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Abstract
In [doi:10.1109/ICMEW.2014.6890711], a graphbased denoising is performed by projecting
the noisy image to a lower dimensional Krylov subspace of the graph Laplacian, constructed
using non-negative weights determined by distances between image data corresponding to
image pixels. We extend the construction of the graph Laplacian to the case, where some
graph weights can be negative. Removing the positivity constraint provides a more accurate
inference of a graph model behind the data, and thus can improve quality of filters for
graphbased signal processing, e.g., denoising, compared to the standard construction, without
affecting the computational costs.
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Abstract—In [doi:10.1109/ICMEW.2014.6890711], a graph-
based denoising is performed by projecting the noisy image to
a lower dimensional Krylov subspace of the graph Laplacian,
constructed using non-negative weights determined by distances
between image data corresponding to image pixels. We extend
the construction of the graph Laplacian to the case, where some
graph weights can be negative. Removing the positivity constraint
provides a more accurate inference of a graph model behind
the data, and thus can improve quality of filters for graph-
based signal processing, e.g., denoising, compared to the standard
construction, without affecting the computational costs.

I. INTRODUCTION

Constructing efficient signal filters is a fundamental problem
in signal processing with a vast literature; see, e.g., recent
papers [1], [2], [3], [4], [5], [6] and references there. A filter
can be described by a transformation F , often non-linear, of
an input signal, represented by a vector x, into a filtered
signal, represented by a vector F (x). We revisit some classical
constructions of filters aimed at signal noise reduction, with
the emphasis on bilateral filter, popular in image denoising
[7], [8], [9], [10]. Reducing a high oscillatory additive noise,
the goal of the filter is, on the one hand, signal smoothing.
The smoothing can be achieved by averaging, which can
be typically interpreted as a low-pass filter, minimizing the
contribution in the filtered signal of highly oscillatory modes,
treated as eigevectors of a graph Laplacian; see, e.g., [11].

On the other hand, it is desirable to preserve edges in the
ideal noise-free signal, even at the costs of an increased PSNR,
especially in imaging. Edge-conscious filters detect, often
implicitly, the locations of the edges and attempt using less
aggressive or anisotropic averaging at these locations. Fully
automatic edge detection in a noisy signal is difficult, typically
resulting in non-linear filters, i.e. where the filtered vector
F (x) depends non-linearly on the input vector x. However,
it can be assisted by a guiding signal, having the edges in the
same locations as in the ideal signal; see, e.g., [3], [12], [13].

Graph signal processing, introducing eigenvectors of the
graph Laplacian as natural extensions of the Fourier bases,
sheds new light at image processing; see, e.g., [14], [15],
[16], [17]. In [18], graph-based filtering of noisy images is
performed by directly computing a projection of the image to
be filtered onto a lower dimensional Krylov subspace of the
normalized graph Laplacian, constructed using non-negative
graph weights determined by distances between image data
corresponding to image pixels. We extend the construction of
the graph Laplacian to the case, where some weights can be
negative, radically departing from the traditional assumption.

II. PRELIMINARIES

Let us for simplicity first assume that the guiding signal,
denoted by y, is available and can be used to reliably detect
the locations of the edges and, most importantly, to determine
the edge-conscious linear transformation (matrix) Fy such that
the action of the filter F (x) is given by the following matrix-
vector product Fyx = F (x). Having a specific construction of
the guided filter matrix Fy as a function of y, one can define a
self-guided non-linear filter, e.g., as Fxx, which can be applied
iteratively, starting with the input signal vector x0 as follows,
xi+1 = F (xi), i = 0, 1, . . . ,m; cf., e.g., [19].

Similarly, an iterative application of the linear guided filter
can be used, mathematically equivalent to applying the powers
of the square matrix Fy , i.e. xm = (Fy)

m
x0, thus naturally

called the power method, which is an iterative form of kernel
PCA; see, e.g.,[20], [21]. To avoid a re-normalization of the
filtered signal, it is convenient to construct the matrix Fy in
the form Fy = D−1

y Wy , where entries of the square matrix
Wy are called weighs. The matrix Dy is diagonal, made of
row-sums of the matrix Wy , which are assumed to be non-
zero. Thus, D−1

y Wy multiplied by a column-vector of ones,
gives again the column-vector of ones.

Let us further assume that the matrix Wy is symmetric and
that all the entries (weighs) in Wy are non-negative. For the
purpose of the signal denoising, the following observations
are the most important. The right eigenvector v1 of the matrix
D−1

y Wy with the eigenvalue µ1 = 1 is trivial, just made of
ones, only affecting the signal offset. Since the iterative matrix
Fy = D−1

y Wy is diagonalizable, the power method gives

xm = (Fy)
m
x0 = Σj µ

m
j

(
vTj Dx0

)
vj , (1)

where 1 = |µ1| ≥ |µ2| ≥ . . . are the eigenvalues of the
matrix D−1

y Wy corresponding to the eigenvectors vj scaled
such that vTi Dvj = δij . The power method, according to (1),
suppresses contributions of the eigenvectors corresponding to
the smallest eigenvalues. Thus, the matrix Wy needs to be
constructed in such a way that these eigenvectors represent
the noisy part of the input signal, while the other eigenvectors
are edge-conscious; cf. anisotropic diffusion [22], [23], [24].

Let us introduce the guiding Laplacian Ly = Dy − Wy

and normalized Laplacian D−1
y Ly = I − D−1

y Wy matrices.
In [18], the power method (1) is replaced with a projection of
the image vector x to be denoised onto a lower dimensional
Krylov subspace of the guiding normalized graph Laplacian
D−1

y Ly and implemented, e.g., using the Conjugate Gradient
(CG) method; see, e.g., [25], [26], [27].



Fig. 1. Discrete cosine transform low frequency modes.

III. MOTIVATION

Taking aside algorithmic issues and related computational
costs, the ultimate quality of denoising is first of all determined
by the choice of the weights. One of the most popular edge-
preserving denoising filters is the bilateral filter (BF), see,
e.g., [28], [29] and references there, which takes the weighted
average of the nearby pixels. The weights wij may depend on
spatial distances and signal data similarity, e.g.,

wij = exp

(
−‖pi − pj‖

2

2σ2
d

)
exp

(
−‖y[i]− y[j]‖2

2σ2
r

)
, (2)

where pi denotes the position of the pixel i, the value y[i]
is the signal intensity, and σd and σr are filter parameters.
To simplify the presentation and our arguments, we further
assume that the signal is scalar on a one-dimensional uniform
grid, setting without loss of generality the first multiplier in
(2) to be 1, and that the weights wij are computed only for
the nearest neighbors and set to zero otherwise.

Let us start with a constant signal, where y[i] − y[j] = 0.
Then, wi−1 i = wi i = wi i+1 = 1 and the graph Laplacian
Ly = Dy−Wy is a tridiagonal matrix that has nonzero entries
1 and −1 in the first row, −1 and 1 in the last row, and
[−1 2 − 1] in every other row. This graph Laplacian Ly is a
standard three-point-stencil finite-difference approximation of
the negative second derivative of functions with homogeneous
Neumann boundary conditions, i.e., vanishing first derivatives
at the end points of the interval. Its eigenvectors are the basis
vectors of the discrete cosine transform; see the first five low
frequency eigenmodes (the eigenvectors corresponding to the
smallest eigenvalues) of Ly in Figure 1. As can be seen in
Figure 1, all smooth low frequency eigenmodes turn flat at
the end points of the interval, due to the Neumann conditions.

The key observation is that the Laplacian row sums in
the first and last rows vanish for any signal, according to
the standard construction of the graph Laplacian, no matter
what formulas for the weights are being used! Thus, any low

Fig. 2. Edge-preserving low frequency eigenmodes.

pass filter based on low frequency eigenmodes of the graph
Laplacian flattens the signal at the end points.

Let us now use formula (2) for a piece-wise constant guiding
signal y with the jump large enough to result in a small value
wi i+1 = wi+1 i for some index i. The first five vectors of the
corresponding Laplacian are shown in Figure 2. All the plotted
in Figure 2 vectors are aware of the jump, representing an edge
in our one-dimensional signal y, but they are also all flat on
both sides of the edge! Such a flatness is expected to appear
for any guiding signal y giving a small value wi i+1 = wi+1 i.

The presence of the flatness in the low frequency modes of
the graph Laplacian Ly on both sides of the edge in the guiding
signal y is easy to explain. When the value wi i+1 = wi+1 i is
small relative to other entries, the matrix Ly becomes nearly
block diagonal, with two blocks, which approximate graph
Laplacian matrices of the signal y restricted to sub-intervals
of the signal domain to the left and to the right of the edge.

The low frequency eigenmodes of the graph Laplacian Ly

approximate combinations of the low frequency eigenmodes
of the graph Laplacians on the sub-intervals. But each of the
low frequency eigenmodes of the graph Laplacian on the sub-
interval suffers from the flattening effect on both ends of the
sub-interval, as explained above. Combined, it results in the
flatness in the low frequency modes of the graph Laplacian Ly

on both sides of the edge. For denoising, the flatness of the
vectors determining the low-pass filter may have a negative
effect for self-guided denoising even of piece-wise constant
signals, if the noise is large enough relative to the jump in the
signal, as we demonstrate numerically in Section V.

The attentive reader could notice that the power method (1)
is based on D−1

y Wy , related to the normalized graph Laplacian
D−1

y Ly , not the Laplacian Ly used in our arguments above.
Although the diagonal matrix Dy is not a scalar identity, and
so the eigenvectors of D−1

y Ly , not plotted here, and of Ly are
different, the difference is not qualitative enough to noticeably
change the figures and invalidate our explanation.



Fig. 3. Edge-enhancing low frequency eigenmodes, small negative.

IV. NEGATIVE WEIGHTS IN SPECTRAL GRAPH
PARTITIONING AND FOR SIGNAL EDGE ENHANCING

The low frequency eigenmodes of the graph Laplacian play
a fundamental role in spectral graph partitioning, which is one
of the most popular tools for data clustering; see, e.g., [30],
[31], [32]. A limitation of the conventional spectral clustering
approach is embedded in its definition based on the weights of
graph, which must be nonnegative, e.g., based on a distance
measuring relative similarities of each pair of points in the
dataset. For the dataset representing values of a signal, e.g.,
pixel values of an image, formula (2) is a typical example
of determining the nonnegative weights, leading to the graph
adjacency matrix Wy with nonnegative entries, as assumed in
Section II and in all existing literature.

In many practical problems, data points represent feature
vectors or functions, allowing the use of correlation for their
pairwise comparison. However, the correlation can be negative,
or, more generally, points in the dataset can be dissimilar,
contrasting each other. In the conventional spectral clustering,
the only available possibility to handle such a case is to
replace the anticorrelation, i.e. negative correlation, of the
data points with the uncorrelation, i.e. zero correlation. The
replacement changes the corresponding negative entry in the
graph adjacency matrix to zero, to enable the conventional
spectral clustering to proceed, but nullifies a valid comparison.

A common motivation of spectral clustering comes from
analyzing a mechanical vibration model in a spring-mass
system, where the masses that are tightly connected have
a tendency to move synchronically in low-frequency free
vibrations; e.g., [33]. Analyzing the signs of the components
corresponding to different masses of the low-frequency vibra-
tion modes of the system allows one to determine the clusters.
The mechanical vibration model may describe conventional
clustering when all the springs are pre-tensed to create an
attracting force between the masses. However, one can also
pre-tense some of the springs to create repulsive forces!

Fig. 4. Edge-enhancing low frequency eigenmodes, more negative.

In the context of data clustering formulated as graph parti-
tioning, that corresponds to negative entries in the adjacency
matrix. The negative entries in the adjacency matrix are not
allowed in conventional graph spectral clustering. Neverthe-
less, the model of mechanical vibrations of the spring-mass
system with repulsive springs remains valid, motivating us to
consider the effects of having negative graph weights.

In the spring-mass system, the masses, which are attracted,
have the tendency to move together synchronically in the same
direction in low-frequency free vibrations, while the masses,
which are repulsed, have the tendency to move synchronically
in the opposite direction. Using negative, rather than zero,
weights at the edge of the guiding signal y for the purposes
of the low-pass filters thus is expected to repulse the flatness
of low frequency eigenmodes of the graph Laplacian Ly on
the opposite sides of the edge of the signal y, making the low
frequency eigenmodes to be edge-enhancing, rather than just
edge-preserving; cf. [34] on sharpening.

Figures 3 and 4 demonstrate the effect of edge-enhancing,
as a proof of concept. Both Figures 3 and 4 display the
five eigenvectors for the five smallest eigenvalues of the
same tridiagonal graph Laplacian as that corresponding to
Figure 2 except that the small positive entry of the weights
wi i+1 = wi+1 i for the same i is substituted by −0.05 in
Figure 3 and by −0.2 in Figure 4. The previously flat around
the edge eigenmodes in Figure 2 are repelled in opposite
directions on the opposite sides of the edge in Figures 3 and 4.

Negative weights require caution, since even small changes
dramatically alter the behaviors of the low frequency eigen-
modes around the edge, as seen in Figures 3 and 4. Making the
negative value more negative, we observe by comparing Figure
3 to Figure 4 that the leading eigenmode, displayed using
the blue color in both figures, corresponding to the smallest
nonzero eigenvalue (which can turn negative!) forms a nar-
rowing layer around the signal edge, while other eigenmodes
become less affected by the change in the negative value.
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Fig. 5. Edge-preserving filtering.

V. EDGE-ENHANCING FILTERS

In this section, as a proof of concept, we numerically test
the proposed edge-enhancing filters on a toy one-dimensional
example using the classical nonlinear self-guiding BF and a
guided (by a noiseless signal) BF accelerated with a conjugate
gradient (CG-BF) method, as suggested in [18]. The specific
CG algorithm used in our tests is as described in Algorithm 1.

Algorithm 1: Conjugate Gradient Guided Filter

1 Input: signal vector to be filtered x0, matrices Dy and Ly

2 r0 = −Lyx0
3 for k = 0, 1, . . . ,m− 1 do
4 sk = D−1

y rk
5 if k = 0 then
6 p0 = s0
7 else
8 pk = sk + βkpk−1, where

9 βk =
(sk, rk)

(sk−1, rk−1)
10 end
11 qk = Lypk

12 αk =
(sk, rk)

(pk, qk)
13 xk+1 = xk + αkpk
14 rk+1 = rk − αkqk
15 end
16 Output: filtered vector xm
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Fig. 6. Edge-enhancing filtering.

The noise is additive Gaussian, and the noisy signal is
displayed using grey dots. The nonzero weights are computed
by (2) with σd = 0.5 and σ1 = 0.1 only for j = i−1, i, i+1,
resulting in tridiagonal matrices W and L. BF is self-guided,
with W and L recomputed on every iteration using the current
approximation xk to the final filtered signal xm. CG-BF uses
the fixed nonzero weights computed also by (2), but for the
noiseless signal y resulting in the fixed tridiagonal matrices
Wy and Ly . The number of iterations in BF, 100, and CG-BF,
15, is tuned to match the errors. We note that formula (2) puts
ones on the main diagonal of W , so for small positive or even
negative wi i+1 = wi+1 i the matrix D is well conditioned.

Figure 5 demonstrates the traditional approach, with all
weighs non-negative. We observe, as discussed in Section III,
flattening at the end points. Most importantly, there is notice-
able edge smoothing in all corners, larger in self-guided BF
and smaller in guided CG-BF, due to a large level of noise
and relatively small number of signal samples, despite of the
use of the edge-preserving formula (2). We set tuned negative
graph weights −2 × 10−3, −10−3, −10−8 for i = 100, 250,
and 350 correspondingly, without changing anything else, to
obtain Figure 6, which shows dramatic improvements both in
terms of PSNR and edge matching, compared to Figure 5.

VI. CONCLUSION

The proposed novel technology of negative graph weights
allows designing edge enhancing filters, as explained theoret-
ically and shown numerically for a simple synthetic example.
Our future work concerns testing the concept for image filter-
ing and exploring its advantages in spectral data clustering.
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