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Abstract

The handling of constraints in systems subject to variable time-delay is a challenging problem. It is particularly relevant to
Network Control Systems (NCSs) in which a control system is remotely located with respect to the plant to be controlled. In
this paper, we develop reference governors for controlling constrained systems subject to variable delays with a particular focus
on the application to NCSs. In the proposed approach, which neither exploits nor depends on any explicit synchronization
between the plant and the governor, the closed-loop dynamics are modeled by a sampled data system, for which input delays
result in additive disturbances with magnitude proportional to the input rate of change. We first develop a network reference
governor (netRG) that guarantees constraint enforcement and finite-time convergence for variable time-delay shorter than the
sampling period. Then, we extend the network reference governor to the case of output feedback. Finally, we consider the case
of long and potentially unbounded delay. The netRGs is evaluated in a case study of orientation control of a spacecraft with
a flexible appendage.
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1 Introduction

In applications as diverse as automotive, aerospace,
and factory automation, it is appealing to consider the
network implementation of control systems in which
computing nodes, sensors and actuators, exchange data
through a communication network [3–8]. Some of the
advantages of these Network Control Systems (NCSs)
are higher computational capabilities, reduced cost, in-
creased flexibility and simplified maintenance [6, 9–11].

On the other hand, the network medium introduces ef-
fects that may cause closed-loop performance degrada-
tion [10, 12, 13]. Such effects, that include data losses,
variable delays and data corruption, are not commonly
dealt with by classical control methods. As a conse-
quence, special design techniques have been developed
in the past fifteen years for NCS. In particular, the sta-
bility and performance properties of NCSs affected by
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data losses, quantization and time delay have been stud-
ied extensively, see, e.g., [14–20], and references therein.
Also, control methods for dealing with communication
network constraints, such as bandwidth and access, have
been developed, see, e.g., [21–23].

Another important objective in high performance con-
trol systems is the enforcement of constraints on input
and output plant variables. In NCS, the network commu-
nication introduces a delay that varies and is not known
in advance, as it depends, for instance, on the network
protocol executions, on the amount of network users,
and on environmental conditions. For instance, in [24] a
control method for compensating the transmission delay
was developed, based on generalized predictive control.
In this paper we consider control architectures for con-
strained control that ensure constraint satisfaction de-
spite the presence of variable time delays. Specifically,
we consider a control architecture where a reference gov-
ernor is remotely located with respect to a plant aug-
mented by a nominal unconstrained controller. A ref-
erence governor [25] is a nonlinear state-feedback con-
troller for a constrained plant in closed-loop with a con-
troller that ignores system constraints. The governor re-
ceives a desired reference for the closed-loop plant, usu-
ally from an operator or a supervisory algorithm, and
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sends to the closed loop plant the closest virtual refer-
ence that satisfies the constraints. Ideally, the virtual
reference will converge to the desired reference if the lat-
ter satisfies the constraints in steady state.

The NCS governor architecture, hereafter referred to as
network reference governor (netRG), is suitable when
the virtual reference cannot be computed at the plant
site, e.g., due to the impossibility or high costs of placing
at the plant site a computational unit capable of solving
an optimization problem. Some motivating examples for
the netRG are in chemical or process control [6], when
the plant operates in an extreme environment. Another
class of applications is in autonomous spacecraft or re-
motely piloted UAVs and robots, see, e.g., [5,7,26], where
onboard computing hardware capabilities are limited,
but there is a communication link with a base station
that can host more capable computing hardware. Other
applications include automotive vehicles [27], where net-
works connect microcontrollers and actuators with vary-
ing levels of local computing capabilities.

NCS architectures based on reference governors have
been previously proposed for enforcing constraints in
presence of delays and data losses. In the early paper [28],
a prediction scheme with additional logic was used to
account for a delay bounded over a given horizon, and
a recovery algorithm was developed for cases when the
delay was longer than expected. In [29], this approach
was extended by algorithms based on data redundancy
that allow for multiple interconnected systems to be con-
trolled through the network with increased robustness to
delays and data losses. In both approaches, the delay is
assumed to be a multiple of the sampling period, as is the
case in synchronous architectures, where the plant and
controller are synchronized by a common clock. Thus, a
purely discrete-time model of the plant is exploited for
predictive constraint enforcement.

In this paper we consider netRG strategies for systems
affected by a variable time delay that may take continu-
ous values in a (possibly unbounded) interval. This kind
of delay occurs in NCS with asynchronous communica-
tion protocols, such as the CAN protocol used in au-
tomotive. We focus on the case where the delay affects
the command sent from the netRG to the plant, and we
derive a sampled-data system model, where the effect
of the delay is modeled as an additive disturbance with
magnitude proportional to the rate of change of the com-
mand. By using robust constraints, we first provide a
netRG that guarantees constraint enforcement for a de-
lay that is always smaller than the sampling period, and
we show that the finite-time convergence properties of
the standard governor [30,31] are preserved. The netRG
is then extended to the case of imperfect state informa-
tion, where an observer is used for state estimation, and
a bound on the estimation error is used to robustly en-
force constraints. Finally, we present a netRG that can
deal with a longer and possibly unbounded delay, where

a simple acceptance/rejection logic is implemented at
the plant.

The netRG modulates the speed of convergence towards
the desired reference so that the uncertain delay does not
cause constraint violations. Thus, it differs from [28,29],
and instead exploits an idea similar to [32], while the
type and sources of uncertainty andmethods for address-
ing it are significantly different. Some of the advantages
of the proposed netRG are that it does not require syn-
chronization between the plant and the governor, that
it has computational burden similar to standard gover-
nors, that it allows for output feedback, and that it is ro-
bust to intersampling actuation, which may occur due to
network and computational jitter. While mainly driven
by applications in NCSs, the netRG concepts are appli-
cable to many systems subject to time-varying delays,
such as those in automotive and aerospace applications.

The paper is structured as follows. In Section 2 we in-
troduce the NCS model, the reference governor strat-
egy and the model of the network-induced time delay.
In Section 3 we formulate the netRG for the case where
the time-varying network delay is “short”, which here
means, shorter than the sampling period. In Section 4
we consider the case of output feedback, where an esti-
mator is used to reconstruct the state. Finally, in Sec-
tion 5 the control strategy is extended to handle “long”
delays, that is, longer than the sampling period. The
netRG is applied under different conditions to the case
study of attitude control of a spacecraft with a flexible
appendage in Section 6. The conclusions are summarized
in Section 7.

Notation. We denote the real, nonnegative real, positive
real, and integer, nonnegative integer, positive integers
by R, R0+, R+, and Z, Z0+, Z+, respectively. Further-

more, Z[a,b] � {z ∈ Z : a ≤ z ≤ b}, and a similar nota-
tion is also used with R. Given a continuous signal a(t)
sampled with sampling period Ts, we denote by a(k) the
value at the kth sampling instant, that is a(k) = a(tk),
where tk = kTs. Where a is a vector, ‖a‖p indicates the
p-norm of the vector, while when A is a matrix, ‖A‖p in-
dicates the induced matrix p-norm. When a is a vector,
[a]i is the ith component of the vector. We denote the
interior of the set X by int(X ), its convex hull by co(X ),
and the Minkowski sum of sets X and Y by X ⊕Y. The
∞-norm ball of radius ρ in R

n is denoted by B(ρ), and
the vertices of B(1), i.e., X = {x ∈ R

n : ‖x‖∞ ≤ 1}, are
denoted by {ηi}

nη

i=1, where nη = 2n. P[ξ], where ξ is a
generic event, indicates the probability of ξ.

2 NCS Model and Problem Definition

In this section we introduce the NCS and the impact of
the network-induced delay on the closed-loop system.
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Fig. 1. Schematics of a NCS based on reference governor.

2.1 Network control system model

We consider the NCS shown in Figure 1, where a
reference governor is connected to a plant, possibly
augmented by a local stabilizing controller, through a
communication network. The reference governor sends
commands to the plant, through the command (for-
ward) channel and receives measurements from the
plant through the measurement (feedback) channel.
The command and measurement channels are logical
channels, that may share the same physical network in-
frastructure. The signals sent through the network are
sampled, hence the transmitter also operates as a sam-
pler, and the receiver operates also as a zero order hold.

The communication network causes a time-varying de-
lay between the sent and received signals. We assume no
time-stamping nor sequential indexing of the data pack-
ets that results in more involved communication pro-
tocols. Consider a sequence {ak}k, k ∈ Z0+, where ak
is sent at time tk ∈ R0+ and received at time tk + δk,
δk ∈ R0+. The receiver output is the signal

a(t) = ak(t), k(t) = arg max
k∈Z0+:
tk+δk≤t

tk + δk. (1)

In (1) the receiver output at time t is the last received
signal, which may not be the latest sent packet. In the
simpler case where δk ∈ R[0,tk+1−tk), the receiver output
signal a for t ∈ R[tk,tk+1), k ∈ Z+, is

a(t) =

{
ak−1 if t ∈ R[tk,tk+δk),

ak if t ∈ R[tk+δk,tk+1).
(2)

In this paper, we first develop control strategies for the
case where the delay is modelled by (2), then we extend
our approach to the more general case (1). Also, we fo-
cus on the case where the delay induced by the network
affects only the command channel.

The plant to be controlled is the continuous-time linear

time-invariant dynamical system,

ẋ(t) =Acx(t) +Bcr(t), (3a)

y(t) =Ccx(t), (3b)

where x ∈ R
n is the state vector, y ∈ R

p is the constraint
output vector, and r ∈ R

m is the input vector, which,
in this context, is the reference selected to achieve the
desired equilibrium. In this paper, y is used to formulate
the constraints specified as

y ∈ C ⊂ R
p, (4)

where C is a given compact polyhedron, and 0 ∈ int(C).

Remark 1 Model (3) represents a plant possibly in
closed-loop with a co-located controller. In NCSs, the
co-located controller may be a computationally simple
controller (e.g., a PID) aimed at asymptotically stabi-
lizing the physical plant and achieving a unitary steady
state gain. If the co-located controller is discrete-time, it
is assumed that its sampling period is such that (3) is a
valid approximation of the closed-loop behavior from the
reference governor perspective.

In this paper we develop netRGs that enforce (4) point-
wise in time. In the design, we exploit a sampled data
model of (3) with period Ts ∈ R+ being the update pe-
riod of the netRG,

x(k + 1)=Ax(k) +Bv(k), (5a)

y(k) =Cx(k), (5b)

where A = eAcTs , B =
∫ Ts

0
eAc(Ts−τ)Bcdτ , C = Cc, and

the reference r in (3) is substituted by a virtual reference
v ∈ R

m generated by the netRG so that the pointwise
in time constraints,

y(k) ∈ C, ∀k ∈ Z+, (6)

are enforced and v is “as close as possible” to r.

Assumption 2 Systems (3) and (5) are asymptotically
stable, i.e.,Ac is Hurwitz, andA is Schur. The pair (A,C)
is observable.

Finally, the measurement vector ym ∈ R
pm , which is fed

back from the plant is,

ym(k) = Cmx(k). (7)

Assumption 3 Cm in (7) is such that rank(Cm) = n,
i.e., given ym(k), x(k) is uniquely determined.

By Assumption 3, the full state x(k) is known. We dis-
cuss the case when Assumption 3 does not hold later, in
Section 4.
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2.2 Reference governor

Next, we recall basic concepts and results of the conven-
tional reference governor, when δk = 0 for all k ∈ Z0+.

Definition 4 Given x(k + 1) = f(x(k)), x ∈ R
n, X ⊆

R
n is positive invariant (PI) if for all x ∈ X , f(x) ∈ X .

Definition 5 ( [33]) The maximum output admissible
set O∞ ⊂ R

n+m for (5), (6) for constant reference v(k+
1) = v(k) is the PI set,

O∞ � { (x, v) ∈ R
n+m : x(k) = x, v(h) = v, (8)

∀h ∈ Z[k,∞) =⇒ y(h) ∈ C, ∀h ∈ Z[k,∞)}.

Definition 6 Denote the steady state of the con-
stant command v ∈ R

m by xe(v) ∈ R
n. The set

Γ ⊆ {v ∈ R
m : Cxe(v) ∈ int(C)} is a compact polyhedral

set of strictly steady state admissible references, i.e.,
(xe(v), v) ∈ int(O∞) for all v ∈ Γ.

Lemma 7 ( [30, 33]) Let Assumption 2 hold. O∞ is
convex, compact, and it has an arbitrarily close PI inner
approximation Õ∞ ⊆ O∞ described by a finite number
of linear inequalities, i.e., there exists a finite q ∈ Z+,
Hx ∈ R

q×n, Hv ∈ R
q×p, K ∈ R

q such that,

Õ∞ = {(x, v) : Hxx+Hvv ≤ K}. (9)

In what follows, we disregard the arbitrarily small differ-
ence between Õ∞ and O∞, which affect only the compu-
tations, and with a little abuse we consider Õ∞ = O∞.

The reference governor [25, 30, 33] is a control law v =
g(x, r) where,

g(x, r) = argmin
v∈Γ

‖r − v‖22 (10a)

s.t. (Ax+Bv, v) ∈ O∞, (10b)

so that the virtual reference (or command) v is the pro-
jection of r onto the section of O∞ at the next state.

Theorem 8 ( [30]) Consider (5)with v(k) = g(x(k), r(k))
defined by (10), and let r(k) = r for all k ∈ Z0+. Then:
(i) the set Xfeas = {x ∈ R

n : ∃v, (Ax +Bv, v) ∈ O∞} is
PI for (5), (10); (ii) if at some h̄ ∈ Z0+, x(h̄) ∈ Xfeas,
y(k) ∈ C for all k ∈ Z[h̄,∞); (iii) if r ∈ Γ, there exists a

finite k̄ ∈ Z+ such that v(k̄) = r.

Remark 9 The pointwise-in time constraints can be en-
forced on a shorter sampling period than Ts by extending
y in (5) to include intersampling instants. Enforcing con-
straints with period Ts/nc, nc ∈ Z+, results in y ∈ R

p·nc .

2.3 Control-oriented model of plant subject to delay

Let the network in Figure 1 induce a delay δk in the com-
mand (forward) channel, while the measurement (feed-
back) channel has no delay.

Lemma 10 Let δk ∈ R[0,δ̄] for all k ∈ Z0+, δ̄ < Ts.
Then,

x(k + 1) = Ax(k) +Bv(k) +W (δk)Δv(k), (11)

where Δv(k) = v(k)− v(k − 1), and,

W (δ) = A−1
c (eAc(Ts−δ) − eAcTs)Bc. (12)

Proof 1 Consider v(tk) applied at tk + δk, where δk ∈
R[0,δ̄]. Based on (2) with a(t) = v(t) and (3),

x(tk+1) = eAcTsx(tk) +

∫ δk

0

eAc(Ts−τ)Bcv(tk−1)dτ

+

∫ Ts

δk

eAc(Ts−τ)Bcv(tk)dτ. (13)

By the definition of A, B, x(tk+1) = Ax(tk) +Bv(tk) +∫ δk
0

eAc(Ts−τ)Bcv(tk−1) −
∫ δk
0

eAc(Ts−τ)Bcv(tk)dτ , and

we obtain (11) with W (δ) = −
∫ δ

0 eAc(Ts−τ)Bcdτ . Thus,
(12) follows by integration, since Ac is Hurwitz, and
hence invertible.

By (11), a delay in the command channel modifies the
plant dynamics. Figure 2 shows the response of a second
order system controlled by a reference governor that en-
forces constraints but does not account for the delay. The
command is subject to a random delay δk ∈ [0, 0.99Ts],
and we set v(t) = v(t− 1) if no feasible solution to (10)
exists at time t. Figure 2 shows that the constraints are
violated because of the time delay.
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Fig. 2. Constraint violations on a system controlled by a
reference governor due to variable delay. Position (solid),
position reference (dash-dot), and constraints (dash).

Equation (13) is similar to that in [18], although there
the authors continue towards computing a difference in-
clusion, while here we obtain an equation for character-
izing the disturbance.
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For the relatively benign case when δk is known at tk ∈
R0+, for every k ∈ Z0+, the reference governor can be
modified to account for it.

Theorem 11 Consider (5a) where for all k ∈ Z+ the
command signal v(k) is subject to delay (2) with the cur-
rent value of the delay δk < Ts known for all k ∈ Z0+.
Consider the reference governor law,

v(k) = gδ(x(k), r(k), v(k − 1), δk), (14)

where gδ : Rn × R
m × R

m × R0+ → R
m is defined by,

gδ(x, r, v
−, δ) =

argmin
v∈Γ

‖r − v‖22 (15a)

s.t. (Ax+Bv +W (δ)Δv, v) ∈ O∞ (15b)

for Δv = v − v−, and W (δ) as in Lemma 10.

If at some h̄ ∈ Z0+, (x(h̄), v(h̄−1)) ∈ O∞, then for (11)
in closed loop with (14), y(k) ∈ C for all t ∈ Z[k,∞).

Proof 2 If (x(h̄), v(h̄− 1)) ∈ O∞, and since by (11) the
delay does not have an effect when Δv(k) = 0, v(h̄) =
v(h̄ − 1) is feasible for (15). Since δh̄ is known, v(h̄)
generated from (14) is such that (x(h̄+ 1), v(h̄)) ∈ O∞.
Since O∞ is PI, the reasoning can be repeated for all
k ∈ Z[h̄,∞). Thus, (x(k), v(k − 1)) ∈ O∞, and hence

y(k) ∈ C, for all k ∈ Z[h̄,∞).

By Definition 5, the delay does not affect O∞, but only
the computation of v in (15).

An immediate extension of Theorem 11 is for when the
delay takes one of a finite number of known possible val-
ues, but it is otherwise unknown. In this case (15b) can
be replicated for each possible delay value. Computa-
tionally, this approach becomes unwieldy if the number
of possible delay values is large.

To account for the case where {δk}
∞
k=0 is unknown and

can take arbitrary values, as in asynchronous NCSs, the
reference governor must be further modified.

3 Network Reference Governor for Short Delay

Next, we consider a network delay δk that is vari-
able and unknown. Since Theorem 11 does not apply,
(14), (15) must be modified to deal with the uncertainty
in the delay. First, we consider δk < Ts for all k ∈ Z0+,
i.e., the delay is shorter than the netRG update period,
and (2) can be used. For this case, we introduce the
following assumption.

Assumption 12 There exists δ̄ ∈ R[0,Ts) such that δk ∈
R[0,δ̄] for all k ∈ Z0+.

Under Assumption 12 phenomena such as command
overtaking, i.e., a later command being received earlier
than a previously sent command, do not occur. How-
ever, since the netRG commands a reference, Ts may
be long with respect to the system time constant, and
hence even under Assumption 12 the delay can cause
significant constraint violations, if ignored.

Remark 13 The case when the delay has a constant
component, i.e., δk ∈ R[δc,δc+δ̄], can be dealt with by inte-
grating the system forward for a time δc, and by consider-
ing a variable delay δk ∈ R[0,δ̄] acting from the predicted

state, see, e.g., [2].

From (11) we formulate the system model subject to
unknown command delay as,

x(k + 1)=Ax(k) +Bv(k) + d(k), (16a)

d(k) ∈ D(Δv(k)), (16b)

D(Δv) = {d ∈ R
n : d = W (δ)Δv, δ ∈ R[0,δ̄]}. (16c)

When δk is unknown, d(k) in (16) acts as a disturbance
bounded in the set D(Δv(k)). Hence, we modify (10) to
ensure constraint enforcement for any admissible delay,

gd(x, r, v
−) = min

v∈Γ
‖r − v‖22 (17a)

s.t. (Ax +Bv + d, v) ∈ O∞, (17b)

∀d ∈ D(Δv), (17c)

where Δv = v − v−. The control law (17) ensures that
for any admissible delay the state will stay in the max-
imum output admissible set, but it is not computation-
ally tractable due to (17c). The netRG is based on a
computationally efficient approximation of (17).

Lemma 14 Under Assumption 12, consider (11) and
the O∞ set for (5), and let,

W̄ = max
δ∈R[0,δ̄]

‖W (δ)‖∞. (18)

Let the netRG law gw : Rn × R
m × R

m be,

gw(x, r, v
−) = (19a)

argmin
v∈Γ

‖r − v‖22 (19b)

s.t. (Ax +Bv + W̄ηi‖Δv‖∞, v) ∈ O∞,

∀i ∈ Z[1,nη]. (19c)

Given x(k), r(k), v(k − 1), with (x(k), v(k − 1)) ∈ O∞,
v(k) = gw(x(k), r(k), v(k − 1)) is such that for any δk ∈
R[0,δ̄], (x(k + 1), v(k)) ∈ O∞.

Proof 3 (17b), (17c) can be reformulated as,

(Ax +Bv ⊕ D(Δv), v) ⊆ O∞. (20)
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Since by the norm properties W̄‖Δv‖∞ ≥ ‖W (δ)Δv‖∞
for all δ ∈ R[0,δ̄], it follows that D(Δv) ⊆ D̃(Δv) where,

D̃(Δv)� {d ∈ R
n : ‖d‖∞ ≤ W̄‖Δv‖∞}. (21)

According to (21), D̃(Δv) is a (convex) polytope. By the

definition of ∞-norm, D̃(Δv) = co({ηiW̄‖Δv‖∞}ni=1)

and by convexity of O∞ and D̃(Δv),

(Ax+Bv + ηiW̄‖Δv‖, v) ∈ O∞, ∀i ∈ Z[1,nη]

=⇒ (Ax+Bv + d, v) ∈ O∞, ∀d ∈ D̃(Δv). (22)

Since D(Δv) ⊂ D̃(Δv), (17b), (17c) are enforced and
(Ax + Bv + d, v) ∈ O∞ for all δ ∈ R[0,δ̄]. Finally, a

feasible reference v exists since v = v(k − 1) is such that
D(Δv) = {0} and (Ax(k) +Bv, v) ∈ O∞.

The netRG (19) enforces the constraints for the set of
possible next states, obtained as a nominal evolution
for δ = 0, plus a delay-induced uncertainty set. Also,
when replacing D(Δv) by D̃(Δv) in (17c), the recursive

feasibility of v = v− in (19) is maintained since D̃(0) =
D(0).

Remark 15 While making the optimization problem
computationally feasible, (19c) introduces some con-
servativeness due to the approximation of D(Δv).
Tighter approximations can be found, for instance
based on general polytopes [18]. For instance, for all

i ∈ Z[1,m], let hi ∈ Z+ and ω
(j)
i , j ∈ Z[1,hi] be such

that [W (δ)]i ⊆ co({ω
(j)
i }hi

j=1), for all δ ∈ R[0,δ̄]. Define

D̃i([Δv]i) = co({ω
(j)
i [Δv]i}

hi

j=1) = co({ω
(j)
i }hi

j=1)[Δv]i,

then D(Δv) ⊆
⊕m

i=1 D̃i([Δv]i). Thus, (17b), (17c) are

guaranteed by enforcing (Ax+Bv+
∑m

i=1 ω
(ji)
i [Δv]i, v) ∈

O∞ for all ji ∈ Z[1,hi], i ∈ Z[1,m]. �

The netRG (19) can be evaluated by solving a quadratic
program. Under Assumption 2, O∞ is defined by the
polytope (9), and substituting (9) into (19) and intro-
ducing the auxiliary variable ξ ∈ R0+,

(gw(x, r, v
−), ξ) = (23a)

arg min
v∈Γ,ξ

‖r − v‖22 (23b)

s.t. Hx(Ax+Bv + ηiW̄ ξ) +Hvv ≤ K, (23c)

ξ ≥ [v − v−]j , (23d)

ξ ≥ −[v − v−]j , (23e)

i ∈ Z[1,nη], j ∈ Z[1,m],

where at optimum ξ = Δv, and (23c) enforces (x(k +

1), v(k)) ∈ O∞ for the vertices of D̃(Δv), thus enforcing

(17b) for all d ∈ D̃(Δv) ⊃ D(Δv).

The following theorem summarizes the properties of the
network reference governor (19).

Theorem 16 Consider (5) under Assumption 2, and
let the command v(k) be subject to random delay satis-
fying Assumption 12. If at some h̄ ∈ Z0+, (x(h̄), v(h̄ −
1)) ∈ O∞, then for the closed loop of (5) with v(k) =
gw(x(k), r(k), v(k − 1)), it follows that y(k) ∈ C for all
k ∈ Z[h̄,∞). If r(k) = r for all k ∈ Z[h̄,∞), r ∈ Γ, then

there exists a finite k̄ ∈ Z0+ such that v(k̄) = r. �

Proof 4 If (x(h̄), v(h̄ − 1)) ∈ O∞, v(h̄) = v(h̄ − 1) is
feasible for (23), by Lemma 14.

Due to (19b) and since for each k ∈ Z[h̄,∞), v(k) = v(k−

1) is feasible, it follows that J∗(k) ≤ ‖r − v(k − 1)‖22 =
J∗(k−1), where J∗(k) denotes the optimal cost at step k.
Thus, the optimal cost is nonincreasing, and there exists
J∗ ≥ 0, such that J∗ = limk→∞ ‖r − v(k)‖22. Note that
v(k) is the projection of r on the set defined by (19c).
Using the properties of the norm projection on a closed
convex set, ‖v(k)− v(k − 1)‖22 ≤ ‖r− v(k − 1)‖22 − ‖r−
v(k)‖22, and thus limk→∞ ‖v(k)− v(k − 1)‖2 = 0.

Let x(k + 1) = Ax(k) + Bv(k) + W̄Δv(k) and xe(k) =
xe(v(k)) = Axe(k) + Bv(k), then x(k + 1) − xe(k) =
A(x(k)− xe(k)) + W̄ (v(k)− v(k− 1)). Since A is Schur
and limk→∞ ‖v(k) − v(k − 1)‖ = 0, it follows that
limk→∞ ‖x(k)− xe(k)‖ = 0.

To complete the proof we note that there exists σ > 0
such that for all v ∈ Γ, (xe(v) ⊕ B(σ), v) ∈ int(O∞).
Thus, (x(k), v) ∈ O∞ and x(k) → xe(k) as k → ∞ imply
that (x(k), v) ∈ int(O∞) for all k sufficiently large. By
the invariance of O∞, it follows that (Ax(k) + Bv, v) ∈
int(O∞) and there exists ρ > 0 such that (Ax(k) +
Bv, v)⊕ B(ρ) ∈ int(O∞), for all k sufficiently large.

Consider vfs(k) = v(k) + r−v(k)
‖r−v(k)‖2

γ. Clearly, for all k

sufficiently large, vfs(k) is feasible for (23) for some γ >
εv > 0, where εv is finite, yet possibly small. Also, if
‖r − v(k)‖ ≤ εv, v(k + 1) = r is feasible. Thus, for k
sufficiently large ‖r− vfs(k)‖ ≤ max{‖r− v(k)‖− εv, 0}.
Hence, for k sufficiently large, 0 ≤ ‖r − v(k + 1)‖2 ≤
‖r − vfs(k)‖2 ≤ max{‖r − v(k)‖ − εv, 0}. Thus, there
exists a finite k̄ ∈ Z0+ such that ‖r−v(k̄−1)‖ ≤ εv, and
hence, v(k̄) = r.

4 Network Reference Governor with Output
Feedback

In this section, we relax Assumption 3 into the following.

Assumption 17 Cm in (7) is such that rank(Cm) < n,
and the pair (Cm, A) is observable.
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Under Assumption 17, only output feedback is avail-
able, so the state needs to be estimated, and the estima-
tion error has to be accounted for in enforcing the con-
straints. For enforcing constraints through output feed-
back in systems subject to general additive disturbances,
set-membership observers have been proposed in [34,35].
Since by (11) the uncertainty is proportional to the com-
mand variation, here we use a standard observer and
compute a bound on the estimation error based on the
sequence of past commands. Consider the observer,

x̂(k+1) = Ax̂(k) +Bv(k) +L(ym(k)−Cmx̂(k)), (24)

where x̂(k) ∈ R
n is the state vector estimate, and L

is the observer gain. Let AL = A − LCm and ε(k) =
x(k)− x̂(k) be the observer error. Under Assumption 12,
the observer error dynamics are governed by,

ε(k + 1) = ALε(k) +W (δ)Δv(k), (25)

where Δv appears in the estimation error dynamics be-
cause the delay introduces uncertainty on when the in-
put is applied. In order to account for the estimation
error in (6) we enforce a constraint on ε(k).

Assumption 18 There exists a compact set E ⊂ R
n,

with 0 ∈ int(E) satisfying,

CE ⊂ C, (26a)

ALE ⊂ int(E). (26b)

By (26), if ε(k) ∈ E , then y(k) ∈ C at least for x̂(k) = 0.
Also, E is PI for (25) if Δv = 0. In fact, due to (26b) and
compactness of E , there exists λ ∈ R[0,1) such that

ALE ⊆ λE , (27)

i.e., E is λ-contractive for (25) when Δv = 0.

Lemma 19 Let c− ∈ R[0,1), ε ∈ c−E, (x̂, v−) ∈ (1 −
c−)O∞. Let c ∈ R[0,1), v ∈ R

m be such that

D(Δv) ⊆ (c− λc−)E , (28a)

(Ax̂+Bv + d, v) ∈ (1 − c)O∞, ∀d ∈ D(Δv). (28b)

If ε(k) = ε, x̂(k) = x̂, v(k − 1) = v−, and for all h ∈
Z[k+1,∞), v(h) = v, then y(h) ∈ C, for all h ∈ Z[k,∞).

Proof 5 Let O∞ be the maximum output admissible set
for (5), (6). Then [33, 36], (1 − c)O∞ is the maximum
output admissible set for (5) subject to y(k) ∈ (1 − c)C.
If E satisfies (26b), cE also satisfies (26b).

If x̂(k) ∈ (1 − c)O∞ and ε(k) ∈ cE for some c ∈ R[0,1),
then Cx̂(k) ∈ (1 − c)C and Cε(k) ∈ cCE ⊆ cC. Thus,
y(k) = C(x̂(k) + ε(k)) ∈ (1 − c)C ⊕ cC = C.

Since ε(k) ∈ c−E, by (25), (28a), ε(k + 1) ∈ c−ALE ⊕
D(Δv(k)) ⊆ λc−E ⊕ (c − λc−)E = cE. Since for all
h ∈ Z[k,∞), v(h) = v, then ε(h + 1) ∈ cALE ⊆ λcE ⊆
cE, for all h ∈ Z[k,∞). Thus, since for all h ∈ Z[k,∞),
(x̂(h), v) ∈ (1− c)O∞, we have y(h) = C(x̂(h)+ ε(h)) ∈
(1− c)C ⊕ cCE ⊆ (1− c)C ⊕ cC = C for all h ∈ Z[k,∞).

The output feedback netRG law is then defined by

(gε(x, v
−, c−), c̃) = (29a)

arg min
v∈Γ,c̃∈R[0,1)

‖r − v‖2 (29b)

s.t. (Ax+Bv + d, v) ∈ (1− c̃)O∞

∀d ∈ D(Δv) (29c)

D(Δv) ⊆ (c̃− λc−)E , (29d)

gcε(v, v
−, c−) = arg min

c∈R[0,1)

‖c‖2 (30a)

s.t. D(Δv) ⊆ (c− λc−)E . (30b)

Theorem 20 Consider (5) under Assumption 2, let the
command v(k) be subject to random delay satisfying As-
sumption 12, and let E satisfy Assumption 18. If at some
h̄ ∈ Z0+, ε(h̄) ∈ E and (x(h̄), v(h̄ − 1)) ∈ O∞, then for
the closed loop of (5) and c(k) = gcε(v(k), v(k− 1), c(k−
1)) with v(k) = gε(x(k), v(k−1), c(k−1)), it follows that
y(k) ∈ C for all k ∈ Z[h̄,∞). If r(k) = r for all k ∈ Z[h̄,∞),

r ∈ Γ, there exists a finite k̄ ∈ Z0+ such that v(k̄) = r.�

Proof 6 First, v(h̄) = v(h̄ − 1), c(h̄ + 1) = λc(h̄)
is a feasible solution of (29), (30), since O∞ is
PI, D(0) = {0}, and by Lemma 19. The reasoning
can be repeated for any k ∈ Z[h̄,∞). Thus, by using
the same procedure as in the proof of Theorem 16,
J∗(k) = ‖r − v(k)‖22 ≤ J∗(k − 1), and there exists
J∗ ≥ 0, J∗ = limk→∞ ‖r − v(k)‖22. This implies that
limk→∞ ‖v(k)−v(k−1)‖ = 0, limk→∞ ‖x(k)−xe(k)‖ =
0. Furthermore, if limk→∞ ‖v(k) − v(k − 1)‖ = 0,
limk→∞ ‖ε(k)‖ = 0, and by (30), limk→∞ c(k) = 0.

The rest of the proof can be completed as the proof of
Theorem 16, by defining Ek = c(k)E and noticing that for
any Ek compact and σ > 0, by (27) there exists a finite
h ∈ Z+, such that Ek+h ∈ B(σ).

5 Network Reference Governor for Long Delay

Next we develop the netRG for when Assumption 12
does not hold, so that the delay model (1) is considered.

When the network delay becomes large or possibly un-
bounded, command overtaking is possible. Thus, for a
command to be robust it needs to guarantee constraint
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satisfaction for every possible sequence of past com-
mands, which may lead to conservativeness or high com-
putational complexity [29]. In this paper, we avoid ex-
cessive conservativeness and complexity by two key el-
ements: (i) the netRG generates a robust command as-
suming that the delay is within a certain interval; (ii)
the receiver verifies the validity of such an assumption
on the received command, and discards the invalid com-
mands. Referring to the architecture in Figure 1, such a
verification logic is implemented at the plant.

We select α ∈ R(0,1) and define

δ̄ = αTs. (31)

Assumption 21 Let δk ∈ R0+, k ∈ Z0+, δk are i.i.d. 1

with probability density function, φ(δ) : R0+ → R0+ such

that
∫ αTs

0 φ(δ)dδ = q, for q ∈ R(0,1).

Lemma 22 Under Assumption 21 for any finite � ∈ Z+,
limk→∞ P[∃h ∈ Z[0,k] : δh+i ≤ αTs, ∀i ∈ Z[0,�−1]] = 1.

Proof 7 Consider an arbitrary choice for � ∈ Z+. The
probability of observing � consecutive delays of duration
less than αTs from the sequence {δk}k, can be modeled
as a Markov chain with states {sj}

�
j=1. Each state repre-

sents how many delays shorter than αTs occurred since
the last delay longer than αTs. The transition probabil-
ities are P[sj |sj−1] = q, j ∈ Z[1,�], P[s0|sj−1] = 1 − q,
j ∈ Z[1,�]. Finally, P[s�|s�] = 1 and P[sj |s�] = 0, for all
j �= �. Such Markov chain is absorbing [37], with absorb-
ing state s�, which is reachable from every sj, j ∈ Z[1,�].
Thus, for any finite � ∈ Z+, limk→∞ P[s(k) = s�] = 1.

Thus, by Lemma 22 for anyα ∈ R[0,1) a finite sequence of
arbitrary length of delays shorter than αTs will eventu-
ally occur with probability 1. The properties of absorb-
ing Markov chains [37] ensure that the average number
of steps to observe such a sequence, i.e., E[k ∈ Z(�,∞) :

δk−� > δ̄, δk−i ≤ δ̄, i ∈ Z[0,�−1]], and the related
variance are finite, and can be computed for any finite
� ∈ Z+.

The control and actuation strategy for the netRG that
handles longer-than-sampling delays is reported in Al-
gorithm 1. At any k ∈ Z0+, the plant sends to the netRG
the state x(tk) and the command being applied v−(tk).
For the current reference r(k), the netRG uses (19) to
compute v(k), where W̄ is obtained from (18) using δ̄
in (31). Then, v(k) and rv(k) = r(k) are sent to the plant.

Since, v(k) guarantees constraint satisfaction only if
δk ≤ αTs, it needs to be verified at the plant to ensure

1 Non i.i.d. delays can be handled similarly, when a property
as the one in Lemma 22 can be established.

that no constraint violation actually occurs. Such verifi-
cation is based on O∞, which is stored at the plant, to-
gether with the actuated command at the current time
t, v(t) = vact, and a buffer vbfr with all the commands
that have been applied during [tk, t), t ≤ tk+1.

For a command v received at time t ∈ R[tk,tk+1) together
with the corresponding reference rv, the verification logic
computes Δv = maxi ‖v− [vbfr]i‖∞, where [vbfr]i is the
ith command currently stored in the buffer. The com-
mand v is actuated if and only if,

‖rv − v‖22 < ‖rv − vact‖
2
2, (32a)

((Ax(k) +Bv)⊕DTs(Δv), v) ⊆ O∞, (32b)

where DTs(Δv) = {d ∈ R
n : ∃δ ∈ R[0,Ts], d =

W (δ)Δv}. While (32a) enforces the reduction of the
reference tracking error, (32b) enforces that constraints
will not be violated. Indeed, the proposed approach
requires (32) to be evaluated at the plant. However,
(32) only evaluates the inequalities for a given com-
mand, while (23) has to select a command that satisfies
the inequalities and minimizes the cost function. Hence,
the computations performed at the plant are still signif-
icantly less than those in the remote controller.

Algorithm 1 netRG for long delays

1: Initialization: Select: Ts, α. Compute: δ̄, W̄ .
2: function NetRG

3: loop
4: ReceiveFromOperator: r = r(k)
5: ReceiveFrom Plant: x = x(tk), v

− = v(t−k )
6: Compute: (19)
7: SendTo Plant: v = gw(x, r, v

−), rv = r
8: end loop
9: end function

10: function Verification Logic

11: loop
12: while t ∈ R[tk,tk+1) do
13: ReceiveFrom NetRG: v, rv
14: Compute: Δv
15: if (‖rv − v‖22 < ‖rv − vact‖

2
2),

16: ((Ax +Bv)⊕DTs(Δv), v) ⊆ O∞ then
17: Apply: vact = v
18: Append: v to vbfr

19: end if
20: end while
21: Store: x = x(tk+1), vbfr = v(t−k+1) = vact
22: SendTo NetRG: x, v− = vact
23: end loop
24: end function

Remark 23 The reference rv is sent together with the
command v so that the commands that do not improve
tracking, for instance because of packet overtaking, are
discarded. This cannot correct for the case where the re-
ceived command is coupled with an older reference, i.e.,
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rv has changed in the meantime. In this case it is still pos-
sible to see a tracking performance degradation, because
the command may move towards an older value of the
reference. However, constraint satisfaction is still guar-
anteed, and assuming that the references are piecewise-
constant with long periods, which is common in reference
governor applications, the performance will self-correct
rapidly since all newly generated commands will be re-
ceived together with the newer value of rv.

Theorem 24 Consider (5) under Assumption 2, let the
command be subject to a random delay satisfying As-
sumption 21. If at some t̄ ∈ R[th̄−1,th̄)

, v(t̄) is applied to

the plant such that (x(th̄), v(t̄)) ∈ O∞, then the closed
system obtained by (3) controlled by Algorithm 1 is such
that y(k) ∈ C for all k ∈ Z[t̄/Ts,∞). If r(k) = r for all

k ∈ Z[h̄,∞), r ∈ Γ, limk→∞ P[‖v(k)− r‖22 = 0] = 1.

Proof 8 If (x(th̄), v(t̄)) ∈ O∞, y(k̃) ∈ C for k̃ ∈ Z0+,

k̃ = mink≥t̄/Ts
k. Furthermore due to (19), if v(t) = v(t̄)

for all t ≥ t̄, y(k) ∈ C for all k ∈ Z[k̃+1,∞). Any future

command that is actuated satisfies (32), and it has the
same property. Hence, y(k) ∈ C, for any k such that
kTs > t̄.

By Theorem 16, if δk ∈ R[0,δ̄], for all k ∈ Z0+,

for any (x0, v
−
0 ) ∈ O∞, r ∈ Γ there exists a finite

k̄(x0, v
−
0 , r) ∈ Z+ such that v(k̄(x0, v

−
0 , r0)) = r. Un-

der Assumption 2, O∞ is bounded. Hence, there exists
¯̄k = 1+maxr∈Γ,(x,v)∈O∞

k̄(x, v,r) such that if δk ∈ R[0,δ̄]

for all k ∈ R[0,¯̄k], v(
¯̄k) = r for all (x(0), v−(0)) ∈ O∞,

v−(0), r ∈ Γ. Hence, given k0 ∈ Z+, such that for
x(k0) there exists v, for which (x(k0), v) ∈ O∞, and

{δk0+i}
h
i=0, h ≥ ¯̄k + 1, such that δk0+i ≤ δ̄, i ∈ Z[0,h],

then v(k0 + h) = r. Due to (32), if v(k0 +
¯̄k) = r, for all

k ≥ k0 +
¯̄k, v(k) = v(k0 +

¯̄k). Furthermore, due to (11),
if Δv(k) = 0, x(k + 1) is independent of δk, and hence,

δk0+i, i ≥
¯̄k, does not affect the dynamics.

Due to Lemma 22 for any h ∈ Z[0,∞), limk→∞ P[∃k0 ∈
Z[0,k] : δk0+i ≤ αTs, ∀i ∈ Z[0,h̄]] = 1. Thus,

limk→∞ P[‖v(k)− r‖22 = 0] = 1.

The properties of absorbing Markov chains [37] also
guarantee that the average number of steps k̄ such that
v(k̄) = r is finite, and so is the variance.

6 Application to Orientation Control of a
Spacecraft with a Flexible Appendage

Often, spacecraft are equipped with an appendage made
of lightweight materials, such as a solar panel, a robotic
arm, an instrument, an antenna, or a telescope. When
the spacecraft is re-oriented, the appendage may bend

x1

x2

u

κ

J

m

l

Fig. 3. Model of the spacecraft with flexible appendage.

and oscillate, which can degrade sensitive equipment on
the appendage or even cause structural damage if not
properly controlled.We consider an agile spacecraft with
a flexible appendage that has to be re-oriented with a
rotational maneuver about a specified axis.

As shown in Figure 3, the spacecraft with flexible ap-
pendage can be modeled as two bodies, the spacecraft
bus and the appendage, connected by a flexible shaft.
When the shaft bends, the appendage is subject to an
elastic force, modeled as if obtained by a spring acting on
the displacement from the straight shaft position. The
dynamics are described by,

(J +ml2)ẍ1 +mlẍ2 = u, (33a)

mẍ2 + κx2 +mlẍ1 = 0, (33b)

where x1[rad] denotes the orientation angle of the space-
craft bus, x2[m] denotes the linear deflection of the flex-
ible appendage at its tip, and the model parameters are
m = 1kg, J = 50kgm2, κ = 0.1[N/m], l = 40[m]. In
order to avoid structural damage, the deflection of the
flexible appendage must satisfy,

−0.2 ≤ x2 ≤ 0.2, (34)

and the control torque is limited by,

−0.8 ≤ u ≤ 0.8. (35)

For a command v, the plant co-located controller pro-
duces the torque u[Nm] given by the unconstrained lin-
ear quadratic regulator,

u = −FLQx+GLQv, (36)

designed to have unitary steady state gain from v to
x1. Figure 4 shows that for a desired spacecraft angle
r, without a governor, i.e., v = r, the constraints are
significantly violated.
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Fig. 4. Change in orientation without reference governor.
Top: appendage deflection, x2. Bottom: torque, u. Con-
straints: red dash lines.

Considering the cases when the re-orientation maneuver
is executed by remotely controlling the spacecraft, we
design a netRG that receives r and generates v for (36) to
enforce constraints (34), (35). We obtain a discrete-time
model (5a) of (33) in closed loop with (36) for Ts = 1s.
The constrained outputs (5b) and the constraints (6)
are obtained from (33), (34), and (35) for a sampling
period of Tc = Ts/4 = 0.25s. Constraints upsampling
helps limiting intersampling violations, see Remark 9.
Although the constraints are enforced every 0.25s, the
update period of the reference governor is still 1.0s.

We first consider the case where the delay in the com-
mand channel is shorter than the sampling period, i.e.,
δ(t) ∈ [0, 0.995]s for all t ≥ 0, and it is random, i.i.d,
and uniformly distributed. The netRG is designed as
described in Section 3. The results are shown in Fig-
ures 5–7. Figure 5 shows that unlike the conventional
reference governor, whose variables are denoted by the
superscript (rg), the netRG enforces the constraints de-
spite the time-varying delay. The orientation changema-
neuver of the netRG is only slightly slowed down with
respect to the conventional reference governor, for avoid-
ing constraint violations due to the delay.
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Fig. 5. Change in orientation with short communication de-
lay. Reference, r (dot), and virtual reference, v, for conven-
tional reference governor (dash) and netRG (solid).
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Fig. 6. Change in orientation with conventional reference
governor (dash) and netRG (solid) with of short communi-
cation delay. Top: spacecraft bus orientation, x1, reference, r
(dash dot). Bottom: appendage deflection, x2. Constraints:
red dash lines.
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Fig. 7. Change in orientation with conventional reference
governor (dash) and netRG (solid) with of short communi-
cation delay. Torque, u. Constraints: red dash lines.

Next, we consider the case where full state information
is not available and an observer is used with the netRG,
as described in Section 4. The only available measure-
ment is the bus orientation, x1, and the observer gain L
is chosen so that E in Assumption 18 is λ-contractive,
with λ = 0.51 in (27). At the initial time, the system is
at rest, the actual estimation error is ε(0) = 0, and the
estimator parameter c is initialized by c(0) = 0.1, so that
ε(0) ∈ c(0)E . The simulation results are shown in Fig-
ures 8, 9. Constraints are enforced although the action
of the reference governor is more conservative to prevent
constraint violations due to the estimation error.

Last, we demonstrate the case where the delay is longer
than the sampling period, and specifically δ(t) ∈ [0, 10]s,
for all t ∈ R0+. The netRG is implemented as described
in Section 5, with α = 0.995, and full state measure-
ment is assumed. The results are shown in Figures 10-11,
where the constraints are enforced despite a delay up to
10 times the update period of the netRG. The system
response is slower and more conservative than the short
delay case, due to the effects of the longer delay, however
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Fig. 8. Change in orientation with output feedback netRG
with short communication delay. Top: Reference, r (dot),
virtual reference, v (dash), and bus orientation, x1 (solid).
Bottom: estimation error bounding parameter, c.
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Fig. 9. Change in orientation with output feedback netRG
with short communication delay. Top: appendage deflection
x2. Bottom: torque input u. Constraints: red dash lines.

the command v still converges to r in finite time.

7 Conclusions and Future Research

We developed a reference governor for systems subject
to variable time-delay, such as in network control sys-
tems with asynchronous communication. By modeling
the delay effect as an additive disturbance with size pro-
portional to the input rate of change, we have introduced
a network reference governor that robustly enforces con-
straints and for which finite-time convergence is guaran-
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Fig. 10. Change in orientation with netRG with long commu-
nication delay. Reference, r (dot), virtual reference, v (dash),
and bus orientation, x1 (solid).
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Fig. 11. Change in orientation with netRG with long com-
munication delay. Top: appendage deflection, x2. Bottom:
torque, u. Constraints shown by red dash lines.

teed when the delay is shorter than the sampling period.
We extended the method to the cases of output feed-
back and arbitrarily long, and possibly unbounded, de-
lay. The netRG has been demonstrated on a case study
of a remotely controlled re-orientation of a spacecraft
with a flexible appendage for different types of delays in-
duced by the communication network. Future research
will focus on including delay in the measurement chan-
nel following the ideas in [1, III.A], which exploit some
degree of equivalence between delays in the command
and measurement channels.
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