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Abstract
The most efficient signal edge-preserving smoothing filters, e.g., for denoising, are non-linear.
Thus, their acceleration is challenging and is often performed in practice by tuning filter
parameters, such as by increasing the width of the local smoothing neighborhood, resulting
in more aggressive smoothing of a single sweep at the cost of increased edge blurring. We
propose an alternative technology, accelerating the original filters without tuning, by running
them through a special conjugate gradient method, not affecting their quality. The filter
nonlinearity is dealt with by careful freezing and restarting. Our initial numerical experiments
on toy one-dimensional signals demonstrate 20x acceleration of the classical bilateral filter
and 3-5x acceleration of the recently developed guided filter.
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Abstract—The most efficient signal edge-preserving smoothing
filters, e.g., for denoising, are non-linear. Thus, their acceleration
is challenging and is often performed in practice by tuning
filter parameters, such as by increasing the width of the local
smoothing neighborhood, resulting in more aggressive smoothing
of a single sweep at the cost of increased edge blurring. We
propose an alternative technology, accelerating the original filters
without tuning, by running them through a special conjugate
gradient method, not affecting their quality. The filter non-
linearity is dealt with by careful freezing and restarting. Our
initial numerical experiments on toy one-dimensional signals
demonstrate 20x acceleration of the classical bilateral filter and
3-5x acceleration of the recently developed guided filter.

Index Terms—conjugate gradient algorithm, edge-preserving
denoising, low-pass filters

I. INTRODUCTION

This paper1 is concerned with noise removal from a given
noisy signal, which is a basic problem in signal processing,
with many applications, e.g., in image denoising [6]. Modern
denoising algorithms preserve signal details while removing
most of the noise. A very popular denoising filter is the
bilateral filter (BF), which smooths signals while preserving
edges, by taking the weighted average of the nearby pixels.
The weights depend on both the spatial distance between the
sampling locations and similarity between signal values, thus
providing local adaptivity to the input signal. Bilateral filtering
has initially been proposed in [12] as an intuitive tool without
theoretical justification. Since then, connections between BF
and other well-known filtering techniques such as anisotropic
diffusion, weighted least squares, Bayesian methods, kernel
regression and non-local means have been explored; see, e.g.,
survey [13].

We make use of the graph-based framework for signal
analysis developed in [5], [7], where polynomial low-pass
filters based on the BF coefficients are proposed. A nice
introduction to signal processing on graphs is found in [2].

A single application of BF can be interpreted as a vertex
domain transform on a graph with pixels as vertices, intensity
values of each node as the graph signal, and filter coefficients
as link weights that capture the similarity between nodes. The
BF transform is a special nonlinear anisotropic diffusion, cf.
[9], [10], determined by the entries of the graph Laplacian

1A preliminary version is posted at arXiv.org

matrix, which are related to the BF weights. The eigenvectors
and eigenvalues of the graph Laplacian matrix allow us to
extend the Fourier analysis to the graph signals or images as
in [2] and perform frequency selective filtering operations on
graphs, similar to those in traditional signal processing.

Another very interesting smoothing filter is the guided filter
(GF), recently proposed in [11], [3], and included into the
MATLAB image processing toolbox. Some ideas behind GF
are developed in [4]. According to our limited experience, GF
is faster than BF. The authors of [11] advocate that GF is
gradient preserving and avoids gradient reversal artifacts in
contrast to BF, which is not gradient preserving.

The smoothing explicit filters similar to BF and GF can be
interpreted as matrix power iterations, which are, in general
case, nonlinear, or equivalently, as explicit integration in time
of the corresponding nonlinear anisotropic diffusion equation
[9], [10]. The suitable graph Laplacian matrices are determined
by means of the graph-based interpretation of these power
iterations. Our main contribution is accelerating the smoothing
filters by means of a special variant of the conjugate gradient
(CG) method, applied to the corresponding graph Laplacian
matrices. To avoid oversmoothing, only few iterations of the
CG acceleration can be performed. We note that there exist
several nonlinear variants of the CG algorithm, see, e.g., [8].
However, the developed theory is not directly applicable in our
case because it is not clear how to interpret the vector L(x)x
as a gradient of a scalar function of the signal x, where L(x)
is a graph Laplacian matrix depending on a signal x.

II. BILATERAL FILTER (BF)
We consider discrete signals defined on an undirected graph

G = (V, E), where the vertices V = {1, 2, . . . , N} denote, e.g.,
time instances of a discrete-time signal or pixels of an image.
The set of edges E = {(i, j)} contains only those pairs of
vertices i and j that are neighbors in some predefined sense.
We suppose in addition that a spatial position pi is assigned
to each vertex i ∈ V so that a distance ‖pi−pj‖ is determined
between vertices i and j.

Let x[j], j ∈ V , be a discrete function, which is an input
signal to the bilateral filter. The output signal y[i] is the
weighted average of the signal values in x[j]:

y[i] =
∑
j

wij∑
j wij

x[j]. (1)



The weights wij are defined for (i, j) ∈ E in terms of a
guidance signal g[i]:

wij = exp
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)
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where σd and σr are the filter parameters [12]. The guidance
signal g[i] is chosen depending on the purpose of filtering.
When g coincides with the input x, the bilateral filter is
nonlinear and called self-guided.

The weights wij determine the adjacency matrix W of
the graph G. The matrix W is symmetric, has nonnega-
tive elements and diagonal elements equal to 1. Let D be
the diagonal matrix with the nonnegative diagonal entries
di =

∑
j wij . Thus, the BF operation (1) is the vector

transform defined by the aid of the matrices W (g) and D(g)
as y = D−1Wx = x−D−1Lx, where L = D −W is called
the Laplacian matrix of the weighted graph G with the BF
weights. The eigenvalues of the matrix D−1W are real. The
eigenvalues corresponding to the highest oscillations lie near
the origin.

The BF transform y = D−1Wx can be applied iteratively,
(i) by changing the weights wij at each iteration using the
result of the previous iteration as a guidance signal g, or (ii)
by using the fixed weights, calculated from the initial signal
as a guidance signal, for all iterations. The former alternative
results in a nonlinear filter. The latter produces a linear filter,
which may be faster, since the BF weights are computed only
once in the very beginning.

An iterative application of the BF matrix transform is the
power iteration with the amplification matrix D−1W . Slow
convergence of the power iteration can be boosted by the aid
of suitable Krylov subspace iterative methods [1], [14].

III. GUIDED FILTER (GF)

Algorithm 1 Guided Filter (GF)

Input: x, g, ρ, ε
Output: y
meang = fmean(g, ρ)
meanx = fmean(x, ρ)
corrg = fmean(g. ∗ g, ρ)
corrgx = fmean(g. ∗ x, ρ)
varg = corrg −meang. ∗meang
covgx = corrgx −meang. ∗meanx
a = covgx./(varg + ε)
b = meanx − a. ∗meang
meana = fmean(a, ρ)
meanb = fmean(b, ρ)
y = meana. ∗ g +meanb

Algorithm 1 is a pseudo-code of GF proposed in [11], where
x and y are, respectively, the input and output signals on the
graph G, described in section II. GF is built by means of a
guidance signal g, which equals x in the self-guided case.
The function fmean(·, ρ) denotes a mean filter of a spatial
radius ρ. The constant ε determines the smoothness degree
of the filter—the larger ε the larger smoothing effect. The

dot preceded operations .∗ and ./ denote the componentwise
multiplication and division. A typical arithmetical complexity
of the GF algorithm is O(N), where N is the number of
elements in x, see [11].

The guided filter operation of Algorithm 1 is the matrix
transform y = W (g)x, where the implicitly constructed
transform matrix W (g) has the following entries, see [11]:

Wij(g) =
1

|ω|2
∑

k:(i,j)∈ωk

(
1 +

(gi − µk)(gj − µk)

σ2
k + ε

)
. (3)

The mean filter fmean(·, ρ) is applied in the neighborhoods ωk

of a spatial radius ρ around all vertices k ∈ V . The number of
pixels in ωk is denoted by |ω|, the same for all k. The values
µk and σ2

k are the mean and variance of g over ωk. The matrix
W is symmetric and satisfies the property

∑
j Wij = 1.

The standard construction of the graph Laplacian matrix
gives L = I − W , because di =

∑
j wij = 1, i.e. the

matrix D is the identity. The eigenvalues of L(g) are real
nonnegative with the low frequencies accumulated near 0 and
high frequencies near 1. Application of a single transform
y = Wx attenuates the high frequency modes of x while
approximately preserving the low frequency modes, cf. [7],
[5]. Similar to the BF filter, the guided filter can be applied
iteratively. When the guidance signal g is fixed, the iterated
GF filter is linear. When g varies, for example, g = x for the
self-guided case, the iterated GF filter is nonlinear.

IV. CONJUGATE GRADIENT ACCELERATION

Since the graph Laplacian matrix L is symmetric and
nonnegative definite, the iterative application of the transform
y = D−1Wx can be accelerated by adopting by the CG
technology. We use two variants of CG: 1) with the fixed
guidance equal to the input signal or to the clean signal, 2)
with the varying guidance equal to the current value of x.

Algorithm 2 Truncated PCG(kmax)

Input: x0, g, kmax Output: x
x = x0; r =W (g)x−D(g)x
for k = 1, . . . , kmax − 1 do
s = D−1(g)r; γ = sT r
if k = 1 then p = s else β = γ/γold; p = s+ βp
endif
q = D(g)p−W (g)p; α = γ/(pT q)
x = x+ αp; r = r − αq; γold = γ

endfor
Algorithm 2 is the standard preconditioned conjugate gra-

dient algorithm formally applied to the system of linear
equations Lx = 0 and truncated after kmax evaluations of the
matrix-vector operation Lx. The initial vector x0 is a noisy
input signal. This variant of the CG algorithm has first been
suggested in [5].

Algorithm 3 is a special nonlinear preconditioned CG with
lmax restarts, formally applied to L(x)x = 0 and truncated
after kmax iterations between restarts. Restarts are necessary
because of nonlinearity of the self-guided filtering.



Algorithm 3 Truncated PCG(kmax) with lmax restarts

Input: x0, kmax, lmax Output: x
x = x0
for l = 1, . . . , lmax do
r =W (x)x−D(x)x
for k = 1, . . . , kmax − 1 do
s = D−1(x)r; γ = sT r
if k = 1 then p = s else β = γ/γold; p = s+ βp
endif
q = D(x)p−W (x)p; α = γ/(pT q)
x = x+ αp; r = r − αq; γold = γ

endfor
endfor

V. NUMERICAL EXPERIMENTS

As a proof of concept, our MATLAB tests use the clean
1-dimensional signal xc of length N = 4730 shown in Fig-
ure 1. We choose this rather difficult, although 1-dimensional,
example to better visually illustrate both the denoising and
edge-preserving features of the filters. The noisy signal, also
displayed in Figure 1, is the same for all tests and given by
the formula x0 = xc + η, where a Gaussian white noise η
has zero mean and variance σ2 = 0.01. The bilateral filter is
used with σd = 0.5 and σr = 0.1. The neighborhood width
in BF equals 5 so that the band of W consists of 5 diagonals.
The guided filter is used with ε = 0.001 and the neighborhood
width 3. The matrix W of GF also has 5 diagonals.

The CG accelerated BF/GF is called CG-BF/CG-GF. Typi-
cal numerical results of the average performance are displayed.

The signal error after denoising is x̂ − x0, where x̂ stands
for the output denoised signal. We calculate the peak signal-to-
noise ratio (PSNR) and signal-to-noise ration (SNR). The pa-
rameters are manually optimized to reach the best possible
match of the signal errors in the compared filters, resulting in
indistinguishable error curves in our figures.

The results in Figures 2 and 3 are obtained by the iterated
BF and GF filters with the fixed guidance g = xc and by
CG-BF and CG-GF implemented in Algorithm 2 with the
same fixed guidance g = xc. These tests are performed only
for comparison reasons because the clean signal guidance xc
seems to be ideal for the best possible denoising results.

We say that Algorithm 3 uses lmax × kmax iterations, if
it executes lmax restarts with the kmax evaluations L(x)x
between restarts. The best denoising performance for our test
problem is achieved with the following iteration combinations
of the self-guided CG-BF: 31×3, 17×4, 12×5, 9×6, 7×7,
6 × 8, 5 × 9, 4 × 10, 3 × 11, 2 × 19. The best combinations
for the self-guided CG-GF are 11 × 3, 7 × 4, 5 × 5, 4 × 6,
3× 7. Figures 4 and 5 show the results after 3× 11 iterations
of CG-BF and 5× 5 iterations of CG-GF.

The numerical tests demonstrate about 20-times reduction
of iterations for the self-guided bilateral filter and 3-times
reduction of iterations for the guided filter with self-guidance
after the conjugate gradient acceleration. It is also interesting
to observe that both filters with the properly chosen parameters
and iteration numbers produce almost identical output signals.
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Fig. 1. Clean and noisy signals.
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Fig. 2. 500 BF iterations versus 20 CG-BF iterations with the guidance xc.
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Fig. 3. 90 GF iterations versus 13 CG-GF iterations with the guidance xc.

VI. CONCLUSION

Iterative application of BF and GF, including their non-
linear self-guided variants, can be drastically accelerated by
using CG technology. Our future work concerns developing
automated procedures for choosing the optimal number of CG
iterations and investigating CG acceleration for 2D signals.
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Fig. 4. 600 iterations of the self-guided BF versus 3× 11 iterations of CG-BF.
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Fig. 5. 75 iterations of the self-guided GF versus 5× 5 iterations of CG-GF.
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