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Abstract

Motion segmentation relies on identifying coherent relationships between image pixels that
are associated with motion vectors. However, perspective differences can often deteriorate
the performance of conventional techniques. In this paper, we develop a motion segmentation
scheme that utilizes the motion map of a single frame to identify motion representations based
on motion vanishing points. Segmentation is achieved using graph spectral clustering where a
novel graph is constructed using the motion representation distances in the motion vanishing
point image associated with the image pixels. Experimental results show that the proposed
graph spectral motion segmentation algorithm outperforms state-of-the-art methods for dense
segmentation on image sequences with strong perspective effects using motion vectors between
only two images.
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Abstract—Motion segmentation relies on identifying coherent
relationships between image pixels that are associated with
motion vectors. However, perspective differences can often dete-
riorate the performance of conventional techniques. In this paper,
we develop a motion segmentation scheme that utilizes the motion
map of a single frame to identify motion representations based on
motion vanishing points. Segmentation is achieved using graph
spectral clustering where a novel graph is constructed using the
motion representation distances in the motion vanishing point im-
age associated with the image pixels. Experimental results show
that the proposed graph spectral motion segmentation algorithm
outperforms state-of-the-art methods for dense segmentation on
image sequences with strong perspective effects using motion
vectors between only two images.

I. INTRODUCTION

Motion is an important cue for image segmentation tasks
considering the fact that parts of a rigid object often exhibit
similar motions over time. In particular, it is often desirable to
segment out objects having different motions in a video scene.
Motion segmentation has received considerable attention from
both academic and industrial researchers over recent decades.

Epipolar plane image (EPI) analysis assumes that an image
is composed of homogeneous regions bounded by straight
lines, no matter what shape, texture or intensity changes
are contained in the image. Such observations have been
utilized to build 3D geometric description of a static scene
from a video sequence [1]. Epipolar geometry is an intrinsic
projective geometry between two views (or images) which
has been used for motion segmentation across views [2]. One
limitation of using two views is that the motion within the
epipolar plane cannot be detected. To overcome this limitation,
the epipolar constraints were recently extended to three views.
For example, a three-view epipolar constraint called “parallax-
based multiplanar constraint” was proposed by Xu et al.
[3] to classify each image pixel as either belonging to the
background or to moving objects. In this paper, we limited the
number of input images to 2 so as to minimize the buffering
memory required.
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Another approach for motion segmentation uses dynamic
textures analysis based on a spatio-temporal generative model
for video, which represents video sequences as observations
from a linear dynamical system. Chan et al. [4] proposed to
use mixtures of dynamic textures as a representation for both
appearance and dynamics of a variety of visual processes.
However, the approach suffers in the presence of strong
perspective effects since it does not account for the epipolar
geometry of the scene.

Sparse subspace clustering (SSC) has recently been used as
a robust algorithm for motion segmentation using graph spec-
tral clustering techniques [5]. In SSC, feature point trajectories
are extracted from several video frames. Sparse optimization
is then used to find trajectory associations by estimating
each feature trajectory using a sparse linear combination of
other feature trajectories. The sparse weights are then used
to construct a graph that relates the features and spectral
clustering is used to segment the features that occupy the
same subspace. The limitation is its reliance on computing
trajectories across multiple images. Moreover, the computation
complexity of the sparse optimization problem quickly grows
with the density of feature points. Liu et al. [6] proposed to
adopt graph spectral clustering based on feature descriptors of
superpixels assuming that an object appears in multiple images
and it may involve high computation using multiple images
as inputs. In another related approach [7], a “hypergraph” is
built rather than a traditional graph where the hypergraph is
constructed based on similarities defined on higher order tuples
rather than pair of nodes.

Yet another approach for motion segmentation relies on
a variation of robust principal component analysis (RPCA)
where a moving background is separated from moving fore-
ground objects [8]. Motion vectors were utilized to align
images to the same perspective before applying RPCA to
extract a low-rank background from sparse moving foreground
objects. One striking limitation of this scheme is that the back-
ground alignment assumes that objects lie in the same depth
plane which may not necessarily hold true. Another limitation
is that the technique requires multiple images to produce a



clean segmentation. In [9], depth was later introduced in the
scene motion modeling to overcome the perspective effects in
addition to enforcing group sparsity to take advantages from
the spatial correlation within sparse components.

In summary, a common limitation observed with conven-
tional methods is their inability to cope well with complex
motion, especially with strong perspective effects appearing
in the scene. Or some extra inputs has to be introduced as in
[9]. In this paper, we consider the situation where only motion
vectors (MVs) from a video encoder are available as input
and motion segmentation is performed using only the motion
between every two video frames. Therefore, our approach does
not rely on detecting and tracking features points or extracting
pixel trajectories over more than two images. We discuss in
Section II the concept of motion vanishing points that finds
associations between motion vectors in the scene. In Section
III, we propose to construct a graph defined on the image
pixels with weights computed using the distances between
the motion vanishing points. We then use graph spectral
clustering to perform the motion segmentation. We present our
experimental results in Section IV followed by a discussion
about the performance comparison with several benchmark
methods. Finally, we draw our conclusions in Section V.

II. MOTION VANISHING POINT IN IMAGE PLANE
A. Motion Vanishing Point

Geometric vanishing point is a well-known concept used
for many tasks, e.g. to infer information of 3D structures.
Typically, there are three geometric vanishing points along
three orthogonal directions of the 3D world.

In this work, we are interested in motion vanishing point.
Unlike geometric vanishing points that are derived from the
lines appearing on objects in a scene, motion vanishing points
are incurred at the intersections between motion vectors.

Fig. 1 illustrates the concept of a motion vanishing point v.
In the 3D world coordinate system, consider a point is moving
from P; to Pll with a corresponding motion vector P; — Pll.
Similarly, the motion of another point on the same object is
represented by P, — P2l. Because of the perspective effect,
P — Pll and P, — PQI would intersect at point V' at oo
distance in the 3D world.

Look into instead the projection of these motions onto
the image plane of a camera with camera center at C. The
corresponding motion vectors are p; — p/1 and py — p,2 in
the image plane. They intersect at a motion vanishing point v.
It can be seen that the motion of all points on the same object
will share the same motion vanishing point v in the image
plane just like they share the same motion vanishing point V
in the 3D world.

Based on this observation, the distances between motion
vanishing points may serve well to distinguish different mov-
ing objects and group pixels from one object together even
when parts of the object have motions at different directions
due to perspective.

As a side note, the motion vanishing point may co-locate
with the geometric vanishing point along z-axis in some cases.

Fig. 1. Tllustration of motion vanishing point in 3D world coordinate system
and image coordinate system

For example, when the camera strictly moves forward along
z-axis and there is no motion in the scene except the global
motion, the motion vectors of all pixels would share the
same motion vanishing point, and it is exactly the location
of geometric vanishing point in z direction. In such cases,
it may be beneficial to utilize the motion vanishing point to
detect the geometric vanishing point, especially if there are no
strong lines or the lines in the scene have random directions.

Finally, to complete the concept of motion vanishing point,
we also consider the case when the motion of an object in
3D world is parallel to the image plane. In such a case, the
projected motion onto the image plane will be parallel to each
other as well and the motion vanishing point is thus defined
at a motion direction 6 relative to x-axis and at an oo distance
from the origin of the image plane.

B. Motion Vanishing Point Image

In our problem setup, we assume dense motion vectors MV;
available as inputs, that are extracted from a video bitstream
coded by an H.265/HEVC [10] encoder or similar. We want
to segment the image based on the dense motion vector map.

Fig. 2. Example motion vanishing point images. Left: Moves forward
smoothly. Center: Uneven road condition and an oncoming vehicle. Right:
Turning left. Darker value means more motion vanishing points occurs.

By recording the motion vanishing point v;; between MV}
and MV; for Vi, j and i # j, we can plot a motion vanishing
point image V as shown in Fig. 2 for a car driving sequence
in [11] captured by a camera mounted on a car.

The pixel value at a location (x,y) in 'V represents the
number of motion pairs (4, j) sharing the same vanishing point
at (x,y). A darker color at (z,y) indicates more vanishing
points falling there. When the car moves forward smoothly



and there are no other moving objects in the video (left in Fig.
2), the vanishing points concentrate around a single motion
center. This is also an example when a geometric vanishing
point co-locates with the motion vanishing point. When other
moving objects appear in the scene, such as an upcoming
vehicle (center in Fig. 2), the vanishing point image would
show multiple convergence points. Similarly, when the car
turns left (right in Fig. 2), the vanishing point image exhibits
a sharper round boundary. It would be interesting to study the
relationship between car moving status and the vanishing point
image in a separate work. In this paper, we will present a way
to use the vanishing point image to assist in building a graph
for further graph spectral segmentation.

III. GRAPH SPECTRAL MOTION SEGMENTATION

A. Graph Spectral Clustering

In general graph signal processing [12], an undirected graph
G = (V, E) consists of a collection of nodes V' = {1,2,..., N}
connected by a set of links E = {(¢, 7, w;;)},i,j € V where
(4,j,w;;) denotes the link between nodes i and j having
weights w;;. For image processing applications, a pixel may
be treated as a node in a graph. The adjacency matrix W of
the graph is an N x N matrix with weights w;; as its entries,
and the degree d; of a node ¢ is the sum of link weights
connected to node . The degree matrix is the diagonal matrix
D := diag{di,da,...,dn}, and the combinatorial Laplacian
matrix is £:=D — W,

Furthermore, the normalized Laplacian matrix is defined
as L := D 'Y/2£D~'/2, which is a symmetric positive
semi-definite matrix. Hence, it admits an eigendecomposition
L = UAU?, where U = {uy,...,uy} is an orthogonal set of
eigenvectors and A = diag{\,..., Ay} is its corresponding
eigenvalue matrix. The eigenvectors and eigenvalues of the
Laplacian matrix provide a spectral interpretation of the graph
signals. Note that eigenvalues {\1,..., Ay} can be treated
as graph spectral frequencies and are always situated in the
interval [0, 2] on the real line. We assume the eigenvalues are
sorted in a non-decreasing order, i.e. 0 = A\; < Ay < ... < Ay

The principle eigenvectors, e.g. those eigenvectors among
the first K eigenvectors {uj,us,...,ux} after removing the
eigenvectors corresponding to zero eigenvalues, could be used
to cluster the pixels into k£ groups [13]. We use k-means
algorithm [14] to cluster the rows of the principal eigenvectors.

We adopt this graph spectral clustering approach for per-
forming motion segmentation after constructing the graph in
the next section.

B. Graph Construction for Motion Segmentation

In this section, we propose to construct the graph based
on the motion vanishing points as described in Section II.
We consider a sparse graph connectivity where every MV
associated to a pixel is connected to its 4 spatial neighboring
MVs. This topology is selected since it can capture the local
changes of the motion field in the graph structure.

1) Representation Point of a MV: Unlike conventional
approaches for image processing where the graph weights
are often computed from the pixel intensities, we construct
the graph weights using the locations of the vanishing points
associated with the MVs. For every MV, we propose to select a
representation point, which corresponds to the location along
the ray of the motion vector that has the maximum pixel value
in the motion vanishing point image V.

Fig. 3 illustrates the process of selecting a representation
point R; for a motion vector MV;. For zero MVs, their
representation point [?; will co-locate at its spatial location
in the image, since its length is zero.

Vanishing point image

M /‘ '\Tv

Representation point of a MV and distance between a MV pair

Fig. 3.

2) Perspective Distances Between a MV Pair: We define
the distance between a pair of motion vectors as the distance
between their corresponding representation points. In Fig. 3,
the distance between MV; and MV} is given as,

dyij = 1R = Ryl = \/(Rui = Raj)? + (Ryi — Ryp)2, (1)

where (R, Ry;) is the location of the representation point
of MV;. This distance is called the perspective distance.

Under certain circumstances, it may be desirable to solely
use the above distance to define graph weights to achieve
perspective invariant motion segmentation. In this paper, we
set the distance to be a weighted sum of the perspective
distance d,;; and the Euclidean distance d., ;; between the
motion vectors,

dij = U)pdp’ij + (]. — wp)dm,ij. (2)

Finally, the graph adjacency matrix W is computed using,

wij = e P e 3)

where 8 = 25 and € = 0 are constants in this work.

3) Perspective Distances with Parallel MVs: When the
perspective effect is not very strong, one may observe many
MVs from one object to be nearly parallel to each other. In
such cases, the representation point R; may fall outside the
image range, i.e. at (#, oo) with motion direction being 6 and
distance from the origin of the image plane being co.

If both the motion representation points of a pair of motion
vectors M'V; and MV; fall outside the image range, their dis-
tance is evaluated as the difference in their motion directions,



d, = 10; — 6. “)

If only one of the MVs under evaluation has a representation
point that falls outside the image range, we set their distance
to a maximum value, for example,

d, = \Jwidth? + height?, (5)

where width and height stand for the image resolution,
because they belong to different objects.

4) Perspective Distances from Pixels with Motion Absent:
In a practical system, there may exist some pixels without mo-
tion information available if they are coded in Intra prediction
modes rather than Inter prediction modes by an H.265/HEVC
encoder. We propose to keep the graph topology construction
described at the beginning of this section as untouched, no
matter whether the motion is available or not. In addition, we
propose to use a conventional in-painting method to fill up
those isolated holes in the motion field. For larger holes that
are typically caused by disocclusions from motion and occur
at object boundaries, we propose the following procedure.
Suppose pixel ¢ has MV available while pixel j does not,
as shown in Fig. 4. When calculating the distance between i
and j, we propose first to search along the extended graph
edge to check if there exists a pixel & that has motion vector
accessible. If k exists, the representation point R; is replaced
by R} and the distance between ¢ and j is calculated using
R; and Rj. Otherwise (no k found), e.g. if the search for k
ends at the image boundary, we set the distance between ¢ and
7 to be the maximum distance as in Eqn. (5). Finally, if both
pixels 7 and 7 have no MV available, their distance is set to be
equal to the minimum distance 0. In this way, we could bring
together the motion changes on each side of a Intra coded
block and have them reflected in the graph structure.

Block with MV
available

@ Block with MV
unavailable

Fig. 4. How to calculate distance from a block j without motion available

IV. EXPERIMENTS AND DISCUSSIONS
A. Experimental Setup and Benchmarks

Our framework is applied to the Hopkins 155 dataset, which
is available at http://www.vision.jhu.edu [15]. We target the
10 outdoor traffic sequences, carsl-carsi0, in the dataset. The
images are captured by a hand-held moving camera consisting
of vehicles moving on the street. Five of them have two
motions and another five have three motions.

Since we are targeting a dense segmentation, the feature
points and their trajectories provided in the dataset are not
used. Instead, we encode the raw video sequences using the

H.265/HEVC test model [16] with default encoding settings.
Motion vectors with quarter pixel accuracy are extracted
afterwards where each motion vector corresponds to a 4 x 4
pixel block regardless the prediction unit (PU) partitioning.
Since we do not consider raw pixel information in our scheme,
the segmentation accuracy is limited to 4 x 4 blocks.

For our proposed graph spectral motion segmentation, we
first compute the motion vanishing image, then construct the
graph and cluster the motion vectors as described in Section II
and III. For those sequences with two motions, the number of
clusters is set to k = 4 while for those with three motions, the
number of clusters is set to & = 5. The number of clusters is set
larger than the number of true motions in the scene in order to
tolerate errors in the MVs from H.265/HEVC encoding, since
the video encoder is optimized to favor a rate-distortion cost
instead of exact block matching [16].

In the Hopkins 155 dataset, the ground truth for motion
segmentation is provided on the extracted feature points as
described in [15]. However, since we target a dense segmen-
tation in this paper, the ground truth of every pixel in the
sequences is not available. In order to judge the performance
of the proposed method, we generate 3 benchmarks with the
following state-of-the-art algorithms.

SSC: Sparse subspace clustering [5] uses graph spectral
clustering with the graph constructed from feature trajectories.
The graph weights are computed using constrained sparse
optimization and correspond to the coefficients by which a
feature trajectory is approximated using the remaining tra-
jectories. In order to match this scheme to our setup, we
compute the corresponding positions of blocks in the previous
image for each block in the current image using its associated
motion vector. Then cascading the positions in the current
and previous images for one block will result in its trajectory
between two images.

RPCA: To fully employ the potentials from RPCA, the
benchmark segmentation is conducted in the pixel domain
instead of in the motion field. Since the camera is moving, the
motion field is used to perform global motion estimation and
compensation as described in [8]. Since the RPCA method
models the image into two parts, one is background (corre-
sponding to the low rank component) and the other is moving
foreground (corresponding to the sparse component), only
two segments are extracted using this approach. Additionally,
a thresholding on the sparse component output is needed
to generate the foreground mask. In the experiments, we
mark those pixels as foreground if their values in the sparse
component are larger than a hard threshold 2.

Simple Graph Spectral Clustering: The simple graph
spectral clustering benchmark uses the same procedure to
construct the graph except that the distance between two MVs
only considers their magnitude differences. That is, we set
w, = 0 in Eqn. (2). After the graph is constructed, the
same graph spectral clustering approach described in Section
IIT is applied to cluster the motion vectors and generate the
segmentation results.

Due to the high complexity involved with SSC for the dense



motion field, we subsample the input images from 640 x 480
to 160 x 120 for all methods except for the RPCA benchmark.

B. Experimental Results and Discussions

Fig. 5 compares the motion segmentation results from our
proposed method versus the three benchmarks described above
on both two-motion and three-motion sequences.

Overall, it shows that our proposed graph method using mo-
tion vanishing points is representative enough for segmenting
different motions in the video, which outperforms the other
three benchmarks under the setting of dense segmentation.

Moreover, one attractive feature of our proposed scheme is
its ability to perform dense segmentation using the output of
video encoding, i.e., the compressed domain motion vectors.
This is despite the fact that compressed domain motion vectors
can be very noisy. Our scheme avoids additional preprocessing
steps, such as feature detection and tracking. Hence, a real-
time motion segmentation could be achieved along with the
video encoding.

Although SSC enjoys a good performance with sparse and
long trajectories [5], it fails with dense and short trajectories
due to the high coherence between trajectories in different sub-
spaces. By checking the connectivity of the graph constructed
from the constrained optimization problem in SSC, all graph
nodes are connected to a very few number of other nodes,
and thus it leads to a stripe-like segmentation from the left-top
corner. On the contrast, the 4-connected graph topology in our
proposed method would avoid such over-biased connections.
It is interesting to notice that with SSC, the sparse constraint
being enforced favors a sparse solution with fewer number of
motion vectors to represent the current motion vector, while
the representation point for a MV in our method is the one
with votes from most possible number of motion vectors.

Secondly, when compared to the RPCA method, the moving
objects segmented by our method are more complete and could
better outline the full moving object, while RPCA generally
outputs scattered pixels and may only classify areas with edges
as moving target. RPCA also suffers from taking some back-
ground pixels as foregrounds when there are strong perspective
effects. However, a graph spectral clustering method (including
the proposed method) by itself cannnot give any semantic
meaning for each segment, while it is an advantage for RPCA
to tell the foreground from the background. When jointly
inspecting the results of RPCA and our proposed method, we
would expect to segment a cleaner moving foreground and
aggregate the background segments together.

Thirdly, the comparison between the Simple Spectral Clus-
tering and the proposed graph spectral clustering shows that
introducing the motion vanishing points as part of the motion
descriptor can improve the segmentation with motion vectors
as input. It is worthwhile to note that the selection of w,, in
Eqn. (2) depends on how much perspective effect is shown
in the images. A general guideline is that stronger perspective
effect would require a larger w,. For experiments with the
Hopkins 155 dataset, we fix w, = 0.25 for the proposed
method.

In the end, we would like to point out that some extensions
may enhance the proposed method. On the one hand, the
graph for our experiments is constructed by connecting a node
with its 4 spatial neighbors as mentioned in Section III-B.
However, we noticed that for some sequences, connecting the
nodes with their 8 neighbors may improve the segmentation
results. A fully connected graph or a k-nearest-neighborhood
graph might be considered as an option, especially for those
sequences where the spatial distances are poorly correlated to
the cluster distances, e.g. for the car driving sequences in [11].

On the other hand, while the usage of motion vanishing
points and a single representation point are fairly powerful
for those motions with strong perspective effects, it may not
be straightforward to accommodate some special categories
of motions. For example, the vanishing point image of cir-
cular motions would be evenly distributed over all directions.
Motivated by this, it would be interesting to explore and use
the relationship between the distribution of motion vanishing
points and motion distributions instead of using a single
representation point during the graph construction.

V. CONCLUSIONS

In this paper, we studied the dense motion segmentation
problem with motion vectors available from an H.265/HEVC
codec. A novel graph spectral clustering method was pro-
posed to especially to deal with image sequences with strong
perspective effects. We first explored the motion vanishing
point in 3D world and its mapping in the image plane and
obtained a motion vanishing point image. Then we proposed
to identify a representation point for each motion vector as
part of the motion descriptor. Finally, a novel graph was
constructed based on the distances measured between the
representation points in the motion vanishing point image,
and motion segmentation was realized via a graph spectral
clustering method. Compared to state-of-art approaches, exper-
imental results showed that the proposed graph spectral motion
segmentation algorithm works better especially with image
sequences having perspective effects. In addition, we believe
the method has a good potential for further improvements from
several extensions or combinations, which is subject to our
future work.
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