoids any explicit
assumptions on the statistics of the i.i.d. signal x. Figure 3
illustrates the per-iteration evolution of SNR evaluated on the
training sample during the learning process (left), as well as
the final shape of the learned nonlinearity (right). Although the
nonlinearity ϕ is initialized with the soft-thresholding function,
the plots demonstrate that the learning procedure deviates the
shape of ϕ from the soft-thresholding function, which leads
to a significant increase in the SNR of the solution.

V. CONCLUSION

The scheme developed in this letter is useful for optimiz-
ing the nonlinearities of ISTA given a set of independent
realizations of data samples. By using this scheme, we were
able to benchmark the best possible reconstruction achievable
by ISTA for i.i.d. sparse signals. Specifically, in the context
of compressive sensing, we showed that by optimizing the
nonlinearities, the performance of ISTA improves by several
dBs and approaches that of the optimal estimator.
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