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Abstract
Recent low-density parity-check (LDPC) codes have shown capacity-approaching performance
for various communications systems. However, their promising performance cannot always
be obtained due to practical constraints such as finite codeword length, finite iteration, fi-
nite memory, and finite precision. In this paper, we focus on a practical design method of
highperformance LDPC codes under a constraint of finite-iteration decoding for low-power
optical communications. We introduce an iteration-aware LDPC code design approach, which
is based on decoding trajectory in extrinsic information transfer (EXIT) chart analysis. It
is demonstrated that an LDPC code designed by the conventional curve-fitting method ex-
hibits nearly 2 dB of penalty when the maximum number of iterations is limited. The results
suggest that the LDPC code should be adaptively changed, e.g., when the number of de-
coding iterations is decreased to save power consumption.We also extend our design method
to a multiobjective optimization concept by taking average degrees into account, so that
the threshold and the computational complexity are minimized at the same time. The pro-
posed Pareto-optimal codes can achieve additional 2 dB gain or 50% complexity reduction at
maximum, in low-power decoding scenarios.
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Abstract—Recent low-density parity-check (LDPC) codes have
shown capacity-approaching performance for various communi-
cations systems. However, their promising performance cannot
always be obtained due to practical constraints such as finite
codeword length, finite iteration, finite memory, and finite preci-
sion. In this paper, we focus on a practical design method of high-
performance LDPC codes under a constraint of finite-iteration
decoding for low-power optical communications. We introduce
an iteration-aware LDPC code design approach, which is based
on decoding trajectory in extrinsic information transfer (EXIT)
chart analysis. It is demonstrated that an LDPC code designed
by the conventional curve-fitting method exhibits nearly 2 dB of
penalty when the maximum number of iterations is limited. The
results suggest that the LDPC code should be adaptively changed,
e.g., when the number of decoding iterations is decreased to save
power consumption. We also extend our design method to a multi-
objective optimization concept by taking average degrees into
account, so that the threshold and the computational complexity
are minimized at the same time. The proposed Pareto-optimal
codes can achieve additional 2 dB gain or 50% complexity
reduction at maximum, in low-power decoding scenarios.

Index Terms—LDPC codes, coded modulation, EXIT chart,
BICM, limited number of BP iterations, Pareto optimum

I. INTRODUCTION

FORWARD error correction (FEC) codes based on low-
density parity-check (LDPC) codes [1]–[6] have realized

capacity-achieving performance. For example, an optimized
irregular LDPC code reported in [2] already achieved the
Shannon limit within 0.04 dB (analytical threshold is within
0.0045 dB). However, such an excellent performance is pos-
sible only with high-power processing because it considers a
large number of iterations of 2000, a high maximum variable
degree of 200, a long codeword length of 107, and a high
precision of 9-bit quantization. Since transceivers for optical
communications call for high-speed operations to accommo-
date tens/hundreds of Gb/s or even beyond Tb/s, lower-power
processing has been of great importance with a limitation in
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decoding iteration, computational complexity, memory size,
latency, and precision.

Finite-length code design has been one of the most challeng-
ing problems [7]–[9] for memory- and latency-constrained sys-
tems. Finite geometry (FG) [10]–[12], nonbinary (NB) [13]–
[15], and generalized LDPC (GLDPC) codes [16]–[18]
have shown relatively good performance for short codeword
lengths. More recently, there has been growing interest in
spatially-coupled codes [19]–[21], including LDPC convo-
lutional codes [22]–[28], because low-memory/low-latency
window decoding [22] is available. Regarding finite-precision
decoding, a quantized version of density evolution (DE) has
been used to design LDPC codes, e.g., in [2], [3], [29].

In this paper, we focus on the limited number of iterations
for low-power decoding. To optimize LDPC codes for finite-
iteration belief-propagation (BP) decoding, we use decoding
trajectory in extrinsic information transfer (EXIT) chart [4],
[30]. We verify that a significant benefit up to 2 dB can
be achieved by re-designing LDPC codes according to the
EXIT trajectory for different number of decoding iterations.
Although the decoding trajectory across iterations has been
already addressed in [3], [4], and a related design has been
studied for finite-iteration window decoding in [24], it is the
first demonstration of the remarkable advantage provided by
the iteration-aware code optimization for finite-iteration BP
decoding, to the best of our knowledge. The results suggest
that different LDPC codes should be assigned when the
number of decoding iterations is decreased to reduce power
consumption. Nevertheless, one may often keep using one
LDPC code irrespective of the number of iterations, to adjust
only power consumption, e.g., in [31]. However, it should be
noted that a high penalty up to 2 dB can be imposed without
using fully-optimized LDPC codes depending on the limited
number of iterations.

The key contributions of this paper are summarized below:
• We introduce a practical design method of LDPC codes,

based on the EXIT trajectory under a limited number of
iterations for low-power decoding.

• We show a significant gain by at most 2 dB with the
iteration-aware LDPC code design method, compared to
conventional design approach.

• From our preliminary work in [32], we extend the
iteration-aware design method to a novel multi-objective
optimization concept, which jointly minimizes the thresh-
old and the computational complexity.
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Fig. 1. Schematic of LDPC-coded modulation system for BICM.

• It is demonstrated that our Pareto-optimal LDPC codes
can achieve additional 2 dB gain or 50% complexity
reduction at maximum.

II. LDPC-CODED MODULATION

In this section, we present the LDPC-coded modulation sys-
tems and basic concepts underlying the EXIT chart analysis.

A. System Description

Fig. 1 shows a schematic of LDPC-coded modulation
systems under consideration. Here, we simplify our coded
modulation design procedure under an additive white Gaussian
noise (AWGN) channel, which considers the combined effects
of amplified spontaneous emission (ASE) noise and nonlinear
interference (NLI) over fiber-optic transmission as suggested
by a Gaussian noise (GN) model [33]–[36] when dispersion
and phase distortion are appropriately equalized.

In the communication system, an LDPC encoder generates
a codeword bit sequence {bn}. The LDPC codes can be
represented by a sparse Tanner graph, according to a parity-
check matrix H ∈ FM×Nq , where M and N are the numbers
of check and variable nodes, respectively (Fq is a finite field
having q distinct elements). The length-N encoded bits {bn}
are sequentially mapped to symbol constellations with a Q-ary
modulation scheme, e.g., dual-polarization quadrature phase-
shift keying (DP-QPSK). The modulated symbols {xn} are
transmitted to a receiver over the effective AWGN channel.
The received symbols {yn} are demodulated to compute log-
likelihood ratio (LLR) messages {Ln}. The LLR is defined
for binary LDPC codes (i.e., q = 2) as follows:

Ln = ln
Pr(yn|bn = 1)

Pr(yn|bn = 0)
, (1)

which reduces to Ln = 2yn/σ
2
0 for a binary PSK (BPSK)

transmission case with a noise variance of σ2
0 .

The LLR messages {Ln} computed by the demodulator
are fed into an LDPC decoder, which consists of variable-
node decoders (VND) and check-node decoders (CND). At
VND, belief messages {µn} are updated in parallel, given

the LLR messages {Ln} and BP feedback {µ′n} from CND.
The CND updates the belief messages {µ′n} from the VND
messages {µn}. The iterative BP decoding can effectively
correct potential errors in the original LLR messages {Ln}.
To improve performance, soft-decision messages {b′n} for
iterative demodulation (ID) can be fed back from the LDPC
decoder to the demodulator to refine the LLR messages.

B. Coded Modulation

Coded modulation is aimed at achieving the channel ca-
pacity Cch = sup I(x; y); more specifically, a maximum of
mutual information (MI) I(x; y) between channel input x
and output y over all possible signal distribution Pr(x). For
AWGN channels, the capacity is given as Cch = log2(1 +
1/σ2

0) b/s/Hz/pol for a signal-to-noise ratio (SNR) of 1/σ2
0 .

However, the achievable rate of coded modulation Rcm is
bounded by the MI between encoding bit b and channel output
y, i.e., Rcm ≤ I(b; y). There have existed various coded
modulation schemes as follows:
• Trellis-coded modulation (TCM) [37], [40]: joint design

of convolutional coding and modulation format via set
partitioning etc. Concatenation with turbo decoding may
be needed to approach capacity. Computational complex-
ity increases exponentially with constraint length.

• Multi-level coding (MLC) [41]: proper rate control with
a chain rule of MI for multi-level encoders and successive
decoding are needed to approach capacity. It theoretically
achieves coded modulation bound: Rmlc ≤ I(b; y).

• Bit-interleaved coded modulation (BICM) [42]: treat-
ing binary input to the modulator and LLR output from
the demodulator as an effective channel. No decoding
feedback is required, and any modulation format can be
uniformly handled. The achievable rate is bounded by the
so-called generalized MI (GMI): Rbicm ≤ I(b;L).

• BICM with iterative demodulation (BICM-ID) [32],
[43]–[45]: better performance than BICM with soft-
decision feedback from the decoder to the demodulator.
The achievable rate is bounded by the averaged MI con-
ditioned on feedback: Rbicmid ≤ Eb′ [I(b;L|b′)], where
E[·] denotes the expectation.

• Nonbinary-input coded modulation (NBICM) [14],
[15], [27], [38], [39]: no feedback is required when the
Galois field size q matches the modulation order Q,
while more complicated nonbinary decoding is needed.
It achieves coded modulation bound.

In order to generate a Gaussian-like distribution for Pr(x)
to approach the AWGN channel capacity, probabilistic shap-
ing [38] and geometric shaping [46] have been investigated.

Since BICM has been widely used in practice, we focus on
BICM in this paper. Note that the methodology described for
BICM can be adopted for different coded modulation schemes
in a straightforward manner.

C. BP Decoding

For BP decoding based on log-domain sum-product algo-
rithm (SPA), the message passing between VND and CND in
the Tanner graph is carried out as follows:
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• The v-th variable node to c-th check node:

µv→c = Lv +
∑

c′∈M(v)\c

µ′c′→v, (2)

where M(v) denotes the set of check nodes connected
to the v-th variable node, and \c denotes exclusion of c
from the set. The size of the set dv = |M(v)| is called
the variable-node degree, which is the number of edges
connecting to the v-th variable node in the Tanner graph.

• The c-th check node to v-th variable node:

µ′c→v = 2 tanh−1
( ∏
v′∈N (c)\v

tanh
µv′→c

2

)
, (3)

where N (c) denotes the set of variable nodes connected
to the c-th check node. The size of the set dc = |N (c)| is
called the check-node degree, i.e., the number of edges
connecting to the c-th check node in the Tanner graph.

• The soft-decision a posteriori probability of the v-th bit:

L′v = Lv +
∑

c′∈M(v)

µ′c′→v. (4)

After the BP iteration reaches the predefined maximum num-
ber of iterations Nite, a hard decision is taken place based on
L′v . When BICM-ID is employed, the soft-decision extrinsic
information (i.e., b′v = L′v −Lv) are fed back to the demodu-
lator to improve the reliability of LLR messages.

Note that the decoding iteration can be terminated earlier
than Nite to avoid unnecessary iterations and to save power
consumption once the soft decision provides a valid codeword,
which passes a syndrome check. Since the CND requires
arithmetic multiplications and nonlinear functions in (3), a
number of simplified versions such as min-sum algorithm have
been investigated [47]. In order to improve convergence speed
of iterative BP decoding, several scheduling methods [48]
have also been proposed. Although conventional flooding
scheduling (which alternates message updates in all VND at
once and all CND at once) does not converge fast compared
to other scheduling methods, it has been widely used because
of simplicity for implementation. Instead of the regular BP
decoding, the LDPC codes can be decoded by, e.g., bit flip-
ping [1], analog decoding [49], divide-and-concur (DC) [50],
and linear programming (LP) [51]. In particular, DC and LP
decoding showed lower error floor than BP decoding. In order
not to over-extend the scope of this paper, we consider the
widely used standard BP decoding based on SPA described in
(2) through (4) with the flooding scheduling as a benchmark.

D. EXIT Chart

EXIT chart analysis [4] for determining the required SNR,
also called as decoding threshold, is based on iterative compu-
tation of the MI between an edge message and an associated
transmitted bit. The EXIT chart analysis examines whether
the MI reaches a value of 1 by iterative BP decoding. Note
that the value 1 of the MI implies that the transmitted bit is
decoded correctly with no error.

As in [4], we let J(σ) denote the capacity of binary-input
AWGN (BiAWGN) channel, i.e., the MI between a binary

random variable X ∈ {−σ
2

2 ,
σ2

2 } (with equal probabilities)
and an output Y = X + Z, where Z is a random variable
following a zero-mean Gaussian distribution with a variance
of σ2, obtained as follows:

J(σ) = 1− EY
[
log2(1 + exp(−Y ))

]
. (5)

In [4], Marquardt–Levenberg algorithm is applied to approx-
imate the J(·)-function and inverse J(·)-function in closed-
form expressions. Let λ(x) =

∑
d λd x

d and ρ(x) =
∑
d ρd x

d

be polynomial representations of variable-/check-degree distri-
butions, where λd and ρd are fractions (edge perspective) of
degree-d variable nodes and check nodes, respectively, such
that

∑
d λd =

∑
d ρd = 1. For irregular LDPC codes having

degree distributions λ(x) and ρ(x), the averaged MI is updated
in the iterative BP decoding as follows:
• The extrinsic MI at VND:

Īvnd =

dvmax∑
d=1

λd IEv(Īcnd, d, Ich), (6)

where the EXIT function for degree-dv nodes is given as

IEv(Ia, dv, Ich)=J
(√

(dv − 1)[J−1(Ia)]2 + [J−1(Ich)]2
)
,

with Ich being the GMI of the initial LLR.
• The extrinsic MI at CND:

Īcnd =

dcmax∑
d=1

ρd IEc(Īvnd, d), (7)

where the EXIT function for degree-dc nodes is approx-
imated by the duality property [4] as follows:

IEc(Ia, dc) ' 1− J
(√

(dc − 1)[J−1(1− Ia)]2
)
.

Here, dvmax and dcmax denote the maximum variable- and
check-node degrees, respectively. It is known in [2], [3] that
the larger maximum degree offers the better threshold. How-
ever, since the computational complexity at variable and check
nodes increases linearly with their degree, we should constrain
the maximum degree for practical real-time decoding.

If the EXIT curve of VND intersects that of CND, the BP
decoding does not converge to an error-free MI of one. The
decoding threshold can be determined to find a minimum pos-
sible SNR such that the VND curve lies above the CND curve.
From the area property [30], the conventional code design
method tries to minimize the area between the EXIT curve
of VND and that of CND while keeping no intersection, e.g.,
by means of linear programming for curve fitting. However,
this curve-fitting method assumes a large number of decoding
iterations to reach an MI of 1. In order to optimize degree
distribution under the finite number of iterations, we use the
decoding trajectory determined by (6) and (7) in the EXIT
chart, instead of the conventional curve fitting.

Note that the EXIT chart can be used for analyzing NB-
LDPC codes as studied in [46]. The EXIT chart analysis was
also modified to protograph-based LDPC codes in [52], which
can provide more accurate threshold by tracking the MI up-
dates for all variable and check nodes in a protograph. This is
useful to design LDPC codes for high-order modulation to deal
with different reliability of multi-level bits in the modulation.
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The protograph-EXIT (P-EXIT) was further extended to NB-
LDPC codes in [53]. In [28], this modified EXIT chart analysis
was used to evaluate the threshold of NB-LDPC convolutional
codes. In this paper, we nonetheless use the decoding trajectory
in the standard EXIT chart described in (6) and (7) because it
is generally applicable for various communications systems.

III. ITERATION-AWARE LDPC CODE DESIGN

In this section, we analyze degree optimization via the
EXIT trajectory for finite-iteration BP decoding, under BICM
transmission. We assume DP-QPSK transmission to evaluate
the threshold and error-rate performance. Note that the results
of DP-QPSK can be readily converted to any other modulation
formats for BICM, via the J(·)-function with the GMI analy-
sis. Our results suggest that an LDPC code for BICM should
be different when the BP decoder changes the maximum
number of iterations Nite to control processing throughput
and power consumption. Unless we carefully consider the
decoding trajectory in designing LDPC codes, we may suffer
from up to 2 dB penalty.

A. EXIT Trajectory Analysis

In this paper, we consider check-concentrated triple-degree
LDPC codes ensemble, in which the number of distinct vari-
able degrees is at most three and check degrees are consecutive
two as follows:

λ(x) = λdv1x
dv1 + λdv2x

dv2 + λdv3x
dv3 , (8)

ρ(x) = ρdcx
dc + ρdc+1x

dc+1. (9)

As discussed in [3], [4], such triple-degree LDPC codes
perform surprisingly well. For example, rate-0.8 LDPC codes
ensemble having degree distributions of λ∞(x) and ρ∞(x)
listed in Table I achieves a threshold of 4.17 dB, which is
only within 0.06 dB from the Shannon limit of J−1(0.8)/2 =
4.11 dB for BICM systems. In fact, these degree distributions,
λ∞(x) and ρ∞(x), were obtained by the conventional curve-
fitting optimization under the maximum degree constraints
of dvmax ≤ 16 and dcmax ≤ 32. We chose these maximum
degree constraints throughout the paper as it is feasible in
some practical codes [21].

Fig. 2 shows the EXIT curves of the optimized LDPC code.
Thanks to the curve-fitting optimization method, the VND
curve at an SNR of 4.2 dB agrees closely with the CND
curve while the VND curve does not go below the CND curve.
Although such LDPC codes can provide excellent performance
near the Shannon limit, the required number of iterations to
reach a top-right corner (i.e., error-free MI) becomes extremely
large. For finite-iteration decoding, the required SNR degrades
rapidly. For example, the VND curve at an SNR of 6.7 dB in
this figure increases the area from the CND curve, and the
decoding trajectory after eight iterations can reach the MI of
one at the top-right corner of the EXIT chart.

Our code design approach is based on the EXIT trajectory
under the finite-iteration decoding. Instead of using the con-
ventional curve-fitting approach, we can optimize the degree
distributions λ(x) and ρ(x) to minimize the required SNR
such that the MI updated after Nite-times iterations, computed
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Fig. 2. EXIT curves of two irregular LDPC codes with a rate of 0.8: i)
optimized degrees λ∞(x) = 0.150x2 +0.314x3 +0.536x12 and ρ∞(x) =
0.70x22 + 0.30x23 by conventional curve-fitting method and ii) optimized
degrees λ4(x) = 0.506x5 + 0.494x6 and ρ4(x) = 0.75x27 + 0.25x28 by
iteration-aware trajectory method.

via (6) and (7), goes to one. The check-concentrated triple-
degree LDPC codes in (8) and (9) have five variables {λd}
and {ρd} given degrees dv1, dv2, dv3, and dc. For this case,
we have just two degrees of freedom (DOF) because there are
three constraints: i) variable-degree normalization

∑
d λd = 1,

ii) check-degree normalization
∑
d ρd = 1, and iii) target code

rate R = 1− d̄v/d̄c, where d̄v and d̄c are the average variable-
and check-node degrees, respectively, written as follows:

d̄v =
1∑

d λd/d
, d̄c =

1∑
d ρd/d

. (10)

We thus search for the best degree distribution in a two-DOF
grid space of λdv1 and ρdc for all possible combinations of
degrees, 1 < dv1 < dv2 < dv3 ≤ dvmax and 1 < dc < dcmax.
We use scanning grid steps of 0.01 and 0.05 for λdv1 and
ρdc , respectively, from 0 to 1. Although finer grids can po-
tentially provide better solutions, the two-DOF searching can
be more time-consuming and the performance improvement is
confirmed to be very marginal.

Table I lists examples of the degree distributions optimized
by our iteration-aware EXIT trajectory design method for the
number of iterations of Nite ∈ {1, 2, 4, 8, 16, 32,∞}. It can
be seen that all the optimized degrees are different depending
on the number of iterations Nite. The EXIT curves of the 4-
iteration optimal code are also present in Fig. 2 to compare
with the one optimized by the conventional curve-fitting
method. It is shown in Fig. 2 that the EXIT trajectory for the
4-iteration optimal code achieves the error-free MI after four
iterations at an SNR of 6.7 dB, while the conventional code
requires eight iterations. Although the conventional curve-
fitting method provides capacity-approaching codes when the



5

TABLE I
DEGREE DISTRIBUTIONS OPTIMIZED BY THE ITERATION-AWARE EXIT TRAJECTORY DESIGN METHOD FOR CHECK-CONCENTRATED TRIPLE-DEGREE

LDPC CODES WITH A CODE RATE OF R = 0.8 (THE CORRESPONDING SHANNON LIMIT IS 4.11 DB).

Maximum number of iterations Variable degree distribution Check degree distribution Average node degrees Threshold
Nite =∞ (by curve-fitting) λ∞(x) = 0.150x2 + 0.314x3 + 0.536x12 ρ∞(x) = 0.70x22 + 0.30x23 d̄v = 4.45, d̄c = 22.29 4.17 dB
Nite = 32 λ32(x) = 0.030x2 + 0.464x3 + 0.506x16 ρ32(x) = 0.15x24 + 0.85x25 d̄v = 4.97, d̄c = 24.84 4.45 dB
Nite = 16 λ16(x) = 0.430x3 + 0.117x4 + 0.453x16 ρ16(x) = 0.10x24 + 0.90x25 d̄v = 4.98, d̄c = 24.90 4.78 dB
Nite = 8 λ8(x) = 1.000x4 ρ8(x) = 1.00x20 d̄v = 4.00, d̄c = 20.00 5.39 dB
Nite = 4 λ4(x) = 0.506x5 + 0.494x6 ρ4(x) = 0.75x27 + 0.25x28 d̄v = 5.45, d̄c = 27.24 6.65 dB
Nite = 2 λ2(x) = 0.563x6 + 0.437x7 ρ2(x) = 1.00x32 d̄v = 6.40, d̄c = 32.00 8.89 dB
Nite = 1 λ1(x) = 0.986x2 + 0.016x3 ρ1(x) = 0.95x10 + 0.05x11 d̄v = 2.01, d̄c = 10.05 12.03 dB

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 1  10  100

1.1dB

1.8dB

1.7dB

T
h
re

s
h
o
ld

 (
d
B

)

Maximum Iteration

Shannon Limit
Conventional Optimum LDPC

16-ite Optimum LDPC
8-ite Optimum LDPC
4-ite Optimum LDPC
2-ite Optimum LDPC
1-ite Optimum LDPC

Fig. 3. Threshold vs. maximum iteration of iteration-aware LDPC codes with
a code rate of R = 0.8 for BICM with finite-iteration BP decoding.

number of iterations is un-limited and codeword length is very
large, the obtained codes can be no longer optimal for finite-
iteration BP decoding.

B. Threshold Analysis

We now evaluate the iteration-aware LDPC code design
in Fig. 3, in which we plot the threshold as a function of
the number of BP iterations Nite for the optimized rate-
0.8 LDPC codes listed in Table I. Note that the threshold
can be computed by a bisection search. The LDPC code
designed by the conventional curve-fitting method achieves
the best performance near the Shannon limit if the decoder
can iterate more than 100 times, while the threshold seriously
degrades for the cases of fewer iterations. For such fewer-
iteration decoding, we shall use different irregular LDPC
codes. Our iteration-aware design method provides the best
threshold at the intended number of iterations. For example,
the LDPC code optimized for 8-iteration decoder outperforms
the conventionally optimized LDPC code by 1.1 dB, and the
LDPC code optimized for 4-iteration decoder offers 1.8 dB
gain. On the other hand, the 2- and 4-iteration optimized
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LDPC codes have approximately 1.5 dB and 0.8 dB loss,
respectively, from the conventionally optimized LDPC code
when the decoder can iterate more than 100 times.

Since an LDPC code optimized for a specific number of
iterations can suffer from near 2 dB degradation for the
different number of iterations as shown in Fig. 3, we should
assign different LDPC codes optimized depending on the
number of iterations Nite for BP decoding, which adaptively
controls the power consumption. Fig. 4 shows the threshold
of such an adaptive LDPC code assignment optimized by
our iteration-aware EXIT trajectory design method, according
to the limited number of iterations for several code rates of
R ∈

{
1
10 ,

1
7 ,

1
5 ,

1
3 ,

1
2 ,

2
3 ,

3
4 ,

4
5 ,

6
7 ,

9
10

}
. It is found in this figure

that lower-rate codes are more susceptive to the limited num-
ber of BP iterations, and require more iterations to converge.

C. BER Performance

The above-described threshold analysis can tell how good
the LDPC code ensemble would be, depending on the degree
distributions and the number of decoding iterations. However,
the EXIT trajectory analysis assumes an infinite-length code-
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Fig. 5. BER performance of iteration-dependent LDPC codes with a code
rate of R = 0.8 for BICM with finite-iteration BP decoding.

word to hold (6) and (7), which rely on the central limit
theorem. Hence, after the degree optimization, we need to
instantiate a parity-check matrix of finite-length LDPC codes
having the corresponding degree distributions. To do so, we
use a progressive edge-growth (PEG) [54], which maximizes
a minimum length of cycle, referred to as girth, in the Tanner
graph. The girth maximization is generally important to reduce
an error floor, which is an inevitable artifact of loopy BP
decoding. We consider a codeword length of 38400 bits as
it is the same length used for a state-of-the-art LDPC code
achieving a net coding gain (NCG) of 12 dB in [21].

Fig. 5 shows bit-error rate (BER) performance of the
iteration-dependent LDPC codes designed by PEG according
to the optimized degree distributions listed in Table I. As ex-
pected in the threshold analysis, the conventionally optimized
LDPC code by the curve-fitting method does not perform
well for fewer-iteration BP decoding, in which the BER slope
becomes worse. Our iteration-aware LDPC codes perform
much better for each cases. For 8-iteration BP decoding,
the required SNR at a BER of 10−8 of the conventionally
optimized code has a loss of 0.8 dB compared to our 8-
iteration optimized LDPC code. This gap must be much more
significant at a BER of 10−15.

Note that most optical commutations systems require a very
low BER around 10−15. In [21], an error floor above a BER
of 10−8 of an irregular LDPC code was efficiently removed
to achieve a BER of 10−15, by using an outer code based
on a Bose–Chaudhuri–Hocquenghem (BCH) code with an
additional overhead of only 0.78%. Since no error floor is
observed in Fig. 5 above a BER of 10−8, it is expected that
the optimized LDPC codes in this paper can also achieve a
BER of 10−15 using an outer code with a small additional
overhead in a similar way, to cope with a potential error floor
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Fig. 6. BER performance of iteration-dependent LDPC code with different
decoding algorithms for Nite = 8 (SPA: sum-product algorithm, MS: min-
sum, OMS: offset min-sum, DM: delta-min).

at a BER between 10−8 and 10−15.
It should be noticed that the required SNR for a BER of

10−8 in Fig. 5 agree well with the analytical threshold derived
in Table I. For instance, the required SNR for Nite = 8 in
Fig. 5 is 5.43 dB, which is within 0.1 dB from the analytical
threshold of 5.39 dB in Table I. This indicates that our EXIT
trajectory design method is reasonably applicable for practical
finite-length LDPC codes. We also note that the threshold anal-
ysis based on the EXIT trajectory can predict more accurate
achievability than the GMI analysis, which has been more
recently utilized as a better metric than the conventional pre-
FEC BER to compare with various modulation formats [55],
[56]. We should recall that the GMI assumes un-limited
decoding complexity, and that the behavior of the MI updates
from the initial GMI in (6) highly depends on which LDPC
codes ensemble is available in the communications system
(e.g., how large the maximum degrees, average degrees, and
distinct degrees are considered). Hence, the GMI metric can
often be optimistic in comparison to the threshold metric based
on the EXIT trajectory, for practical systems.

We have also confirmed that the optimized codes in Fig. 5
have a lower average number of iterations than the conven-
tional code for the whole SNR regime when early termination
with syndrome checking at every iteration is carried out.
Although we consider SPA decoding for LDPC code design,
it is expected that the designed codes still have a great
advantage over the conventional code for various simplified
algorithms [47] because those algorithms have relatively small
penalty from SPA. In Fig. 6, we compare BER performance of
our iteration-aware optimized code and the conventional code
optimized by the curve fitting for Nite = 8 using different
decoding algorithms; SPA, min-sum (MS), offset min-sum
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(OMS), and delta-min (DM) [47]. The LDPC codes are the
same ones used in Fig. 5. It is verified from Fig. 6 that our
LDPC code designed for SPA still outperforms the conven-
tional code even for different decoding algorithms. However,
since the EXIT curves highly depend on decoding algorithms,
there is potential improvement by adaptively designing the
degree distribution for each specific algorithm. Although our
design methodology is applicable to any iterative decoding
algorithms by modifying the EXIT curves, we leave detailed
analysis of decoder-dependent code design as future work.

D. Pareto-Optimal Code Design

We designed thus far practical LDPC codes under a lim-
ited number of iterations Nite, given the maximum degree
constraints dvmax and dcmax. Here, we discuss in detail the
computational complexity by taking the average node degrees
d̄v and d̄c into account. In fact, to achieve low-power decoding,
we need to consider the average degrees as well as the number
of iterations because the computational complexity of the BP
decoding in (2) and (3) is of a linear order as a function
of the average degree. In this paper, we further introduce a
multi-objective optimization concept to design Pareto-optimal
LDPC codes so that better threshold and lower complexity
are achieved at the same time. For simplicity of analysis, we
suppose that the decoding complexity is proportional to the
number of iterations Nite multiplied by the number of edges
in the Tanner graph, i.e., Nite× d̄v/R per information bit (note
that R = 1− d̄v/d̄c).

The optimized degree distributions in Table I have relatively
larger average degrees of d̄v ≥ 4.0, except for the case of
Nite = 1, leading to higher complexity in decoding. In the two-
DOF search for the iteration-aware degree optimization, there
exist a large number of different degree distributions, whose
thresholds are comparable to the best codes. In consequence,
we may be able to find better codes having good trade-
off between the threshold and the complexity. For example,
instead of decreasing the number of iterations Nite by half
for lower power consumption, we may halve the average
degree d̄v while keeping the number of iterations to achieve
better threshold in the end. Our new design criterion considers
the following multi-objective optimization for a pair of the
threshold and the computational complexity:

min
λ(x),ρ(x),Nite

[
threshold, Nite

d̄v
1− d̄v/d̄c

]
. (11)

In Fig. 7, we plot the threshold as a function of the
computational complexity for some randomly-selected degree
distributions in the two-DOF search, varying the number of
iterations Nite from 1 to 64. Not only the threshold but also
the complexity can scatter in a wide range even for the same
number of iterations, according to the degree distributions.
The single-objective optimization searches for the best code
achieving the minimum possible threshold for each fixed
number of iterations Nite. However, if we increase the number
of iterations while decreasing the average node degree, we
can obtain better codes having lower threshold and lower
complexity at the same time.
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Fig. 7. Threshold vs. computational complexity of Pareto-optimal LDPC
codes with a code rate of R = 0.8 for BICM with finite-iteration BP decoding.

For example, the 2-iteration optimal code (given in Table I)
achieves a threshold of 8.89 dB in a complexity order of
Nited̄v/R = 16.0, whereas a better threshold of 7.00 dB
(thus, 1.89 dB performance improvement) can be achieved in
a slightly lower complexity order of 15.89 by a Pareto-optimal
code, whose degree distributions are λ(x) = 0.775x3 +
0.225x4 and ρ(x) = 0.10x15 + 0.90x16 with a lower average
node degree of d̄v = 3.18 and the larger number of iterations
of Nite = 4. Moreover, another Pareto-optimal code with
λ(x) = 0.682x2 + 0.318x3 and ρ(x) = 0.80x11 + 0.20x12

achieves a slightly better threshold of 8.88 dB while the
computational complexity is significantly reduced to 8.39
(thus, 48% complexity reduction) with Nite = 3. For the other
examples, we can obtain a better threshold by 0.9 dB and
a lower complexity by 33% than the 4-iteration optimal code
(threshold: 6.65 dB; complexity order: 27.25), respectively, by
using a Pareto-optimal code (threshold: 5.75 dB; complexity
order: 27.10) with Nite = 7, λ(x) = 0.875x3 + 0.125x4 and
ρ(x) = 0.50x15 + 0.50x16, and another Pareto-optimal code
(threshold: 6.63 dB; complexity order: 18.36) with Nite = 5,
λ(x) = 0.043x2 + 0.957x3 and ρ(x) = 0.30x14 + 0.70x15.

In particular for lower-complexity regimes below 40 (Nite <
8), the Pareto-optimal codes are more advantageous to jointly
minimize the threshold and the computational complexity. For
higher-complexity regimes above 40, the iteration-dependent
single-objective optimization in Table I for Nite ≥ 8 can
already provide good LDPC codes near the Pareto front.

IV. CONCLUSIONS

We have shown a significant benefit of designing iteration-
aware LDPC codes, based on EXIT trajectory analysis. We
have analyzed thresholds and BER performance of the op-
timized LDPC codes for BICM under a limited number of
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decoding iterations. It has been demonstrated that if we use
an LDPC code which is optimized at a certain number of
iterations, we can suffer from a large penalty close to 2 dB
if the number of iterations is changed to control power con-
sumption. The results suggest that we should carefully design
LDPC codes depending on the number of iterations to exploit
full potential of LDPC codes. We have also introduced a new
design concept with multi-objective optimization to jointly
minimize the required SNR and the computational complexity
by accounting for the average degree. Our Pareto-optimal
codes offer an additional gain by 2 dB or a reduced complexity
by 50% in the low-complexity regimes, by decreasing the
number of edges in the Tanner graph and increasing the num-
ber of iterations to keep the total complexity low. Extension to
other decoding algorithms and scheduling methods accounting
for the average number of iterations remain as future work.
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