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1. INTRODUCTION

Decision making and motion planning are two key components
for future generations of advanced driver-assistance systems
(ADAS). Based on driver desires and current and predicted
information, decision making concerns selecting the desired
lane and velocity profile. In semi-autonomous mode, decision
making can also include decisions about whether to assist the
driver or take control over the car. Motion planning, on the other
hand, addresses generation of suitable trajectories. Decision
making and planning is sometimes modeled separately, but can
also be considered jointly (Carvalho et al., 2015). In recent
literature, model-predictive control (MPC) is a popular choice
(Di Cairano et al., 2013; Carvalho et al., 2015; Ali et al.,
2013) for designing ADAS, because it naturally provides a
framework for performing joint decision making and trajectory
generation. However, MPC is not a stand-alone component for
solving the motion-planning problem, since it typically requires
a precomputed reference trajectory.

Sampling-based methods, such as rapidly exploring random
trees (RRTs) (LaValle, 2006; Karaman and Frazzoli, 2011), are
popular and reliable methods for path planning in robotic ap-
plications, because they guarantee to provide a path whenever
it exists. Traditional RRTs rely on random sampling of the state
space. Each generated sample is checked for collision, typically
assuming a static environment; if the sample location is colli-
sion free, it is added as a node, and collision-free connections
are made to surrounding nodes for tree expansion. However,
to include dynamics, or even kinematics, is nontrivial. Despite
this, sampling-based approaches have been successfully used
for motion planning of automotive systems in some cases, both
in simulation and experiment. In (Hwan Jeon et al., 2013), time-
optimal minimization of a hairpin turn was considered. Full-
scale field tests for an online RRT have been performed in
(Kuwata et al., 2009). There, an input-based RRT that samples
position references to a tracking controller was developed. The
method uses the tracking controller to connect position refer-
ences to each other, thereby generating drivable paths between

points. In (Arslan et al., 2016), the approach in (Kuwata et al.,
2009) was extended to optimal motion planning.

In this paper, we propose a sampling-based, probabilistic
framework for joint decision making and motion planning
applied to road vehicles. RRTs are commonly used as path
planners by generating samples such that the state space is
covered uniformly, and do not include decision making. Our
motion planner is entirely simulation based and complex ve-
hicle dynamics is therefore naturally included, unlike most
other sampling-based approaches. Here, the vehicle dynamics
is modeled using a nonlinear single-track chassis model that
incorporates combined-force modeling, seven states in total.
Commonly, sampling-based planners generate random states
and then connect these through approximate solutions to two-
point boundary value problems, which is computationally pro-
hibitive in automotive applications. In contrast, the proposed
planner generates random inputs. This reduces the search space
from the dimension of the state space to the dimension of
the input space (i.e., from seven to two for the considered
model), simplifying real-time implementation. In addition, our
approach includes decision making in the planner already in
the sampling phase. The input samples are guided to distinct
lanes and velocity sets using particle filtering (Doucet et al.,
2001; Gustafsson, 2010). This can be seen as a de-randomizing
step. The proposed planner computes several sets of trajec-
tories that can be used for decision making. Our approach
draws inspiration from (Gustafsson et al., 2012; Eidehall and
Petersson, 2008), where sequential Monte Carlo is used for
threat assessment. This paper extends the application domain
of sequential Monte Carlo to motion planning of road vehicles.
The approach is explained and demonstrated using a simulated
highway-driving example in different scenarios, such as over-
taking of vehicles and in case of obstructed lanes.

2. VEHICLE MODELING

The model used in the motion planning is a nonlinear single-
track model with lumped right and left wheels; for more model
details, see (Berntorp, 2014). Fig. 1 shows the notation and
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Fig. 1. Notation and geometry of the single-track chassis model
used in the motion planning.

geometry. The chassis model has three degrees of freedom, two
translational and one rotational:

v̇X − vY ψ̇ =
1
m
(Fx, f cos(δ )+Fx,r−Fy, f sin(δ )),

v̇Y + vX ψ̇ =
1
m
(Fy, f cos(δ )+Fy,r +Fx, f sin(δ )),

Izzψ̈ = l f Fy, f cos(δ )− lrFy,r + l f Fx, f sin(δ ),

(1)

where m is the vehicle mass; Izz is the vehicle inertia about the
z-axis; ψ̇ is the yaw rate; δ is the steer angle; vx,vy are the
longitudinal and lateral velocities at the center of mass; l f , lr
are the distances from the center of mass to the front and rear
wheel base; and {Fx,i,Fy,i}i= f ,r are the longitudinal and lateral
tire forces acting at the front and rear wheels, respectively.

Slip angles α f ,αr are introduced following (Pacejka, 2006) and
are described by

α f := δ − arctan
(

vy + l f ψ̇
vx

)
, (2)

αr :=−arctan
(

vy− lrψ̇
vx

)
. (3)

The lateral nominal tire forces—that is, the forces under
pure slip conditions—are computed with a simplified Magic-
Formula model (Pacejka, 2006),

F0
y,i = µy,iFz,i sin

(
Cy,i arctan

(
By,iαi

−Ey,i(By,iαi− arctan(By,iαi))
))

, (4)

Fz,i = mg(l− li)/l, i = f ,r, where l = l f + lr. (5)

The simplification in (4) lies in that since a single-track model
is used, the tire models are assumed symmetric in αi. Further-
more, µ denotes the friction coefficient and B, C, and E are
model parameters. Combined slip is modeled using the friction-
ellipse concept:

Fy,i = F0
y,i

√
1−
(

Fx,i

µx,iFz,i

)2

, (6)

where F0
y,i is computed using (4), given the longitudinal force.

There are different options for choosing inputs to the vehi-
cle model. Here, we have opted for using the steer rate δ̇
and longitudinal acceleration ax as inputs. The choice of steer
rate and acceleration implies that the resulting steer angle and
velocity are continuous. Furthermore, it is straightforward to
impose constraints on the inputs in the sampling phase with
this choice of inputs, ensuring that the computed trajectories
provide a smooth and safe ride. We model the steer dynamics
as an integrator, but it is straightforward to include more com-
plex dynamics. The acceleration is translated to longitudinal
forces by assuming that the front and rear wheel axle provide

longitudinal forces that are proportional to the length from the
respective center of mass, that is,

Fx, f = maxlr/l, Fx,r = maxl f /l.
Thus, the total number of states are

x = [X Y ψ ψ̇ vx vy δ ]T , (7)
where the Cartesian positions X and Y relate to the mass center
in the vehicle frame as

Ẋ = vx cos(ψ)− vy sin(ψ),

Ẏ = vx sin(ψ)+ vy cos(ψ),

and the inputs are
u =

[
ax δ̇

]T
. (8)

In the following, we will compactly write (1)–(8) as
ẋ = f (x,u). (9)

There are sources of uncertainty in this model. Mass and tire
parameters are not exactly known and inputs are uncertain.
However, the range of these uncertainties can typically be
specified; for example, the inputs are bounded by their allowed
ranges and it is more likely that the inputs are close to zero than
saturating for normal driving. The uncertainties are therefore
modeled by introducing stochastic process noise w acting on
the inputs and states. Standard choices for noise distributions
are Gaussian or uniform distributions. Other examples are given
in (Gustafsson et al., 2012; Eidehall and Petersson, 2008).

3. JOINT DECISION MAKING AND TRAJECTORY
GENERATION

Many sampling-based path planners find geometric paths based
on a snapshot of the environment and are applicable in quite
general scenarios (LaValle, 2006). However, they often ignore
the equations of motion. For automotive systems, the vehicle
dynamics significantly restricts the reachable set and should
therefore be accounted for. An approach to incorporate equa-
tions of motion is to sample inputs and propagate through the
system model (Hsu et al., 2002; Frazzoli et al., 2002). While
this often works well, it can be very inefficient in certain scenar-
ios, because it does not utilize structure in the motion-planning
problem.

3.1 Task Specification

In many motion-planning problems there are certain specifica-
tions that should be fulfilled. In RRT, specifications are handled
by appropriate choice of cost function, evaluated among all fea-
sible paths. This can lead to inefficiency and poor performance
in certain applications. While specifications on path level can
be accounted for, it is hard to incorporate specifications on gen-
eral variables while preserving convergence guarantees. In our
approach, we model specifications as probabilistic constraints
on the allowed motion and therefore only generate samples that
are consistent with the specifications. To exemplify, when con-
sidering vehicle motion planning, possible specifications are:

• Stay on the road
• Maintain a desired velocity profile
• Drive smoothly, that is, prioritize small steer rates
• Keep safety distance to surrounding obstacles

Specifications are modeled as constraints by introducing them
as desired outputs yd as functions of the states,

yd = h(x). (10)



The desired outputs can directly correspond to some or all of
the states. In case of specifications on the desired velocity,
yd = vx,d . In terms of safety distance, however, the desired
output is the preferred distance between suitable points on the
ego vehicle (i.e., the vehicle executing the path planner) and
obstacles.

In practice, the specifications cannot be tracked perfectly. We
therefore add a probabilistic slack on each desired output, here
expressed by e. The slack determines how large deviations
can be tolerated. Imperfect tracking can occur for several rea-
sons, being time constants, sensor uncertainties, or an overcon-
strained system.

When considering road-vehicle motion planning and decision
making, different specifications have different priorities. For
example, it is imperative that the car stays on the road, when-
ever that is possible, but it is not crucial for operability to
exactly track a certain velocity. To illustrate our method, we
introduce the following specifications for road-bound motion
planning:

Follow a nominal longitudinal velocity vnom This desired
output directly corresponds to the longitudinal velocity, that is,
yd,1 = vnom and h1(x) = vx.

Follow the middle lane For the second specification, we
assume that the ego vehicle only uses the left-most lanes if
needed. If there are no obstacles in the vicinity of the ego
vehicle, the goal is to follow the middle of the right lane. The
mid-lane error is defined as the lateral distance in the road frame
from the vehicle to the middle lane and is denoted by pe.

When there are obstacles present within the planning horizon,
the motion planner needs to make a decision about which lane
to follow. We model this as a bimodal relation. For a two-lane
road with each lane having width w, the middle of the road
can be chosen as the origin. By squaring the error from the
middle of the road, we obtain the relation h2(x) = p2

e . Mid-lane
following enforces that yd,2 = (w/2)2. Such modeling can be
extended to incorporate several lanes.

Maintain a safety margin to vehicles Assume that, within a
prespecified radius from the ego vehicle, there are O obstacles
with vectors {d j}O

j=1, which describe the squared distance
along each coordinate axis, computed in the frame of the
obstacle. The safety requirement is modeled as

h j+3 = σe−dT
j Wd j , (11)

where σ is a scaling factor and W is a weighting matrix. This
function has its peak value σ at d j = 0, that is, at the center of
the obstacle. As the arguments increase, (11) decreases in value.
Thus, yd, j+3 = 0 if W is chosen appropriately. This specification
will penalize trajectories that are close to surrounding vehicles.
An alternative is to only choose the closest predicted obstacle.
In this case, O = 1.

Maintain a safety distance ds to vehicles in the same lane
The safety distance ds for vehicles in the same lane is velocity
dependent. It is chosen as ds = vx∆, where ∆ is the time to reach
the obstacle when it is standing still. Denote the true distance
with dt . This specification is only invoked when dt is below ds,
that is, when

dt ≤ ds (12)
is fulfilled. If (12) is satisfied, h4+m = ds−dt and yd,4+m = 0.

The complete vector of desired outputs and state relation,
respectively, is

yd =
[
vnom (w/2)2 {0}O

j=1 0
]T

, (13a)

h(x) =
[
vx p2

e {σe−dT
j Wd j}O

j=1 ds−dt

]T
. (13b)

When only one lane is to be tracked, the second argument in
(13b) reduces to pe and w in (13a) is set to zero.

3.2 State-Space Exploration using Particle Filtering

Here, we explore the state space using particle-filter (PF) tech-
niques, assuming specifications in the form (13). The ratio-
nale for using PFs is that they provide an appealing way to
statistically determine which computed trajectory is bad and
which one is good, and they include many possibilities for
biasing the samples and obtain reliable results with few sam-
ples. Furthermore, there is a vast literature on the theoretical
properties of PFs (Crisan and Doucet, 2002; Douc et al., 2014).
PFs numerically estimate probability distributions p(xk|y0:k) by
generating N random states {xi

k}N
i=1 at each time step k and

assigning a probability weight wi
k, which reflects how well the

state explains the observations. The random states are generated
by sampling from a proposal density q(·) as

xi
k+1 ∼ q(xk+1|xi

k,yk+1). (14)

The corresponding unnormalized weight is computed as

wi
k+1 ∝

p(yk+1|xi
k+1)p(xi

k+1|xi
k)

q(xi
k+1|xi

k,yk+1)
wi

k, (15)

which is then normalized to give the interpretation of a prob-
ability distribution. As in RRT, a node is selected at random
using some heuristics π . A PF is then executed for T time steps
with sampling time Ts. If particle i ends up in an occupied area,
the corresponding weight wi

k+1 is set to zero. If all N weights
become zero, the PF is terminated and a new node is chosen
for tree expansion. The PF provides N state trajectories. For
memory efficiency, we only store the weighted mean of the
trajectories, which is the minimum mean-square estimate of the
desired trajectory.

The choice of proposal density (14) is nontrivial and there is
a plethora of alternatives readily available. Here, we guide the
samples using the conditional distribution

q(xk+1|xi
k,yk+1) = p(xk+1|xi

k,yk+1). (16)

This choice leads to the weight update

wi
k+1 ∝ p(yk+1|xi

k)w
i
k. (17)

Eq. (17) implies that the weight is independent of the sample
xi

k. The proposal (16) is optimal in the sense that it maximizes
the effective number of samples (all other alternatives will
lead to increased variance of the weights), but it is generally
difficult to sample from exactly. However, for a linear, Gaussian
measurement relation in the form

yk = Hxk + ek,

the expression is analytic. For a nonlinear measurement relation
a linearized version can be used, leading to

q(xk+1|xi
k,yk+1) = N

(
xk+1|x̂i

k+1,(Σ
i
k+1)

−1) (18)

where N (x|µ,Σ) is the Gaussian density given mean µ and
covariance Σ,



x̂i
k+1 = f (xi

k)+Li
k(yk+1− ŷi

k+1),

Σ
i
k+1 =

(
(H i

k)
TR−1

k+1H i
k +Q−1

k

)−1
,

Li
k = Qk(H i

k)
T(H i

kQk(H i
k)

T +Rk+1)
−1,

ŷi
k+1 = H i

k f (xi
k),

H i
k =

∂h
∂x

∣∣∣∣
f (xi

k)

,

and Qk is the second-order moment of the process noise. The
likelihood in (17) is approximated as

p(yk+1|xi
k) = N

(
yk+1|ŷi

k+1,H
i
kQk(H i

k)
T +Rk+1

)
. (19)

3.3 Online Execution

The framework provides decision making and motion planning
over a horizon constrained by the sensing information. The
road to be traversed is assumed to be given by a higher-level
logic, such as a car-navigation system. RRTs plan paths toward
a predefined goal, then choose the best path along all those
that have reached the goal point. Here, the goal is created
by inserting waypoints in each lane at a distance constrained
by the map geometry, current vehicle velocity, and predicted
motion of obstacles. More complex goal-generation methods
can be applied to the proposed motion planner. The RRT plans
a trajectory toward one or several waypoints P for time ∆t but
only applies it for δ t ≤ ∆t; that is, the planned trajectory is
applied in receding horizon, similar to MPC.

3.4 Collision Checking

A collision-checking functionality returns True if the vehicle
position (possibly with added safety margin) is unoccupied at
time tk. Otherwise, it returns False. The collision checking
incorporates time, which is nonstandard. This implies that a
larger portion of the generated tree can be reused in the next
planning cycle. It also suppresses the need for reevaluation of
nodes, which otherwise is needed when replanning in dynamic
environments (Kuwata et al., 2009). The inclusion of time ne-
cessitates prediction of obstacles, given their measured (esti-
mated) states at the beginning of every planning cycle, but the
number of obstacles in the vicinity of the autonomous vehicle
is typically much less than the number of nodes that have to be
checked in the reevaluation.

Algorithm 1 provides the PF-based exploration phase and the
complete motion planner is given in Algorithm 2.
Remark 1. By exploring the state space using task specifica-
tions, decision making is naturally incorporated into the algo-
rithm. In standard RRT a tree containing a uniformly distributed
set of points are generated and a user-designed cost function
picks out the best trajectory in the tree as a last step in the
algorithm. In the limit, the tree contains a continuoum of nodes
and discrete decision making is therefore hard. With PF-based
exploration, trajectories for different possible decisions (e.g.,
which lane to follow) are generated by viewing the decision
process as a nonlinear, possibly multimodal, estimation prob-
lem. The generated tree therefore contains distinct set of trajec-
tories, with each set corresponding to a possible decision.

4. SIMULATION STUDY

We present results from a simulation where the ego vehicle
navigates on a two-lane road using Algorithm 2. The nominal

Algorithm 1 Particle Filter for Tree Expansion
Initialize: Set {xi

0}N
i=1 = x0, {wi

0}N
i=1 = 1/N,

Success← True
1: for k← 0 to T −1 do
2: for i← 1 to N do
3: Generate new particles using (18):

xi
k+1 ∼ p(xk+1|xi

k,yk+1)

4: if xi
k+1 is collision free then

5: Compute weights using (17), (19):

w̄i
k+1 = wi

k p(yk+1|xi
k)

6: else
7: Set w̄i

k+1 = 0
8: end if
9: end for

10: Set Nw = ∑
N
i=1 wi

k+1
11: if Nw = 0 then
12: Success← False
13: Terminate algorithm
14: end if
15: Normalize: wi

k+1 = w̄i
k+1/∑

N
j=1 w̄ j

k+1
16: Set Neff = 1/(∑N

i=1(w
i
k)

2)
17: if Neff ≤ γN then
18: Draw N samples with replacement, where the prob-

ability of drawing xi
k+1 is wi

k+1
19: Set wi

k+1 = 1/N, ∀i ∈ {1, . . . ,N}
20: end if
21: Compute weighted mean:

xk+1 =
N

∑
i=1

wi
k+1xi

k+1

22: Set x0:k+1 = {x0:k,xk+1}
23: end for

Return: {x0:T ,Success}

Algorithm 2 RRT with PF-Based Input Sampling
1: Input: Current vehicle state x0, time t0, waypoints, envi-

ronment, stored tree
2: Set t = t0
3: while t ≤ t0 +δ t do
4: Select a node in the tree using heuristics π
5: Execute Algorithm 1
6: if Success then
7: Add x0:T to the tree
8: end if
9: end while

10: Compute best trajectory for each trajectory set
11: Choose decision
12: Apply trajectory for δ t s and repeat from Line 1

desired speed of the ego vehicle is 25 m/s. Other vehicles on
the road track either of the two lanes using state-feedback lane-
keeping steering controllers and drive with constant velocity
between 18.5–23 m/s. This implies that during parts of the sim-
ulation, both lanes are blocked by vehicles. The planner must
therefore find trajectories that slow down and stay behind until
an opening appears. When no obstacles are within the planning
horizon, the goal is to track the right lane. However, as soon
as an obstacle is detected, the planner computes trajectories for
both lanes and then chooses the one with associated lowest cost.



Table 1. Model parameters in (1)–(6), from (Berntorp, 2014).

Notation Value Unit

l f 1.3 m
lr 1.5 m
m 2 100 kg
Izz 3 900 kgm2

g 9.81 ms−2

Notation Front Rear

µx 1.20 1.20
µy 0.935 0.961
By 8.86 9.30
Cy 1.19 1.19
Ey −1.21 −1.11

4.1 Parameters

For the simulation results, we use a planning horizon of ∆t = 3,
and δ t = 1, meaning that the computed trajectory is at least 3 s
long and is applied for a third of the computed horizon. The
tree expansion uses N = 50 particles and the discretization of
the dynamics is done with a time step Ts = 0.1 s. A trajectory is
considered to have reached its goal when it reaches the middle
of the right lane ∆tvx m down the road (either of the lanes in
case of obstacles), where vx is taken as the vehicle velocity
at the beginning of the planning phase. The values of ∆t and
δ t reflect that onboard sensors can detect long-range obstacles
with reasonable accuracy (∆t), but the accuracy is more reliable
at shorter distances (δ t). The cost C in the RRTs for each node
is C = 10(vx− vnom)

2 + p2
e +dt . The noise matrices Q and R are

Q = diag([42,(30π/180)2]), R = diag([22,22,22,32]),

where diag(·) is the diagonal matrix. Also, σ and W in (11) are
chosen as σ = 4, W = diag([5,1]). The desired safety distance
is set to ds = 2vx. The model parameters used in this paper are
shown in Table 1 .

4.2 Results

Fig. 2 shows four snapshots from an overtaking situation. In
(a), at t = 20 s, when an obstacle is within the planning horizon
∆t, waypoints are inserted in both lanes and the planner tries
to connect to both of them. To stay behind the obstacle, the
vehicle has to slow down, whereas it can maintain speed by
changing lane. To maintain speed and overtake the obstacle
gives a lower cost in this case. In (b), at t = 25 s, the ego vehicle
maintains the left lane. In (c), at t = 33 s, Algorithm 2 computes
a trajectory to safely reenter the right lane. Finally, (d) shows a
snapshot at t = 40 s, where the ego vehicle has safely reentered
the right lane, after the overtaking is concluded. It is clear that
the algorithm provides safe and smooth trajectories. In this
scenario, the algorithm decides to switch lane before it gets too
close to the obstacle; that is, the safety-distance limit (12) is not
activated, and (13b) without the last element is therefore used
to guide the inputs (8).

Fig. 3 displays the bodyslip angle and longitudinal velocity for
the period of time corresponding to the overtaking in Fig. 2. The
bodyslip gives an indication of vehicle stability. For 25 m/s, a
rule of thumb is that β should not exceed β ≈ 7 deg (Kiencke
and Nielsen, 2005). The planner fulfills this, and the nominal
velocity 25 m/s is closely tracked throughout.

To show the algorithm’s ability to track conflicting objectives,
we present results from a scenario where there are two slower

moving vehicles in both lanes, ahead of the ego vehicle. The
obstacle in the right lane has velocity vx = 21.7 m/s and the ob-
stacle in the left lane has velocity vx = 22.5 m/s. Fig. 4 displays
snapshots of the scenario. Since both lanes are blocked, the
motion planner has to compute trajectories that slow down and
maintain the desired safety distance, see (12). Fig. 5 displays
the distance to the closest of the two vehicles and the resulting
velocity profile until overtaking is concluded. Up to t = 25 s, the
ego vehicle maintains the right lane, tracking the middle of the
lane and desired velocity vnom = 25 m/s. At t = 25 s, the planner
chooses to move to the left lane, since vnom can be more closely
tracked if switching lane. At t = 30 s, the safety criterion (12) is
met and the input sampler is now also considering maintaining a
safety distance corresponding to two seconds, see Sec. 4.1, that
is, (13b) is used to guide the inputs (8). As seen from the figure,
the inputs are generated such that the vehicle eventually travels
at the same speed as the obstacle. After t ≈ 46 s (d), the obstacle
in the left lane is so far ahead the right-lane obstacle that an
opening to reenter the right lane appears. Therefore, vnom can
be tracked again.

5. CONCLUSION

We presented a sampling-based method for real-time, joint de-
cision making and motion planning. The proposed method is an
input-based RRT that incorporates particle filtering as a means
to probabilistically choose the control inputs according to spec-
ifications, hence achieving an efficient and nonsparse tree in the
regions of most interest. The method generates drivable paths
by construction. An enabler for this is the introduction of task
specifications, which allows a reformulation of the exploration
phase in the motion planning as a nonlinear estimation problem.
Because the specifications are handled by a PF, highly nonlinear
and/or conflicting objectives can be modeled. In a range of
applications, there are specifications that the resulting trajectory
should aim to fulfill. Our framework is therefore significantly
more general than the particular example presented here.

Simulations on an autonomous-vehicle driving example showed
that the method is capable of generating distinct sets of tra-
jectories, according to task specifications, which can be used
for online decision making. The ability of handling conflicting
objectives was shown through an scenario where both lanes
were blocked, forcing the method to prioritize trajectories that
maintained a desired safety distance instead of maintaining
constant speed.

The method is intended for online motion planning. The focus
has therefore not been on finding optimal solutions. However,
with the introduction of PF, there are relations to optimal esti-
mation that can be further explored. It is future work to fully in-
vestigate convergence properties of our algorithm for different
parameter choices. The algorithm is probabilistic and is there-
fore well suited to incorporate different aspects of uncertainty,
such as sensor or estimation uncertainty.

REFERENCES

Ali, M., Falcone, P., Olsson, C., and Sjöberg, J. (2013). Pre-
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