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Abstract

Total variation (TV) is a widely used regularizer for stabilizing the solution of ill-posed inverse
problems. In this paper, we propose a novel proximal-gradient algorithm for minimizing TV
regularized least-squares cost functional. Our method replaces the standard proximal step
of TV by a simpler alternative that computes several independent proximals. We prove that
the proposed parallel proximal method converges to the TV solution, while requiring no sub-
iterations. The results in this paper could enhance the applicability of TV for solving very
large scale imaging inverse problems.
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ABSTRACT

Total variation (TV) is a widely used regularizer for stabiliz-
ing the solution of ill-posed inverse problems. In this paper,
we propose a novel proximal-gradient algorithm for minimiz-
ing TV regularized least-squares cost functional. Our method
replaces the standard proximal step of TV by a simpler al-
ternative that computes several independent proximals. We
prove that the proposed parallel proximal method converges
to the TV solution, while requiring no sub-iterations. The re-
sults in this paper could enhance the applicability of TV for
solving very large scale imaging inverse problems.

Index Terms— Proximal gradient method, total variation
regularization, inverse problems, convex optimization

1. INTRODUCTION

The problem of estimating an unknown signal from noisy lin-
ear observations is fundamental in signal processing. The es-
timation task is often formulated as the linear inverse problem

y=Hx+e, (D)

where the goal is to compute the unknown signal x € RY
from the noisy measurements y € R™ . Here, the matrix H €
RM>*N models the response of the acquisition device and the
vector e € RM represents the measurement noise, which is
often assumed to be i.i.d. Gaussian. When the problem (1) is
ill-posed, the standard approach is to rely on the regularized
least-squares estimator

rgmm{ny Hx|2, + R(x >} @
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where the functional R is a regularizer that promotes so-
lutions with desirable properties such as transform-domain
sparsity or positivity.

One of the most widely used regularizers in imaging is the
total variation (TV), whose anisotropic variant can be defined
as

D
R(x) £ A|[Dx]]l¢, = )\ZZ\DdX 3)

n=1d=1

where D : RNV — RNV*P is the discrete gradient operator,

A > 0 is a parameter controlling amount of regularization,
and D is the number of dimensions in the signal. The matrix
D, denotes the finite difference operation along the dimen-
sion d with appropriate boundary conditions (periodization,
etc.). The TV prior has been originally introduced by Rudin
et al. [1] as a regularization approach capable of removing
noise, while preserving image edges. It is often interpreted
as a sparsity-promoting ¢;-penalty on the image gradient. TV
regularization has proven to be successful in a wide range of
applications in the context of sparse recovery of images from
incomplete or corrupted measurements [2—8].

The minimization (2) with the TV regularization is a non-
trivial optimization task. The challenging aspects are the non-
smooth nature of the regularization term (3) and the massive
quantity of data that typically needs to be processed. Proximal
gradient methods [9] such as iterative shrinkage/thresholding
algorithm (ISTA) [10-14] or alternating direction method of
multipliers (ADMM) [15-17] are standard approaches to cir-
cumvent the non-smoothness of the TV regularizer.

For the optimization problem (2), ISTA can be written as

—vH" (Hx'"! —y) (4a)
xt prowa(zt), (4b)

zt — xt!

where v; > 0 is a step-size that can be determined a priori to
ensure convergence [14]. Iteration (4) combines the gradient-
descent step (4a) with a proximal operation (4b) defined as

. 1
prox,r (z) £ argmin {2||X —z|;, + ’yR(X)} NG))

xERN

The proximal operator corresponds to the regularized solution
of the denoising problem where H is an identity. Because of
its simplicity, ISTA and its accelerated variants are among the
methods of choice for solving practical linear inverse prob-
lems [13, 14]. Nonetheless, ISTA-based optimization of TV
is complicated by the fact that the corresponding proximal
operator does not admit a closed form solution. Practical im-
plementations rely on computational solutions that require an
additional nested optimization algorithm for evaluating the
TV proximal [17, 18]. This typically leads to a prohibitively



slow reconstruction when dealing with very large scale imag-
ing problems such as the ones in 3D microscopy [8].

In this paper, we propose a novel approach for solving
TV-based imaging problems that requires no nested itera-
tions. This is achieved by substituting the proximal of TV
with an alternative that amounts to evaluating several sim-
pler proximal operators. One of our major contributions is
the proof that the approach can achieve the true TV solution
with arbitrarily high precision. We believe that the results pre-
sented in this paper are useful to practitioners working with
very large scale problems that are common in 3D imaging,
where the bottleneck is often in the evaluation of the TV prox-
imal.

2. MAIN RESULTS

In this section, we present our main results. We start by intro-
ducing the proposed approach and then follow up by analyz-
ing its convergence.

2.1. General formulation

We turn our attention to a more general optimization problem

X =argmin {C(x)}, (6)
xERN

where the cost functional is of the following form
K
C(x) = D(x) + R(x) = D(x) + 1 Y Ri(x). (D)
Lt e

The precise connection between (7) and TV-regularized cost
functional will be discussed shortly. We assume that the data-
fidelity term D is convex and differentiable with a Lipschitz
continuous gradient. This means that there exists a constant
L > 0 such that, for all x,z € RY, ||[VD(x) — D(z)|¢, <
L|x — z||¢,.- We also assume that each Ry, is a continuous,
convex function that is possibly nondifferentiable and that the
optimal value C* is finite and attained at x*.

We consider parallel proximal algorithms that have the
following form

z' x4 VDT (8a)
| X

xt o Z Prox,, g, (z'), (8b)
k=1

where prox., z, is the proximal operator associated with
vRi. We are specifically interested in the case where
the proximals Prox,, g, have a closed form, in which case
they are preferable to the computation of the full proximal
Prox., .

We now establish a connection between (7) and TV-
regularized cost. Define a linear transform W : RY —
RNXDX2 that consists of two sub-operators: the averaging

operator A : RN — RNXD and the discrete gradient D
as in (3), both normlized by 1/v/2. The averaging operator
consists of D matrices A, that denote the pairwise averaging
along the dimension d. Accordingly, the operator W is a
union of scaled and shifted discrete Haar wavelet and scaling
functions along each dimension [19]. Since we consider all
possible shifts along each dimension the transform is redun-
dant and can be interpreted as the union of K = 2D, scaled,
orthogonal tranforms

W,
W = o ©)]
Wk
The transform W and its pseudo-inverse
1
WT:E[WlT...WIT(] (10)
satisfy the following two properties of Parseval frames [20]
1
arg min {||z - Wx||§2} = W'z (forall z ¢ REY)
xerN 2

and
Wiw =1L (1)

One can thus express the TV regularizer as the following sum

K
R(x) =AV2Y " > [[Wix]nl, (12)

k=1neHy

where Hy, C [1...N] is the set of all detail coefficients of
the transform Wy. Then, the proposed parallel proximal al-
gorithm for TV can be expressed as follows

zt — x!7t —HT (th_l — y) (13a)
1 X
xt % > WIT(Wizh V2Ky ), (13b)
k=1
where 7 is the component-wise shrinkage function
T(yir) 2 max(ly| - r,0) (14)

|yl

which is applied only on scaled differences Dz?.

The algorithm in (13) is closely related to a technique
called cycle spinning [21] that is commonly used for improv-
ing the performance of wavelet-domain denoising. In partic-
ular, when H = T'and v = 1, forallt = 1,2,..., the
algorithm yields the solution

R WIT(Wy; V2K ), (15)

which can be interpreted as the traditional cycle spinning al-
gorithm restricted to the Haar wavelet-transform. In the con-
text of image denoising, the connections between TV and
cycle-spinning were originally established in [22].



2.2. Theoretical convergence

The convergence results in this section assume that the gra-
dient of D and subgradients of Rj are bounded, i.e., there
exists G > 0 such that for all k and ¢, |[VD(x")|l,, < G
and ||ORg(x")|le, < G. The following proposition is cru-
cial for establishing the convergence of the parallel proximal
algorithm.

Proposition 1. Consider the cost function (7) and the algo-
rithm (8). Then, forall t = 1,2,. .., and for any x € R", we
have

C(x") - C(x) (16)

1 _
< o (I = xl, — ! = xI,) + 8362
Yt

Proof: See Appendix.

Proposition 1 allows us to develop various types of con-
vergence results. For example, if x* is the optimal point
and if we pick a sufficiently small step v < (C(x') —
C(x*))/(8G?), then the x* will be closer to x* than x’~!.
This argument can be formalized into the following proposi-
tion.

Proposition 2. Assume a fixed step size v, = v > 0. Then,
we have that

liminf (C(x") — C*) < 8yG?. (17)

t—o00
Proof: See Appendix.

Proposition 2 states that for a constant step-size, convergence
can be established to the neighborhood of the optimimum,
which can be made arbitrarily close to 0 by letting v — 0.

3. EXPERIMENTS

In this section, we empirically illustrate that our results hold
more generally than suggested by Proposition 2. Specifically,
we consider the accelerated parallel proximal algorithm based
on FISTA [14]

z' — u'! — 4, VD) (18a)
1 K

x! 7 Zprox%Rk (z") (18b)
k=1

g (1+4/1+4¢2 1)/2 (18¢)

ul — xt (g1 — 1) /q)(xF —x7h (18d)

with u® = x%, gg = 1, and 7; = ~. Method (18) preserves
the simplicity of the ISTA approach (8) but provides a sig-
nificantly better rate of convergence, which enhances poten-
tial applicability of the method. We consider an estimation
problem where the Shepp-Logan phantom of size 32 x 32
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Fig. 1. Reconstruction of a Shepp-Logan phantom from noisy
linear measurements. The relative gap (C(x') — C*)/C* is
plotted against the iteration number for 3 distinct step-sizes 7.
The plot illustrates the convergence of the fast parallel proxi-
mal algorithm to the minimizer of the TV cost functional.

Fig. 2. Reconstructed Shepp-Logan images for (a) v = 1/L;
(b) v = 1/(16L); (c) the true TV solution. Even fory = 1/L
the solution of the accelerated parallel proximal algorithm is
visually and quantitatively close to the true TV result.

is reconstructed from M = 512 linear measurements with
AWGN corresponding to 30 dB SNR. The measurement ma-
trix is i.i.d. Gaussian [H],,, ~ N(0,1/M). Figure 1 il-
lustrates the per-iteration gap (C(x') — C*)/C*, where x! is
computed with the fast parallel proximal method (18) and C
is the TV-regularized least-squares cost. The regularization
parameter A was manually selected for the optimal SNR per-
formance of TV. We compare 3 different step-sizes v = 1/L,
v = 1/(4L), and v = 1/(16L), where L = ), (H"H)
is the Lipschitz constant. Proposition 2 suggests that the gap
(C(x")—C*) is proportional to the step-size and shrinks to 0 as
the step-size is reduced. Such behavior is clearly observed in
Figure 1, which suggests that our results potentially hold for
the accelerated parallel proximal algorithm. Figure 2 com-
pares the quality of the estimated images, for v = 1/L and
v = 1/(16L), against the TV solution. We note that, even
for v = 1/L, the solution of our algorithm is very close to
the true TV result, both qualitatively and quantitatively. This
implies that, while requiring no nested iterations, our parallel
proximal approach can potentially approximate the solution
of TV with arbitrarily accurate precision at O(1/t?) conver-
gence rate of FISTA.



4. RELATION TO PRIOR WORK

The results in this paper are most closely related to the work
on TV-based imaging by Beck and Teboulle [18]. While their
approach requires additional nested optimization to compute
the TV proximal, we avoid this by relying on multiple sim-
plified proximals computed in parallel. Our proofs rely on
several results from convex optimization that were used by
Bertsekas [23] for analyzing a different family of algorithms
called incremental proximal methods. Finally, two earlier pa-
pers with the author describe the relationship between cycle
spinning and TV [22,24], but concentrate on a fundamentally
different families of optimization algorithms.

5. CONCLUSION

The parallel proximal method and its accelerated version,
which were presented in this paper, are beneficial in the con-
text of TV regularized image reconstruction, especially when
the computation of the TV proximal is costly. We presented
a combination of theoretical and empirical evidence demon-
strating that these methods can compute the TV solution at
the competitive global convergence rates without resorting to
expensive sub-iterations. Future work will aim at extending
the theoretical analysis presented here and by applying the
methods to a larger class of imaging problems.

6. APPENDIX

We now prove the propositions in Section 2.2. The formal-
ism used here is closely related to the analysis of incremental
proximal methods that were studied by Bertsekas [23]. Re-
lated techniques were also used to analyze the convergence of
recursive cycle spinning algorithm in [24].

6.1. Proof of Proposition 1

We define an intermediate quantity x¢, £ ProxX., g, (z'). The
optimality conditions for (8b) imply that there must exist K
subgradient vectors VR (x}) € Ry (x%) such that

xt = xt=1 _ 4, (VD(XH) + @Rk(x;)) .19

This implies that
x'=x""1 =y (VD) +g'), (20)
where
1 &
£ 2D VRi(x})
k=1

Then we can write

w(VD'"Y) +g") —x[7, @D
=[x = x|, = 23(VD('"") + g, x'" - x)
+77 VD) + g'lI7,

" = |7, = [lx"~"

By using the triangle inequality and noting that all the subgra-
dients are bounded, we can bound the last term as

IVD(x"1) + g'||7, < 4G>. (22)

To bound the second term we proceed in two steps. We first
write that

(VD(x'1h),x"1 —x) > D(x'1) - D(x) (23)
> D(x') — (VD(x'),x" —x'!) — D(x)
> D(x') — D(x) — 27,G?,

where we used the convexity of D, the Cauchy-Schwarz in-
equality, and the bound on the gradients. In a similar way, we
can write that

(g x'! EK: VRE(xh),x'™  —x) (24
K k:
> ?kz Ri(xh) — Ri(x)) — 2v,G?
> R(x') — R(x) — 47,G?,

where we used the convexity of Rys, the relationships (19)
and (20), as well as bounds obtained via the Cauchy-Schwarz
inequality. By plugging (22), (23), and (24) into (21) and by
reorganizing the terms, we obtain the claim.

6.2. Proof of Proposition 2

By following an approach similar to Bertsekas [23], we prove
the result by contradiction. Assume that (17) does not hold.
Then, there must exist € > 0 such that

1iginf(0(xt) —C*) > 8yG? + 2¢ (25)
Let X € RY be such that
htm inf C(x") — 87G? — 2¢ > C(x) (26)
—00

and let ¢o be large enough so that for all ¢ > ¢(, we have
C(x") —liminf C(x")| < e. 27
t—o00

By combining (26) and (27), we obtain that for all ¢ > ¢

C(x") —C(x) > 8G? + e (28)
Then from Proposition 1, for all £ > ¢,
Ix"=x|1Z,
<Xt = x|7, - 29(C(x") - C(x)) + 167°G?
< X7 = x[)Z, - 27e (29)

By iterating the inequality over ¢, we have for all ¢t > ¢,
1" = xII7, < [[x" = %lle, — 2(t —to)ye,  (30)

which cannot hold for arbitrarily large ¢. This completes the
proof.
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