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Abstract We investigate algorithms for efficiently detecting anomalies in real-valued
one-dimensional time series. Past work has shown that a simple brute force algorithm
that uses as an anomaly score the Euclidean distance between nearest neighbors of
subsequences from a testing time series and a training time series is an effective
anomaly detector. We investigate a very efficient implementation of this method and
show that it is still too slow for most real world applications. Next, we present a new
method based on summarizing the training time series with a small set of exemplars.
The exemplars we use are feature vectors that capture both the high frequency and
low frequency information in sets of similar subsequences of the time series. We
show that this exemplar-based method is both much faster than the efficient brute
force method as well as a prediction-based method and also handles a wider range
of anomalies. Our exemplar-based algorithm is able to process time series in minutes
that would take other methods days to process.

Keywords anomaly detection · time series · exemplar learning

1 Introduction

The problem of anomaly detection in real-valued time series has a number of useful
applications. It is important for detecting faults in industrial equipment (equipment
condition monitoring), detecting abnormalities in electrocardiograms (patient health
monitoring) and detecting interesting phenomena in scientific data (such as detecting
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stars in astronomical light data) to name a few. With the rise of big data, it is increas-
ingly important for anomaly detection algorithms to be very efficient and to scale to
large time series. We present a robust anomaly detection algorithm that is efficient
enough to process very large time series.

We formulate the problem of anomaly detection as follows. Given a training time
series which defines normal behavior of a signal and a testing time series which may
contain anomalies, find all parts of the testing time series that do not have a close
match to any part of the training time series. There have been a number of different
algorithms proposed for solving this basic problem (see [5] for a survey). The variety
of different approaches include predictive techniques [16,13] that predict the current
time series value from past values, an immunology inspired approach [8], Self Or-
ganizing Maps (SOM) [21], trajectory modeling [17], subspace trajectories [15], and
autoregressive models [3].

Most of the past work has focused on a single domain or only presented results
on a small set of different time series. It is very difficult to know how robust and gen-
eral an algorithm is unless it is tested on many different time series. One very simple
algorithm has proven to be very effective over a wide range of different types of time
series. It uses a sliding window over the testing time series to find the closest matching
subsequence of the training time series using the Euclidean distance to measure the
distance between subsequences [11]. The Euclidean distance to the nearest neighbor
subsequence is the anomaly score for each testing subsequence. We will call this sim-
ple algorithm, the Brute Force Euclidean Distance (BFED) algorithm. Pseudo-code
for a naive implementation of this algorithm is given in Figure 1. This algorithm is
the basis of the discord algorithm of Keogh et al. [11]. Their paper showed how to
greatly speed up this simple algorithm if only the top few discords of a long time se-
ries are needed. The top discord is the subsequence with the largest nearest neighbor
distance to the training time series - i.e. it is the most anomalous subsequence in the
testing time series. In our case, we cannot apply Keogh et al.’s efficient discord find-
ing algorithm because we require an anomaly score for every testing subsequence.
Nevertheless, their work showed the effectiveness of using the Euclidean distance
on subsequences for finding anomalies over a wide range of different types of time
series. This finding was also confirmed by Chandola et al. [6] who compared many
different anomaly detection methods for one dimensional real-valued time series in-
cluding the BFED algorithm (called WINC in their paper), kernel based algorithms,
predictive methods, and segmentation based techniques. Their results showed that the
BFED algorithm was the most accurate over the 19 time series they tested.

In the next section we will evaluate the speed of an optimized BFED algorithm.
Then in Sections 3, 4 and 5 we will introduce an exemplar-based method, and show in
Section 6 that it is orders of magnitude faster and detects a wider range of anomalies.

2 Speeding up the BFED algorithm

Since the BFED algorithm is one of the best algorithms for detecting anomalies in
real-valued time series, a natural question is whether it is fast enough to be useful in
practice. Certainly, a naive implementation of BFED is not very useful for real appli-
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Input: training time series T[1...n], testing time series Q[1...m] and subsequence length w
Output: vector of anomaly scores S[1..m-w]
for i=1 to m-w do

bs f = INF ;
for j=1 to n-w do

d = 0;
for k=1 to w do

d = d +(T [ j+ k]−Q[i+ k])2

d = sqrt(d);
if d < bsf then

bs f = d;

S[i] = bs f ;

Algorithm 1: Pseudo-code for the naive implementation of the Brute Force
Euclidean Distance anomaly detection algorithm.

Fig. 1 a) Noisy sine testing time series. An anomaly consisting of larger magnitude noise exists in loca-
tions 9001 to 9300. The training time series is not pictured but is essentially the same as the normal portion
of the testing time series. b) Anomaly scores computed from BFED algorithm. The red line is a threshold
above which an anomaly is indicated.

cations. Its running time is O(nmw) where n is the length of the training time series,
m is the length of the testing time series, and w is the length of each subsequence. As
we will show, the details of the implementation can greatly effect the actual running
time, but even the most efficient implementation cannot handle very large time series.

To evaluate the running time of various implementations of the BFED algorithm,
we will use a noisy sine time series for training and testing. The testing time series
is shown in Figure 1a. It consists of a sine wave with Gaussian noise added (mean
0, standard deviation .25). An anomaly exists from time steps 9001 to 9300 which
consists of abnormally large noise (standard deviation .75). The training time series
was generated with the same parameters but without any anomalies. Each has 10,000
time steps. Since the period of the sine wave is roughly 300 time steps, this is the
window size used for anomaly detection. The naive implementation requires 9700 ∗
9700 > 94 million distance calculations between subsequences of size 300.

A recent paper by Rakthanmanon et al. [18] showed how to greatly speed up
subsequence search using a set of optimizations called the UCR Suite. Their paper
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redefined the state-of-the-art for searching within a time series. The focus of that pa-
per was on using dynamic time warping as the distance function, but it also discussed
optimizations using Euclidean distance which we focus on in this paper. In their pa-
per, each subsequence is first z-normalized (by subtracting the mean and dividing
by the standard deviation) before comparing it to other subsequences. For anomaly
detection this is not always the best thing to do since a difference in either the mean
or standard deviation of a subsequence compared to non-anomalous time series may
indicate an anomaly. For this reason, we do not z-normalize subsequences to compare
them.1

Despite this difference, all of the optimizations for speeding up subsequence
search using Euclidean distance in the UCR Suite can still be used to greatly speed up
the BFED algorithm. There are three optimizations used in the UCR Suite. The first is
simply to use the squared Euclidean distance which eliminates the need to compute
square roots. The second is to use early abandoning which means that the calcula-
tion of the sum of squared differences between two subsequences is abandoned if
the partial sum is already greater than the best-so-far distance. The best-so-far dis-
tance is the minimum distance found between the test subsequence and all training
subsequences tried so far. The third optimization is to reorder the elements of the
subsequences being compared so that elements that are more likely to have large dif-
ferences are evaluated first. In [18], this is done by sorting the testing subsequence by
the absolute values of the z-normalized subsequence values. Since we are not using
z-normalization, we can instead sort by the absolute values of the raw subsequence
values. This is different, but it also leads to a significant speed-up.

Finally, we will add one more optimization that comes from the fact that, in our
case, we are finding nearest neighbors for multiple overlapping subsequences in the
testing time series instead of having only one query subsequence. We can take ad-
vantage of this by initializing the best-so-far distance of testing subsequence i+1 to
the Euclidean distance between it and the nearest neighbor of testing subsequence i.
This gives us a low starting value for the best-so-far distance which results in more
distance calculations abandoning early.

We tested the effect of each of these optimizations on the noisy sine example
of Figure 1a. The running times for implementations that successively add each of
these optimizations is shown in Table 1. We should note that we modified the code
provided by UCR [18] to create our implementations of these variations of the BFED
algorithm. All experiments in this paper were done on a 3.16 GHz Intel processor.
The table shows that the early abandoning optimization has the largest effect by far.
The sqrt optimization is unimportant. Reordering and improved initialization of the
best-so-far distance have modest effects. Together these optimizations improve the
speed of the BFED algorithm by a factor of about 4.2 on this example. Incidentally,
all of the implementations shown in Table 1 yield exactly the same anomaly scores
which are shown in Figure 1b.

Although the speed of the optimized BFED algorithm is reasonable on this exam-
ple, it becomes impractical on modestly large time series. For example, for a noisy

1 We did test the z-normalized BFED algorithm and found it to be less accurate and slower for anomaly
detection.
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Method Run Time
BFED (no optimizations) 199.02 sec
BFED (no sqrt) 198.80 sec
BFED (no sqrt, early abandon) 53.98 sec
BFED (no sqrt, early abandon, reorder) 49.04 sec
BFED (no sqrt, early abandon, reorder, 46.96 sec
initialization of best-so-far distance)

Table 1 Comparison of the running times of various implementations of brute force Euclidean distance
BFED anomaly detection.

sine problem with 1 million time steps for training and 10 million time steps for test-
ing, the number of Euclidean distance calculations between subsequences is about
10 trillion and the running time is about 51 days for the fully optimized BFED im-
plementation. In the next sections we will present an anomaly detection algorithm
that can process this data in less then 4 minutes while improving on the accuracy of
BFED as well as reducing the memory requirements.

3 Exemplars for fast anomaly detection

For the problem of anomaly detection the location of the best matching training sub-
sequence for each testing subsequence is not needed. Only the distance is necessary.
This fact allows the possibility of replacing the training time series with a more com-
pact summary of it. With this insight, we propose to replace the training time series
with a set of exemplars that summarize all the subsequences in it. The first question
is what an exemplar should be. One possibility is for each exemplar to be simply a
different raw subsequence of the training time series. The problem with this is that
very many such exemplars would be needed to retain all of the variations present in
the training time series. Another possibility is for each exemplar to be an average of
similar subsequences. Averaging subsequences results in smoothing and the loss of
most of the stochastic components (such as noise) of the subsequences. Each exem-
plar would mainly retain the different trajectories present in the training data. The set
of exemplars should ideally represent both the trajectories and the stochastic varia-
tions present in the training subsequences. With this motivation we propose a repre-
sentation of exemplars we call Statistical and Smoothed Trajectory (SST) features.
This representation was also used in an earlier paper of ours on anomaly detection in
multidimensional time series [10].

We represent a subsequence as a trajectory component that captures the shape
of the time series within the window, and a statistical component that captures the
stochastic component. These components can also be thought of roughly as the low
frequency (trajectory) and high frequency (stochastic) components. The trajectory
component is computed using a simple fixed-window running average to yield a
smoothed time series after subtracting the mean of the window. Because of smooth-
ing, half of the values in the smoothed time series can be discarded without losing
important information. Thus, the trajectory component has w/2 elements. See Figure
2b. The statistical component is a small set of statistics computed over time series
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Fig. 2 Example time series subsequence (a) along with its trajectory (b) and statistical (c) components.

values in the subsequence which are designed to characterize the stochastic informa-
tion in the raw time series subsequence. The statistics used for experiments in this
paper are mean, standard deviation, mean of the absolute difference (|T [i]−T [i+1]|
where T [i] is the value of time series T at time step i), number of mean crossings
divided by window length, percentage of positive differences, percentage of zero dif-
ferences, and the average length of a run of positive differences divided by window
length. Figure 2c shows the vector of statistics for an example window. This choice of
statistics has worked well in practice, but other statistics would likely also work well.
Combining the trajectory and statistical components into one feature vector yields a
vector of w/2+7 real values.

We would like to note that the concept of motifs [14] is similar to exemplars but
has important distinctions. A motif is typically defined as an approximately repeated
subsequence of a time series [7]. Exemplars (in the context of this paper) are not
necessarily repeating. The set of exemplars learned from a training time series should
represent every subsequence of the time series including subsequences that have few
or no close matches in the rest of the time series.

The next question is how to learn a set of exemplars given a training time series.
There is a rich literature on this topic [1]. In the next section we present an efficient
exemplar learning algorithm that is tailored for overlapping subsequences of a time
series.

4 Efficient exemplar learning

The goal of exemplar learning is to find a set of feature vectors that accurately rep-
resent all of the variations in the set of subsequences of the training time series. Our
approach is to initialize the set of exemplars to the set of SST features for all sub-
sequences in the training time series. In other words, each SST feature vector for all
subsequences is a separate exemplar to begin with. Our exemplar learning algorithm
then successively merges exemplars with small distance between them until there are
no nearby exemplars left to merge.

A naive implementation of this basic idea is very inefficient. It would require
O(n2) distance computations (to find the nearest neighbor for each subsequence) each
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of which is O(w) for a total of O(n2w). This is the same time complexity as the naive
BFED algorithm when the length of the training and testing time series are both n.
We will present a hierarchical merging algorithm that runs in O(nw) for typical time
series.

First, we need to define a distance between SST feature vectors v1 and v2. Given
the success of the Euclidean distance for anomaly detection already discussed, we
define the SST distance as the Euclidean distance between the trajectory components
plus the Euclidean distance between the statistical components weighted by w/2

7 in
order to give equal weight to each component.

dist(v1,v2) =
l

∑
i=1

(v1.t(i)− v2.t(i))2 +
l
7

7

∑
i=1

(v1.s(i)− v2.s(i))2 (1)

where v1 and v2 are two feature vectors, v j.t is the length l = w/2 trajectory compo-
nent of v j, and v j.s is the length 7 statistical component of v j.

4.1 Initial merging

Based on the observation that overlapping subsequences often have small distances
between them, we reduce the size of the initial exemplar set by merging the SST fea-
ture vectors of similar overlapping subsequences. To merge two SST feature vectors
we simply take a weighted average of the two vectors. The weight for each feature
vector is the number of features vectors that have already been averaged into it. This
weight is 1 for all of the initial exemplars and is the sum of the two weights when
feature vectors are merged.

To explain the initial merging procedure in more detail, let us define vi as the fea-
ture vector corresponding to subsequence T[i...i+w-1]. A threshold on the distance is
needed to determine whether two SST feature vectors are close enough. We describe a
method for automatically selecting this threshold in subsection 4.4. The initial merg-
ing algorithm starts with feature vector v1 and computes the distance to successive
feature vectors until the distance is greater than the threshold. Let va be the last feature
vector whose distance to v1 is below threshold. Then we continue searching forward
for the furthest overlapping feature vector to va whose distance is below threshold.
Call this feature vector vb. Feature vectors v1 through vb are then merged. This pro-
cess is then repeated starting at the next feature vector vb+1. This initial merging of
overlapping subsequences is fast (O(nw) since it only makes one pass over the set of
SST feature vectors) and typically results in about a 90% reduction in the number of
exemplars. Figure 3 illustates the initial merging procedure.

4.2 Hierarchical exemplar learning

After the initial merging phase, the resulting set of exemplars are passed to an hier-
archical exemplar learning algorithm. The goal of this algorithm is to efficiently find
and merge all similar exemplars (still represented by SST feature vectors) - not just
ones that represent overlapping subsequences. Let the number of exemplars in the
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Fig. 3 Illustration of initial exemplar merging procedure. See text for explanation.

Fig. 4 Illustration of hierarchical exemplar learning. Each rectangle represents a chunk of exemplars. On
each iteration, a brute force exemplar learning algorithm is used to merge exemplars in each chunk and
thereby reduce its size. Then pairs of chunks are combined and the process repeats until there is only one
chunk of exemplars remaining.

current set be n̂. The hierarchical exemplar learning algorithm splits the current set
of exemplars into bn̂/Cc chunks of size C. (The size of the last chunk will be smaller
than C unless n̂ is an exact multiple of C.) We call C the chunk size. The first C exem-
plars are assigned to the first chunk, the second C to the second chunk, and so on. In
the experiments we report on later, C is set to 150. This value is not terribly important
although it does effect the speed of the algorithm somewhat. For each chunk, a brute
force exemplar learning algorithm is run. The brute force exemplar learning algo-
rithm first finds the nearest neighbor exemplar in the chunk for each exemplar in the
chunk. To do this it uses the distance function of equation 1 and a brute force search
with early abandoning. The two exemplars with the smallest distance between them
are merged. The nearest neighbor of the merged exemplar is found and any other ex-
emplars that had one of the two exemplars as a nearest neighbor have their nearest
neighbors recalculated. This process of merging the two closest exemplars continues
until the smallest nearest neighbor distance is above a threshold. At that point the
brute force exemplar learning algorithm stops and returns the final set of exemplars
for that chunk.

After the brute force exemplar learning algorithm has been run on each chunk,
pairs of chunks are combined into one new chunk. This simply means that all exem-
plars in the two chunks are put into a single new chunk. The brute force exemplar
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learning algorithm is then run on each of the new chunks and then these chunks are
paired and combined and so on until there is only one chunk remaining. This is the fi-
nal set of exemplars returned by the hierarchical exemplar learning algorithm. Figure
4 illustrates the basic idea of the algorithm. It is worth noting that this algorithm can
also be used to efficiently update a set of exemplars given new training data without
having to run exemplar learning from scratch.

4.3 Time complexity analysis

To derive the time complexity of the hierarchical exemplar learning algorithm, first
let n̂ be the number of exemplars after the initial merging procedure. Since n̂ is a
fraction of n (the length of the training series), it is O(n) in length. The algorithm
starts with n̂/C chunks with each chunk containing C exemplars. The brute force
algorithm run on a single chunk of size C has time complextiy O(C2w) = O(w) since
C is a constant. Thus, the total time complexity for the first iteration of hierarchical
exemplar learning is n̂

C ·O(C2w)⇒ O(nw). On the second iteration, there are half
as many chunks, each with some constant, r, times C exemplars in each chunk. The
coefficient, r,(0 < r ≤ 2) depends on the training time series. Each chunk may have
a different coefficient, so let f1 be the maximum (worst-case) r over all chunks for
the second iteration. This yields a bound on the total time for the second iteration of
n̂

2C chunks times λ ( f1C)2w time to process each chunk since each chunk has f1C or
fewer exemplars, where λ is a constant which allows us to remove the big O notation
for now. Simplifying, we get λ

n̂
2 f 2

1 Cw total time for the 2nd iteration.
Continuing on in this fashion, a bound on the time complexity for the ith iteration

can be written
ti = λ

n̂
2i ( f i)2Cw (2)

where ti is the total time for iteration i and f = maxi( fi),0 < f ≤ 2 is the worst
case factor that the chunk size changes by on each iteration. Summing the times for
each iteration (there are log2 n̂ iterations total) yields the total time complexity of the
algorithm:

T =
log2 n̂

∑
i=0

(λ
n̂
2i ( f i)2Cw) = λ (n̂Cw)

log2 n̂

∑
i=0

(
f 2

2
)i (3)

The sum ∑
log2 n̂
i=0 ( f 2

2 )i depends on the value of f . If f =
√

2 then f 2

2 = 1 and ∑
log2 n̂
i=0 1 =

log2 n̂ which yields a total time complexity of O(nw log2 n). If f <
√

2 then f 2

2 < 1

and the sum converges so that ∑
log2 n̂
i=0 ( f 2

2 )i < 1/(1− f 2

2 ) ∈ R which yields a total

time complexity of O(nw). Finally, if f >
√

2 then f 2

2 > 1 and the sum diverges so

that ∑
log2 n̂
i=0 ( f 2

2 )i = ∑
log2 n̂
i=0 2ai where a is a real number chosen so that 2a = f 2

2 . Since

0 < f ≤ 2 then 0 < f 2

2 ≤ 2 Thus, 0 < 2a ≤ 2. This implies −∞ < a≤ 1.
Using the formula for the sum of a geometric series,

log2 n̂

∑
i=0

2ai =
1− (2a)log2(n̂)

1−2a =
1− (n̂)a

1−2a (4)
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Time series length 103 104 105 106 107

Running time (sec) .05 .44 4.15 41.59 441.61

Table 2 Running times for hierarchical exemplar learning for various lengths of the training time series.

which is at most O(n̂) since a ≤ 1. Thus, if f >
√

2 the total time complexity is at
worst O(n2w).

For the best case time complexity to occur the requirement is that f <
√

2 which
means that when pairs of chunks are combined the combined chunk size is less than√

2 times the chunk size on the previous iteration. This means that brute force exem-
plar learning should reduce the number of exemplars in each chunk to at most .707
times the starting number of exemplars in a chunk. A roughly 30% reduction is not
difficult to obtain. In practice, on every time series we have found to test on (including
all of the time series in the experimental section), the worst case time complexity has
not occurred. For example, we tested the hierarchical exemplar learning algorithm
on the noisy sine time series with different numbers of time steps (from 1000 to 10
million). The running times are shown in Table 2. The table clearly shows that the
running time is linear in the size of the training time series.

4.4 Setting the SST distance threshold

As described earlier, the inital merging procedure and hierarchical exemplar learning
both use a threshold on the SST distance (given by equation 1) to determine when
two feature vectors are similar enough to merge. This threshold is chosen automati-
cally by computing the mean (µ) and standard deviation (σ ) of the distance between
an SST feature vector for a subsequence starting at location i and one starting at lo-
cation i+ s where s is a constant whole number chosen based on the subsequence
length. In the experiments described later, we use s = 1+(w/100). The mean, µ ,
and standard deviation, σ , are computed by sampling a set of training subsequences
at random locations and computing the distance between vi and vi+s. The number
of subsequences sampled is a constant (we used 1000), and does not depend on the
length of the training time series. The threshold is then set to µ + 3σ . The intuition
behind this threshold is that it allows most subsequences whose locations are within
s time steps of each other to be merged.

4.5 Exemplar learning using k-means clustering

As a simple alternative to hierarchical exemplar learning, we have also experimented
with a k-means clustering algorithm to choose exemplars for a fixed choice of k.
The k-means algorithm first randomly selects k exemplars from the initial set of SST
feature vectors computed from the training time series to serve as the initial means.
Every SST feature vector is then assigned to the nearest mean. All feature vectors
assigned to a mean are averaged together to yield a new mean. This process of as-
signing feature vectors to a mean and then averaging to update the means is iterated
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a fixed number of times. We tested this simple algorithm on the 26 test sets described
in Section 6 with k set to 50 (which is the average number of exemplars chosen by
our hierarchical exemplar learning algorithm on the test sets) and the number of it-
erations set to 3. With these parameter settings, the accuracy of SST exemplars is
slightly lower compared to hierarchical exemplar learning (detection rate of 42/45
versus 44/45 on the 26 test sets from Section 6) with slightly slower overall speed
(13.83 seconds versus 11.84 seconds for all of the test sets in Section 6). The accu-
racy of k-means exemplar learning could be made to match that of hierarchical ex-
emplar learning if a method of automatically optimizing k were used. However, this
would make the k-means clustering algorithm much slower since multiple choices
for k would need to be tested. Thus, k-means clustering is a reasonable alternative for
exemplar learning, but appears to be unable to match the speed and accuracy of the
hierarchical exemplar learning algorithm.

5 Anomaly detection with SST exemplars

After a set of exemplars have been learned to summarize the training time series, there
is one final step to finalize our model. Since each exemplar represents a set of similar
SST features, we have not just a mean feature vector for each exemplar, but also a
standard deviation for each component of the feature vector. The standard deviation
is computed during exemplar learning by keeping track of the sum of squares of each
component of each feature vector that is merged to form an exemplar. After exemplar
learning completes, we use the following formula to compute the standard deviation
for each component of the feature vector:

σ j =

√
1
N

N

∑
i=1

(v2
i j)−µ2

j (5)

where σ j is the standard deviation of the jth component of the exemplar, {vi} is
the set of SST feature vectors that were merged together to form this exemplar, N is
the number of such feature vectors, and µ j is the mean of the jth component of the
exemplar.

Thus, each exemplar is represented by a mean SST feature vector (with w/2+7
components) and a standard deviation for each component of the SST feature vector
(also with w/2+7 components) for a total of w+14 real numbers to represent each
exemplar.

Computing the standard deviation for each component of the SST feature tells
us how much a test SST feature can deviate from an exemplar’s mean before the
deviation becomes unusual (i.e. not common in the training time series). Given this
motivation, we define a distance between a single SST feature vector, v (computed
from a single time series subsequence) and an exemplar, e, that includes both mean
and standard deviation components.

d(v,e) =
l

∑
i=1

max(0,
|v.t(i)− e.t(i)|

e.σ(i)
−3)
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Fig. 5 Illustration of eight exemplars learned for the noisy sine time series. Only the trajectory component
of the SST feature is shown. The red dashed curves indicate 3 standard deviations from the mean trajectory
(solid black curve).

+
l
7

7

∑
i=1

max(0,
|v.s(i)− e.s(i)|

e.ε(i)
−3) (6)

where v is the SST feature vector for the current window consisting of a trajectory
vector, v.t and a statistical vector v.s, e is an exemplar consisting of trajectory (e.t)
and statistical (e.s) vectors as well as the corresponding standard deviation vectors,
e.σ for the trajectory vector and e.ε for the statistical component. The length of a
trajectory component is l = w/2.

This distance corresponds to assigning 0 distance for each element of the trajec-
tory or statistical component that is less than 3 standard deviations from the mean
and otherwise assigning the absolute value of the difference divided by the standard
deviation for each element that is more than 3 standard deviations from the mean. In
equation 6 and in our experiments, the statistical component is given equal weighting
to the trajectory component, although this weighting can be changed based on the
application (for example, in some domain, the trajectory component may not be that
important in which case the statistical component could be given more weight).

This distance function is used to assign an anomaly score to each subsequence
in the testing time series. For a given testing subsequence, the SST feature vector is
computed and a brute force nearest neighbor search is done for the nearest exemplar
using the distance function in equation 6. This nearest neighbor search uses early
abandoning as described in section 2 to make it very efficient. Thus, the anomaly
score, S[i], for subsequence i is:

S[i] = min j d(vi,e j) (7)

where {e}N
j=1 is the set of exemplars learned from the training time series by hierar-

chical exemplar learning. The time required to assign anomaly scores to every testing
subsequence is thus O(Nmw) where N � n is the number of exemplars, m is the
length of the testing time series and w is the subsequence length.

To illustrate the kinds of exemplars that are learned by exemplar learning, Figure
5 shows the mean and standard deviation of the trajectory components for some of
the exemplars learned for the noisy sine time series introduced earlier. (The statisti-
cal components of the exemplars are not illustrated.) Notice that the exemplars are
basically shifted sine waves.
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Fig. 6 Part of each training time series used in our experiments

6 Experiments

We tested our anomaly detection algorithm on a wide variety of different time series
including all of the time series used in the paper [11] (available from [12]) as well
as some others. A portion of the training time series for the 26 data sets we used is
shown in Figure 6. Many of the time series from [12] were not originally split into
training and testing series. In these cases, we have split the original time series into
a training time series that only contains normal data with no anomalies and a testing
time series that contains some anomalous sections.

We tested our SST exemplar-based anomaly detection algorithm as well as the
BFED algorithm and our implementation of the Support Vector Regression (SVR)
based algorithm of Ma and Perkins [16]. For our algorithm a set of SST exemplars is
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first learned on the training set as described in section 4 and then anomaly scores are
computed for every subsequence of the testing set using the distance from equation 6
as described in section 5. The same parameters (except for the subsequence length w)
were used for all time series. A step size of 1 is used to advance from one subsequence
to the next so that consecutive subsequences overlap for all but their first and last
elements.

The SVR-based algorithm learns a linear combination of Gaussian functions us-
ing Support Vector Regression to predict a value of the time series, T [i+w] given a
subsequence, T [i, ..., i+w− 1]. This nonlinear function is learned from the training
time series and then used to predict each value of the testing time series. The anomaly
score is the squared difference between the prediction and the observed value.

The subsequence length, w, is chosen manually and is the main parameter of all of
the algorithms. None of the algorithms is very sensitive to the choice of w although
its choice can effect the type of anomalies that can be detected. For periodic time
series, choosing w to be roughly the length of the period works well.

We compute detection rates for various false positive rates across all testing time
series. The false positive rate is the fraction of non-anomalous subsequences that are
above threshold. The detection rate is the fraction of anomalous regions (not subse-
quences) of a time series that are detected as anomalous. An anomalous region is
considered to be detected if at least one subsequence in the region has an anomaly
score above threshold. This convention reflects the fact that in practice it is not im-
portant that every subsequence within an imprecisely labeled anomalous region be
detected as anomalous. What is important is that at least one high anomaly score oc-
curs in an anomalous region. A receiver operating characteristic (ROC) curve across
all testing time series is computed by computing total detections over total anomalies
for a fixed false positive rate for each testing time series.

The ROC curves across all testing time series for our SST exemplar-based algo-
rithm, the BFED algorithm and the SVR-based algorithm are shown in Figure 7. The
SST exemplar-based algorithm is significantly more accurate than the other two.

Fig. 7 ROC curves for all three methods tested.
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Data set SST exemplars BFED SVR
Name Train, Det. Det. Det.

test length w N rate rate rate
noisy sine 10000, 10000 300 49 4/4 1/4 4/4
ARMA 10000, 100000 100 12 2/2 0/2 0/2
chfdbchf13 1 1875, 1875 160 17 1/1 1/1 1/1
chfdbchf13 2 1875, 1875 160 17 1/1 1/1 1/1
chfdbchf15 1 7500, 7500 160 72 1/1 1/1 0/1
chfdbchf15 2 7500, 7500 160 23 1/1 1/1 0/1
ltstdb20221 1 1875, 1875 160 24 1/1 0/1 1/1
ltstdb20221 2 1875, 1875 160 24 1/1 1/1 0/1
ltstdb20321 1 1875, 1875 200 23 1/1 1/1 0/1
ltstdb20321 2 1875, 1875 200 31 1/1 1/1 1/1
mitdb100 1 2700, 2700 300 36 1/1 1/1 0/1
mitdb100 2 2700, 2700 300 102 1/1 1/1 0/1
mitdbx108 1 5000, 5000 400 71 1/1 0/1 0/1
mitdbx108 2 5000, 5000 400 114 1/1 0/1 0/1
qtdbsel102 1 22500, 22500 200 156 1/1 1/1 1/1
qtdbsel102 2 22500, 22500 200 38 1/1 1/1 1/1
qtdbsel0606 1 700, 2300 70 15 1/1 1/1 1/1
qtdbsel0606 2 700, 2300 70 19 1/1 1/1 1/1
stdb308 1 2400, 3000 400 58 1/1 1/1 0/1
stdb308 2 2400, 3000 400 53 1/1 1/1 1/1
motor 7500, 30000 300 63 10/10 10/10 10/10
nprs44 2000, 4500 100 61 1/1 1/1 1/1
power data 1 11000, 15000 700 80 4/4 4/4 0/4
power data 2 11000, 9040 700 80 0/1 1/1 0/1
TEK 5901, 9099 256 79 3/3 3/3 0/3
anngun x 5625,5625 170 33 1/1 1/1 0/1
anngun y 5625,5625 170 39 1/1 1/1 0/1
Totals 150501, N.A. 1309 44/45 37/45 24/45

286139

Table 3 Detection rates for our method (SST exemplars), the very efficient implementation of BFED, and
the SVR-based method. Detection rates are for a threshold that yields 0 false positives for that data set
and method. For our method we also list N, the number of exemplars learned. w is the subsequence length
chosen for each time series.

More detailed results on each of the testing time series are shown in Tables 3 and
4. Table 3 gives the lengths of the training and testing time series and the subsequence
length (w) used followed by the detection rate for 0 false positives for each of the
three methods. Our method correctly detects 44 out of 45 of the anomalies while
BFED detects 37 out of 45 anomalies and the SVM-based algorithm detects 24 out
of 45. Table 4 gives the training and testing running times for each algorithm. (There
is no training required for the BFED algorithm.) The improvement in speed for our
method is striking. Our algorithm takes a total of 11.84 seconds for both training and
testing for all of the time series compared to 582.38 seconds for BFED and 1826.6
seconds for the SVR-based algorithm. The speed-up is even greater for longer time
series. We generated a noisy sine training time series with 1 million time steps and a
testing time series with 10 million time steps. Our algorithm took 41.62 seconds for
training (exemplar learning) and 177.15 seconds for testing for a total of a little over
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3.6 minutes. The fully optimized BFED algorithm took over 51 days to process the
same training and testing time series. This is a speed-up of over 20,000 which makes
it practical to handle such large time series.

Data set SST exemplars BFED SVR
Name Train Test Test Train Test

time time time time time
noisy sine 0.41 0.16 46.35 128.99 61.74
ARMA 0.51 0.46 309.87 54.76 348.10
chfdbchf13 1 0.05 0.01 0.93 0.10 0.07
chfdbchf13 2 0.05 0.01 0.26 0.20 0.13
chfdbchf15 1 0.22 0.06 2.14 14.79 8.51
chfdbchf15 2 0.20 0.05 1.98 4.33 2.12
ltstdb20221 1 0.06 0.01 0.14 0.39 0.22
ltstdb20221 2 0.05 0.01 0.13 0.40 0.12
ltstdb20321 1 0.06 0.02 0.26 0.29 0.15
ltstdb20321 2 0.06 0.04 2.04 0.14 0.08
mitdb100 1 0.13 0.04 2.83 0.49 0.30
mitdb100 2 0.14 0.07 2.99 0.36 0.24
mitdbx108 1 0.28 0.22 17.8 0.77 0.57
mitdbx108 2 0.30 0.23 20.31 4.44 3.17
qtdbsel102 1 0.99 0.25 23.62 7.61 3.74
qtdbsel102 2 0.71 0.20 34.98 107.29 31.11
qtdbsel0606 1 0.01 0.01 .10 0.03 0.05
qtdbsel0606 2 0.01 0.01 .10 0.01 0.04
stdb308 1 0.14 0.08 2.08 0.68 0.58
stdb308 2 0.14 0.08 1.99 0.52 0.43
motor 0.28 0.43 27.48 7.33 9.08
nprs44 0.05 0.06 2.43 1.12 2.23
power data 1 0.96 1.13 40.58 284.74 397.87
power data 2 0.96 0.71 19.56 284.74 232.50
TEK 0.16 0.14 6.56 13.95 18.80
anngun x 0.14 0.07 5.71 17.93 17.34
anngun y 0.14 0.07 9.16 18.10 17.47
Totals 7.21 4.63 582.4 669.8 1156.8

Table 4 Running times (seconds) for our method (SST exemplars), the very efficient implementation of
BFED, and the SVR-based algorithm. Both training and testing times are given for our method as well as
the SVR-based method. The BFED algorithm does not use training.

Due to space constraints, we cannot discuss each of the testing time series in
detail. We instead focus on some of the more interesting ones that differentiate our
anomaly detection algorithm from the other algorithms. In the result figures, we show
the testing time series with the anomalous regions indicated in red. Below that we
show the anomaly scores for our method as well as the BFED algorithm and SVR-
based algorithm. The thresholds choosen for each method (giving zero false positives)
are also drawn on the anomaly score plots in red.

Earlier, we showed a noisy sine time series as an example. We created a new noisy
sine testing time series containing 4 anomalies to illustrate one type of anomaly that
SST exemplars and the SVR-based algorithm can detect but BFED cannot. The first
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Fig. 8 Noisy sine example. Four anomalies were inserted into this synthetic time series. Our algorithm
and the SVR-based algorithm detect all 4. The BFED algorithm only detects the last anomaly.

Fig. 9 ARMA example, first anomaly. Our algorithm detects this anomaly which was generated from a
different ARMA model than the normal data. The BFED and SVR-based algorithms fail to detect it.

3 anomalies in the noisy sine testing time series contain smaller amplitude noise than
the training time series. The Gaussian noise in the training time series has standard
deviation .25. The first anomaly in the testing time series has no noise in the sine
wave. This stands out as a clear anomaly in Figure 8 starting at time step 1500. The
second anomaly has Gaussian noise with standard deviation 0.1 and is also visible
starting at time step 3000. The third anomaly, starting at time step 6000 has Gaus-
sian noise 0.15 and is barely perceptible. The fourth anomaly has larger amplitude
noise than normal (0.75 standard deviation) and is clearly visible starting at time step
9000. Our algorithm and the SVR-based algorithm detect all 4 of these anomalies as
shown in the second and fourth plots of Figure 8. For the BFED algorithm, the first 3
anomalies have lower anomaly scores than other regions (the exact opposite of what
we want). Only the fourth anomaly with greater noise is detected.

As an example of a type of anomaly that our algorithm can handle but both the
BFED and SVR-based algorithms fail on, we use an autoregressive moving average
(ARMA) model to create a training time series of length 10,000. The same ARMA
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Fig. 10 ARMA example, second anomaly. This obvious anomaly is easily detected by our algorithm but
is missed by both the BFED and SVR-based algorithm.

model is used to create a 100,000 length testing time series with two anomalies in-
serted. The first anomaly, shown in Figure 9 consists of a different ARMA model
inserted into the testing time series. The difference is difficult to see visually. In this
case our algorithm clearly detects the anomaly while the BFED algorithm and the
SVR-based algorithm fail to detect it (see Figure 9). The second anomaly inserted
into this time series was created by multiplying a section of the testing time series
by 0.1. This anomaly is clearly visible in Figure 10. Our algorithm easily detects
it, while the BFED and SVR-based algorithms indicate that the anomalous region is
actually the least anomalous.

There are a number of electrocardiogram (ECG) time series in the testing set.
Each of these contains two signals, which are processed independently. They contain
a variety of different anomalies from abnormal spacing of spikes to abnormal shapes
of the signals, some of which are very subtle. Furthermore, a normal ECG time series
contains many normal variations which should not be confused for anomalies. One
example is the ECG time series labeled ltstdb20221 that is shown in Figure 11. The
anomalous region shows a premature contraction. Our algorithm detects this anomaly.
The BFED algorithm also show elevated anomaly scores in the anomalous region, but
it has even higher anomaly scores for normal subsequences at the beginning of the
testing series. This results in the threshold being set high and the anomalies being
missed. The SVR-based algorithm weakly detects this anomaly.

Next, we look at the power demand data set. This time series has power con-
sumption for a Dutch research facility for the year 1997 (one power measurement
every 15 minutes for 365 days). It shows a characteristic weekly pattern that con-
sists of 5 power usage peaks corresponding to the 5 weekdays followed by 2 days
of low power usage on the weekends. Anomalous weeks occur when one or more
of the normal usage peaks during a week do not occur due to holidays. We used a
section of 11,000 time steps in the middle of the year (not containing holidays) for
training. This splits the remaining data into two separate testing time series which we
evaluated separately. A window size of 700 was selected since this is approximately
the number of time steps in one week. The first testing time series is shown in Fig-
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Fig. 11 An ECG example. Our method and the SVR-based algorithm successfully detect the anomaly
while the BFED algorithm has a larger response in a normal region at the beginning of the time series.

Fig. 12 Power data, 1st test series. Our method and the BFED method detect the anomalous regions
(caused by holidays) in this time series, while the SVR-based method does not.

ure 12. Our SST exemplar algorithm and the BFED algorithm detect the 4 anomalous
regions in this case while the SVR-based algorithm does not detect any of the anoma-
lous regions. The second testing time series is shown in Figure 13. This is the only
case in which our method fails to detect the anomaly. Actually, our algorithm does
have high anomaly scores in the anomalous region. However, another region that is
not labeled as anomalous has even higher anomaly scores which causes the threshold
to be set too high to detect the anomaly. If one looks carefully at this other region
with high anomaly scores, one can see an unusual dip and then increase in the power
usage during a weekend period. Depending on the goal of the system, one might in-
deed classify this as anomalous. The BFED algorithm correctly detects the labeled
anomalous region in this case while the SVR-based algorithm does not.

Another interesting testing time series is the Space Shuttle Marotta Valve time
series [9]. This data set consists of 3 different time series labeled TEK14, TEK16 and
TEK17. We use approximately the last half of TEK14 and the first half of TEK16
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Fig. 13 Power data, 2nd test series. The BFED algorithm detects the anomaly while the SVR-based algo-
rithm does not. Our method also has high anomaly scores for the anomalous region, but has even higher
scores for a “normal” region. Close examination of the false detection reveals a unique pattern not seen in
the training data.

Fig. 14 Marotta Valve time series. Our method as well as the BFED algorithm detect all three anomalies.
The SVR-based algorithm has higher anomaly scores in non-anomalous regions which causes it to fail to
detect the actual anomalies.

(which do not contain anomalies) as the training time series. The training time series
has 5901 time steps. The remainder of TEK14 and TEK16 as well as all of TEK17 are
used as a testing time series and contains 9099 time steps. Results are shown in Figure
14. Our method as well as the BFED algorithm detect all three of the anomalies. The
SVR-based algorithm seems to be effected by some spikes in the normal regions
of the time series which causes high anomaly scores in these normal regions. This
causes the threshold to be set high to avoid false positives which results in three
missed detections for this method.
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7 Conclusions

We have presented an algorithm for detecting anomalies in real-valued time series
that improves over previous algorithms both in terms of accuracy and speed. We
compared our algorithm to the simple yet effective brute force Euclidean distance
algorithm which has proven to be the most accurate over a variety of different test-
ing time series in previous work. We first investigated optimizing the running time of
the simple brute force Euclidean distance (BFED) anomaly detection algorithm using
the UCR Suite of optimizations. We found that while BFED can be greatly sped up,
it is still not efficient enough in practice for very large times series. Next, we pre-
sented our new algorithm based on selecting a small set of exemplars to represent the
variety of subsequences present in a training time series. The exemplars use Statisti-
cal and Smoothed Trajectory features which capture both the characteristic trajectory
(low frequency information) as well as the stochastic characteristics (high frequency
information) present in similar subsequences. We presented a novel algorithm for ef-
ficiently learning exemplars. Once exemplars are learned, assigning anomaly scores
to the testing subsequences is very fast. We show improved results over the BFED
algorithm and an SVR-based prediction algorithm on a large variety of different time
series. We also show that our algorithm can process very large time series in minutes
that would take the optimized BFED algorithm many days to process. In addition to
the speed and accuracy improvements, our algorithm also requires less memory than
BFED since only the exemplars need to be stored and not the entire training time
series.

There are other possibilities for speeding up subsequence similarity search. For
example, k-d trees [4] or related data structures could be used. However, because
subsequences typically have a large number of elements (dimensions), k-d trees are
no better than exhaustive search in this case. Indexing methods are another possibil-
ity [2]. The main drawback of indexing approaches is that they require storing all
of the training subsequences (as opposed to only a small set of exemplars), as well
as a substantial memory overhead for the indexing structure. This makes indexing
approaches impractical for use with very long training time series. However, com-
bining indexing with exemplars to quickly find the nearest exemplar appears to be a
promising direction for future research.
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