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Abstract
This paper investigates the optimal co-design of both physical plants and control policies
for a class of continuous time linear control systems. The optimal co-design of a specific
linear control system is commonly formulated as a nonlinear non-convex optimization prob-
lem (NNOP), and solved by using iterative techniques, where the plant parameters and the
control policy are updated iteratively and alternately. This paper proposes a novel iterative
approach to solve the NNOP, where the plant parameters are updated by solving a standard
semi-definite programming problem, with non-convexity no longer involved. The proposed
system design is generally less conservative in terms of the system performance compared to
the conventional system-equivalence-based design, albeit the range of applicability is slightly
reduced. A practical optimization algorithm is proposed to compute a sub-optimal solution
ensuring the system stability, and the convergence of the algorithm is established. The effec-
tiveness of the proposed algorithm is illustrated by its application to the optimal co-design
of a physical load positioning system.
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This paper investigates the optimal co-design of both physical plants and control policies for a class of continuous-
time linear control systems. The optimal co-design of a specific linear control system is commonly formulated as a
nonlinear non-convex optimization problem (NNOP), and solved by using iterative techniques, where the plant pa-
rameters and the control policy are updated iteratively and alternately. This paper proposes a novel iterative approach
to solve the NNOP, where the plant parameters are updated by solving a standard semi-definite programming prob-
lem, with non-convexity no longer involved. The proposed system design is generally less conservative in terms of the
system performance compared to the conventional system-equivalence-based design, albeit the range of applicability
is slightly reduced. A practical optimization algorithm is proposed to compute a sub-optimal solution ensuring the
system stability, and the convergence of the algorithm is established. The effectiveness of the proposed algorithm is
illustrated by its application to the optimal co-design of a physical load positioning system.

1. Introduction

Optimal control theory tries to solve control policy problems for a given dynamic system such that certain
optimality objectives can be achieved (Bertsekas, 1995; Bryson and Ho, 1975; Lewis et al., 2012). From
a conventional perspective of control policy design, the plant is given at the control design stage, and thus
the determination of the control policy is separate from the plant design. This separation may simplify the
design processes of both the plant and the control policy but sacrifice the potential performance improve-
ment brought by co-design, i.e., simultaneous design of the plant and the control policy. The performance
loss due to the decoupled plant and control design is understood by reviewing numerous results on the per-
formance limitation analysis of linear control systems, e.g. Bode (1945); Freudenberg and Looze (1985);
Serön et al. (1997). Indeed, co-design problems can find a great number of applications, such as the optimal
design and control of aerospace crafts (Hale et al., 1985; Messac, 1998), smart buildings (Lu and Skelton,
2000; Skelton and Kim, 1992), electromechanical devices (da Silva et al., 2009; Peters et al., 2011; Reyer
and Papalambros, 2002), and robotics (Ravichandran et al., 2006).

The study of co-design problems in mechanical and aeronautics communities can be traced back to the
1980s, and leads to several strategies including iterative, bi-level (nested), and simultaneous (Fathy et al.,
2001). An earlier approach is to numerically and simultaneously optimize the parameters of both the plant
and the control policy using nonlinear programming (NLP) strategies (Onoda and Haftka, 1987; Salama
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et al., 1988). Necessary optimality conditions and the coupling of co-design problems have been studied
(Alyaqout et al., 2007; Fathy et al., 2001; Patil et al., 2010, 2012; Peters et al., 2010, 2011). In the afore-
mentioned prior art, the non-convex co-design problem is tackled by direct transcript to NLP solvers, which
suffer some well-known weaknesses, for instance sensitivity to initial guesses, no convergence guarantee
etc. Also, turning to generic NLP solvers may compromise the efficiency, due to their lack of mechanisms
to fully exploit the structure of co-design problems. Another class of schemes is based on iterative designs
(Grigoriadis et al., 1993; Li et al., 2001; Lu and Skelton, 2000; Pil and Asada, 1996; Skelton and Kim,
1992). To guarantee the stability and the convergence properties, a key system equivalence constraint is
imposed (Grigoriadis et al., 1993; Jiang et al., 2015; Lu and Skelton, 2000; Skelton and Kim, 1992), such
that updating the system parameters will not compromise the closed-loop system performance. The inclu-
sion of the system equivalence constraint is however not necessary and may restrict the feasible set of the
co-design problem.

The primary objective of this paper is to develop a novel and systematic iterative technique for solving
systematically co-design problems for a class of continuous-time linear control systems. Given some ini-
tial system parameters and an initial stabilizing control policy, we develop methods to improve the system
parameters and the control policy sequentially in each iteration step without compromising the closed-loop
system performance. The proposed methodology eliminates the non-convex system equivalence constraint,
thus may weaken the restriction on the feasible set. We further show that for a plant with linear parameter-
izations, the system parameters can be improved by solving a standard semi-definite programming (SDP)
problem (Boyd and Vandenberghe, 2004). The proposed iterative technique is systematic because of the
explicit process of reducing the system parameter design to an SDP problem, and the fact that the global
optimum of the resultant SDP problem can be reliably computed by numerous solvers. The efficiency of
the proposed iterative method is illustrated through the application to the optimal co-design problem of a
load positioning system (Shilpiekandula et al., 2012). It is worth pointing out that the iterative idea has
been widely adopted in existing work including Grigoriadis et al. (1993); Lu and Skelton (2000); Skelton
and Kim (1992), and the iterative process is essentially the same as the bi-level (nested) approach in (Fathy
et al., 2001), which focus on co-design strategies for nonlinear systems instead of algorithms.

The remainder of this paper is organized as follows. Section 2 gives the problem formulation and mo-
tivations. Section 3 develops the novel iterative technique for solving optimal co-design problems for
continuous-time linear control systems. A convergence proof is given. Section 4 illustrates the proposed
approach on a design example of the load positioning problem. Finally, conclusions are given in Section 5.

2. Problem formulation and preliminaries

Consider the linear time-invariant control system

ẋ = A(θ)x+B(θ)u

y =C(θ)x+D(θ)u
(1)

where x ∈ Rn is the system state, u ∈ Rm is the control input, and θ ∈ Rl is the vector of system
parameters to be designed. The system matrices A(θ) ∈ Rn×n and B(θ) ∈ Rn×m are linear in θ , i.e.,
θ = [θ (1),θ (2), · · · ,θ (l)]T , A(θ) = ∑l

j=1 θ ( j)A( j), and B(θ) = ∑l
j=1 θ ( j)B( j). For simplicity, this paper con-

siders full state feedback control, i.e., C(θ)= In and D(θ)= 0. The system parameter vector θ has θmax ∈Rl

and θmin ∈Rl as its component-wise upper and lower bounds, i.e., the ith component of θ is lower and up-
per bounded by the ith component of θmin and θmax, respectively. For simplicity of notation, we denote the
constraint on θ as θmin ≤ θ ≤ θmax. The pair [A(θ),B(θ)] is assumed to be stabilizable, for any θ satisfying
θmin ≤ θ ≤ θmax.

Generally, a co-design problem may have multiple competing objectives capturing various design specifi-
cations, e.g. economical/environmental costs, control system performance, and maintainability. This paper
considers a special co-design problem where the co-design objective is to find simultaneously a vector θ
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and a linear control policy u = Kx such that the following control objective is minimized

J(x0,θ ,K) =
∫ ∞

0

(
xT Qx+uT Ru

)
dt, x(0) = x0 (2)

where Q = QT ≥ 0, R = RT > 0, and the pair [A(θ),Q1/2] is assumed to be observable, if θmin ≤ θ ≤ θmax.
To guarantee the existence of a finite cost with non-trivial initial state, it is natural to require that the

closed-loop system matrix

Ac(θ ,K) := A(θ)+B(θ)K (3)

is Hurwitz. Then, by linear optimal control theory, see e.g. Lewis et al. (2012), there exists a symmetric and
positive definite matrix P (called cost matrix), such that

J(x0,θ ,K) = xT
0

∫ ∞

0
eAc(θ ,K)T t (Q+KT RK

)
eAc(θ ,K)tdtx0

= xT
0 Px0. (4)

We further know that P = PT is the unique positive definite solution of the Lyapunov equation

0 = Ac(θ ,K)T P+PAc(θ ,K)+Q+KT RK (5)

Hence, the above mentioned co-design problem can be formulated as the following optimization problem:

Problem 1 (Linear co-design problem):

min
θ ,K,P

xT
0 Px0 (6)

s.t. 1) 0 = Ac(θ ,K)T P+PAc(θ ,K)+Q+KT RK (7)

2) Ac(θ ,K) is Hurwitz (8)

3) θmin ≤ θ ≤ θmax. (9)

Remark 1: Solving this problem is challenging for at least two reasons. First, due to the coupling between
the system parameters and the control input, Constraint (7) is non-convex with respect to θ , K, and P as
decision variables. Second, Constraint (8) is not only nonlinear but also difficult to be formulated analyt-
ically, especially for high-dimensional systems. Also, as shown in Toker and Özbay (1995), finding θ to
ensure the stability of Ac, equivalently the salification of (8), is an NP-hard problem.

Remark 2: For a general cost function

J(x0,θ ,K) =
∫ ∞

0

(
xT Qx+2xT Su+uT Ru

)
dt, x(0) = x0,

where S ∈ Rn×m, the corresponding linear co-design problem takes a similar form as Problem 1. The only
difference is that (7) is replaced with the following equality

Ac(θ ,K)T P+PAc(θ ,K)+Q+(SK +KT ST )+KT RK = 0

where P is the finite cost matrix associated with the stabilizing control policy u = Kx. The additional
term SK +KT ST , which is linear in the decision variable K, does not introduce any difficulty in solving
Problem 1, and thus this paper only considers Problem 1 to simplify the presentation.
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Different from the conventional system design process, where the design is to seek a feasible solution, the
co-design process seeks an optimal solution which consequentially gives rise to an optimization problem.
The resultant linear co-design problem formulation is exposed to several fundamental questions: does the
problem have an optimal solution, is it unique, and how to compute it. Limited work, e.g. Cesari (1965);
Filippov (1962), has been done on the existence conditions of an optimal solution for a certain class of op-
timization problems partially due to its difficulty, even if the importance is widely acknowledged. Instead,
many literatures assume the existence of optimal solutions and investigate the mathematical characteriza-
tions of optimal solutions, e.g. necessary optimality conditions for state constrained optimal control prob-
lems (Jacobson et al., 1971), maximum principle for hybrid systems (Sussmann, 1999), KKT conditions
for nonlinear programming (Harold and Tucker, 1951), sufficiency of Pontryagin’s necessary conditions
(Mangasarian, 1966).

Similarly, there is limited work on the existence of optimal solutions for optimization problems derived
from the co-design process. Papalambros and Wilde (2000) study the existence of an optimal solution of a
system design problem using the Weierstrass Theorem, which requires the compactness of the feasible set.
Some researchers have been endeavoring in developing necessary conditions for local optimal solutions
(Alyaqout et al., 2007; Fathy et al., 2001; Patil et al., 2012; Peters et al., 2010, 2011). In terms of how to
compute an optimal solution, one of the earliest studies of Problem 1 can be found in (Salama et al., 1988),
where a gradient method was developed to numerically search for the optimal solution. The stability and
convergence analysis of this method is however difficult to perform. Problem 1 has also been revisited in
(Grigoriadis et al., 1993; Lu and Skelton, 2000; Skelton and Kim, 1992), where disturbances are taken into
account, and iterative schemes based on the system equivalence constraint are proposed. All of the above-
mentioned iterative methods try to compute sub-optimal solutions of Problem 1, and do not guarantee to
find a local optimum. This is because the computed sub-optimal solutions only satisfy necessary conditions,
which are not sufficient to ensure the optimality. Also, due to its non-convexity property, the optimization
problem may have multiple optimal solutions.

This paper assumes the existence of optimal solutions and focuses on the development of a novel and
more general iterative method that computes a sub-optimal solution to Problem 1 without imposing the con-
servative constraint introduced in (Grigoriadis et al., 1993; Lu and Skelton, 2000; Skelton and Kim, 1992).
In other words, we aim to develop algorithms which provide a good tradeoff among convergence, relia-
bility, optimality, and computation burden. Note that iterative techniques based on the system equivalence
constraint can be employed to solve this problem. The system-equivalence-based method, when applied to
Problem 1, is summarized as follows for completeness.

Given θ0 satisfying θmin ≤ θ0 ≤ θmax, repeat the following two steps with i = 0,1, · · · , until convergence.
1) Linear-quadratic-regulator (LQR) design
Solve for Pi = PT

i > 0 from

0 = Ac(θi,Ki)
T Pi +PiAc(θi,Ki)+Q+KiRKi (10)

where Ki =−R−1BT Pi.
2) System-equivalence-based redesign
Improve the system parameters and the control policy together by solving the optimization problem.

(θi+1, K̄i) = argmin
θ ,K

J(x0,θ ,K) (11)

s.t 1) Ac(θ ,K) = Ac(θi,Ki) (12)

2) θmin ≤ θ ≤ θmax (13)

Remark 3: The feasible set of the optimization problem (11)-(13) is more restrictive compared with Prob-
lem 1, due to the conservative constraint (12). Also, solving the problem (11)-(13) is non-trivial because
the constraint (12) is generally non-convex.
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3. A novel iterative technique for solving the co-design problem

In this section, we propose a novel iterative method to solve Problem 1. That is, the design of K and θ
is separated from each other. Given θ fixed, the feedback gain matrix K can be readily determined using
linear optimal control theory (Lewis et al., 2012). It is of particular interest to develop a general method for
obtaining the optimal θ , given fixed K. Our main contribution is to come up with a novel iterative method
which provides less conservative designs of plant parameters in each iteration.

3.1 Optimal system design

Given a pair (θi,Ki) with θmin ≤ θi ≤ θmax, and Ac(θi,Ki) Hurwitz, we give the following optimal system
design problem.

Problem 2 (Optimal system design problem):

(θi+1,Si) = argmin
θ ,S

xT
0 Sx0 (14)

s.t. 1) Ac(θ ,Ki)
T S+SAc(θ ,Ki)+Q+KT

i RKi = 0 (15)

2) Ac(θ ,Ki) is Hurwitz (16)

3) θmin ≤ θ ≤ θmax. (17)

Note that (10) is the Riccati equation, and Pi denotes the optimal cost matrix for a given θi. On the other
hand, given (θ ,Ki), S in Problem 2 denotes the cost matrix satisfying the Lyapunov equation (15). While
presenting the main idea, we use various notations of cost matrices, e.g. P in Problem 1, S in Problem 2,
and S̄ in Problem 3 later, to emphasize that decision variables in these three problems are different.

Problem 2 is non-convex due to constraints (15)-(16). The main novelty of the proposed approach lies in
the treatment of the non-convex constraints (15)-(16). As a first step, we relax Problem 2 by replacing the
first constraint (15) with an inequality constraint. The relaxation technique is standard and not surprising.
We however can show that both Problem 2 and the relaxed problem have the same optimal solutions. Fi-
nally, we establish a set of simplified sufficient conditions which not only imply the non-convex constraints
(15)-(16), but also admit less computation load. The relaxed problem is given below.

Problem 3 (Relaxed optimal system design problem):

(θ̄i+1, S̄i) = argmin
θ̄ ,S̄

xT
0 S̄x0 (18)

s.t. 1) Ac(θ̄ ,Ki)
T S̄+ S̄Ac(θ̄ ,Ki)+Q+KT

i RKi ≤ 0 (19)

2) Ac(θ̄ ,Ki) is Hurwitz (20)

3) θmin ≤ θ̄ ≤ θmax. (21)

Problem 3 has a linear cost function and its constraints can be reformulated as bilinear matrix inequalities.
Thus Problem 3 can be approached by existing BMI algorithms, e.g. global methods Beran et al. (1997);
Goh et al. (1994); Tuan and Apkarian (2000); Tuan et al. (1999); Visweswaran et al. (1996), and local
methods Hassibi et al. (1999); Iwasaki (1999); Kanev et al. (2004). Global methods typically work on
the Lagrangian dual problem and use the branch-and-bound technique, and cannot yield solutions within
polynomial-time. Local methods enjoy low computation burden, though the convergence to local optimal
solutions is usually not guaranteed.

Lemma 1: The optimal cost of Problem 3 and the optimal cost of Problem 2 are the same, i.e., xT
0 Six0 =

xT
0 S̄ix0.
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Proof: First, one can see that the optimal solution (θi+1,Si) of Problem 2 is a feasible solution of Problem
3. Since the optimal solution of a minimization problem always gives less value of the object function that
any feasible solution does, we have

xT
0 S̄ix0 ≤ xT

0 Six0, (22)

where xT
0 S̄ix0 and xT

0 Six0 represent the minimums of Problems 3 and 2, respectively.
On the other hand, by definition, we have

xT
0 S̄ix0 ≥ xT

0

∫ ∞

0
eAc(θ̄i+1,Ki)

T t(Q+KT
i RKi)eAc(θ̄i+1,Ki)tdtx0

≥ xT
0

∫ ∞

0
eAc(θi+1,Ki)

T t(Q+KT
i RKi)eAc(θi+1,Ki)tdtx0

≥ xT
0 Six0

As a result, xT
0 S̄ix0 = xT

0 Six0. The proof is thus complete. �

Remark 4: Constraint (19) cannot be converted to linear constraints using the change of variables method
widely adopted to solve linear matrix inequality (LMI) problems (Boyd et al., 1994). Let us assume θ̄ ∈R,
and Ac(θ̄ ,Ki) = θ̄Ac. Then, it is easy to see constraint (19) is equivalent to

TAT
c +AcT + S̄−1 (Q+KT

i RKi
)

S̄−1 ≤ 0 (23)

where T = T T = θ̄ S̄−1, and (23) can be converted to an LMI if T and S̄−1 are viewed as two independent
matrices of decision variables and Q+KT

i RKi > 0. However, once S−1 and T are determined, we need to
recover θ̄ from

θ̄ In = T S (24)

which is a set of over-determined linear equations. To guarantee there is a unique solution of θ̄ , we need to
not only keep θ̄ as a decision variable but also impose the additional non-convex constraint (24).

Fortunately, due to the relaxation of the equality constraint, we are able to get around the non-convexity
and nonlinearity in (15) and (16) by deriving some sufficient conditions for these two constraints using
Schur complement condition (Boyd and Vandenberghe, 2004).

Let us define Pi = PT
i > 0 as the positive definite solution of

AT
i Pi +PiAi +Q+KT

i RKi = 0. (25)

where Ai =Ac(θi,Ki). Also, let ∆Ai(θ̄) =Ac(θ̄ ,Ki)−Ac(θi,Ki), ∆Pi(S̄) = S̄−Pi, and Q̄ denotes a symmetric
matrix satisfying

0 = (Pi +∆Pi)Ac(θi+1,Ki)+Ac(θi+1,Ki)
T (Pi +∆Pi)

+Q̄+KT
i RKi. (26)

Then, the following lemma gives sufficient conditions for (19) and (20).
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Lemma 2: The constraints (19) and (20) are satisfied if the following two linear matrix inequalities hold.

M(S̄, θ̄) ∆Pi(S̄) ∆Ai(θ̄)T

∆Pi(S̄) In 0
∆Ai(θ̄) 0 In

 ≥ 0 (27)

S̄ > 0. (28)

where

M(S̄, θ̄) = −∆Pi(S̄)Ai −AT
i ∆Pi(S̄)

−∆Ai(θ̄)T Pi −Pi∆Ai(θ̄) (29)

Proof: For simplicity and without causing confusion, in this proof we drop the argument (S̄) from ∆Pi,
and the argument (θ̄) from ∆Ai. By Schur complement condition, inequality (27) holds if and only if

−∆PiAi −AT
i ∆Pi −∆AT

i Pi −Pi∆Ai − (∆Pi)
2 −∆AT

i ∆Ai ≥ 0. (30)

Therefore, by (19), (25), and (30) we have

Ac(θ̄ ,Ki)
T S̄+ S̄Ac(θ̄ ,Ki)+Q+KT

i RKi

= (Ai +∆Ai)
T (∆Pi +Pi)+(∆Pi +Pi)(Ai +∆Ai)+Q+KT

i RKi

= (Ai +∆Ai)
T (∆Pi +Pi)+(∆Pi +Pi)(Ai +∆Ai)−PiAi −AT

i Pi

= AT
i ∆Pi +∆PiAi +Pi∆Ai +∆AT

i Pi +∆Pi∆Ai +∆AT
i ∆Pi

≤ AT
i ∆Pi +∆PiAi +Pi∆Ai +∆AT

i Pi +(∆Pi)
2 +∆AT

i ∆Ai

≤ 0. (31)

From the fact that Q and Q̄ satisfy (31) and (26), respectively, it is not difficult to derive Q̄ ≥ Q. Since
(A(θ̄),Q1/2) is assumed to be observable and Q̄ ≥ Q, the pair (A(θ̄), Q̄1/2) is also observable from its
observability Gramian. In addition, because S̄ is positive definite, we know Ac(θ̄ ,Ki) must be Hurwitz. The
proof is complete. �

Remark 5: Conditions (27) and (28) give two linear matrix inequalities when ∆Pi(S̄), equivalently S̄, and
∆Ai(θ̄) are decision variables. If we further assume the system matrices A and B have linear parametrization
over θ , i.e., ∆Ai(θ̄) = A(θ̄ −θi)+B(θ̄ −θi)Ki, (27) and (28) give two linear matrix inequalities in terms of
decision variables S̄ and θ̄ . Replacing (19) and (20) with (27) and (28), Problem 3 turns into a semi-definite
programming (SDP) problem (Boyd and Vandenberghe, 2004) which does not involve non-convexity or
nonlinearity. The SDP problem can be solved within polynomial time using, for instance, interior point
methods (Wolkowicz et al., 2000) and first order methods (Wen et al., 2010). The latter is commonly based
on the augmented Lagrangian and has variants including alternating direction methods (He et al., 2011;
Wen et al., 2010).

Remark 6: System parameter constraints (13) are not necessarily lower- and upper-bounded. Consider
more general system parameter constraints: h(θ) ≤ θ ≤ h̄(θ), where h(θ) = (h1(θ), . . . ,hn(θ))T and
h̄(θ) = (h̄1(θ), . . . , h̄n(θ))T . If hi(θ) and h̄i(θ) for 1 ≤ i ≤ n are linear in θ , the main results established in
this paper are still valid, i.e., Problem 3 is reduced to an SDP problem. Furthermore, if hi(θ) and h̄i(θ) for
1 ≤ i ≤ n are convex in θ , Problem 3 is reduced to a convex programming problem.
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3.2 An iterative technique to solve the co-design problem

Now we are ready to develop an iterative technique for solving Problem 1.
1) Initialization
Let θ0 and K0 satisfy θmin ≤ θ0 ≤ θmax, and Ac(θ0,K0) is Hurwitz. Let i = 0.
2) Policy evaluation
Solve for Pi = PT

i > 0 from

0 = AT
i Pi +PiAi +Q+KT

i RKi (32)

where Ai = Ac(θi,Ki).
3) Optimal system design

(θi+1,∆Pi) = argmin
θ ,∆P

xT
0 ∆Px0 (33)

s.t.

−∆PAi −AT
i ∆P−∆AT

i Pi −Pi∆Ai ∆P ∆AT
i

∆P In 0
∆Ai 0 In

≥ 0 (34)

∆P+Pi > 0 (35)

θmin ≤ θ ≤ θmax (36)

where ∆Ai = A(θ −θi)+B(θ −θi)Ki.
4) Policy improvement
Update the control policy by

Ki+1 =−R−1B(θi+1)
T (Pi +∆Pi) (37)

5) Stopping criterion
Stop, if ∥Pi −Pi−1∥ < ε , with ε > 0 a predefined sufficiently small constant. Otherwise, go to Step 2)

with i replaced by i+1.

Remark 7: In the absence of Step 3), (i.e., when θ is fixed) the algorithm described in (32)-(37) is reduced
to the well-known Kleinman algorithm (Kleinman, 1968) for solving algebraic Riccati equations.

Remark 8: Compared to the system-equivalence-based methods where the system design problem is likely
non-convex, the proposed approach resorts to convex optimization problems which can always be solved
in polynomial time, thus generally requires less computation load.

Theorem 1: For i = 0,1,2, · · · , the following properties of the algorithm described in (32)-(36) hold.

1) Ai is Hurwitz.

2) 0 ≤ xT
0 Pi+1x0 ≤ xT

0 (Pi +∆Pi)x0 ≤ xT
0 Pix0.

3) There exists J∗ > 0, such that lim
i→∞

J(x0,θi,Ki) = J∗.

Proof: 1) We prove by induction. i) First, by the assumption in the algorithm we know A0 is Hurwitz. ii)
Suppose Ai is Huwritz, let us show Ai+1 is also Hurwitz. Indeed, since Pi +∆Pi > 0, by Lemma 2 we know
Ac(θi+1,Ki) is Hurwitz.

Then, by (34) and Lemma 2, we know Q̄≥Q. Notice that (26) and (37) can be viewed as a single iteration
step described in the Kleinman algorithm (Kleinman, 1968). Hence, by the main theorem in Kleinman
(1968), Ai+1 is Hurwitz.
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2) By 1), Ai+1 is Hurwitz. Also, since (A(θi+1),Q1/2) is assumed to be observable, Pi+1 is a symmetric
positive definite matrix. Therefore, the first inequality holds.

Further, by Lemma 1 and the property of the Kleinman algorithm (Kleinman, 1968), we have

(Pi +∆Pi)−Pi+1

≥
∫ ∞

0
eAT

i+1t(Ki −Ki+1)
T R(Ki −Ki+1)eAi+1tdt ≥ 0. (38)

Hence, the second inequality in 2) is proved.
To prove the last inequality in 2), we only need to show

xT
0 ∆Pix0 ≤ 0 (39)

Notice that ∆P = 0 and θ = θi is a feasible solution of the optimization problem (33)-(36), with the cost
equal to zero. As a result, (39) holds.

3) The sequence {J(x0,θi,Ki)}∞
i=0 is non-negative and monotonically decreasing. Therefore, the limit of

the sequence exists. �

3.3 Discussions

Results obtained from the proposed method depend on the initial condition of the system state. This de-
pendency makes sense in a class of practical engineering problems. For example, the general task of the
load positioning problem described in the next section is to drive the load from the equilibrium to track
a step response. As a result, its initial condition in the space is x(0) = λx0 with x0 = [−1,0,0,0]T and λ
a constant. As a result, there is no need to recalculate the control policy and the system parameters with
different λ , because solving Problem 1 is equivalent to solving the same problem with (6) replaced by
minθ ,K = λ 2xT

0 Px0.
To reduce the sensitivity with respect to the error between the actual initial state and its nominal value,

the following schemes can be adopted:

1) Consider the weighted sum of costs with different initial conditions

min
θ ,K

N

∑
i=1

wiJ(xi,θ ,K) (40)

where x1, · · · ,xN are N possible initial state with w1, · · · ,wN > 0 being their weights, which are
inspired by the state-relevance weights (de Farias and Van Roy, 2003) . Notice that this modification
will not affect the linearity in the optimal system design problem (33)-(36).

2) Replace the constraint (35) with

−Pi < ∆P ≤ 0. (41)

It implies that, the cost will be less or equal to the LQR cost with θ = θ0 for all initial conditions.
Again, solvability of the problem will not be affected.

It is also interesting to completely remove the dependency on the initial condition by considering the
worse-case scenario for all possible initial conditions. Indeed, we can study the following cost

min
θ ,K

max
|x0|2=1

J(x0,θ ,K). (42)

This can be achieved by reformulating Problem 1 as an eigenvalue problem (EVP) (Boyd et al., 1994).

9
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Figure 1. Lumped parameter model of a motor-driven linear ballscrew stage supported on a flexible base platform bolted to the ground.

Problem 4 (Worst-case scenario co-design problem):

min
θ ,K,P,µ

µ (43)

s.t. 1) 0 = Ac(θ ,K)T P+PAc(θ ,K)+Q+KT RK (44)

2) Ac(θ ,K) is Hurwitz (45)

3) θmin ≤ θ ≤ θmax. (46)

4) µIn −P ≥ 0. (47)

This problem can be solved by a trivial extension of the proposed iterative method. Furthermore, the
initial-condition-dependency can also be removed by considering the H2 and H∞ gains for the closed-loop
system with respect to external disturbance input (Lu and Skelton, 2000).

Finally, it is worth noticing how the feasible set of Problem 3 is restricted when the first two constraints
(19) and (20) are replaced with (27) and (28). To study this, first notice that, in (31), we utilized the follow-
ing inequality

∆Pi∆Ai +∆AT
i ∆Pi ≤ γ(∆Pi)

2 + γ−1∆AT
i ∆Ai, γ > 0 (48)

and condition (27) is derived with γ = 1. It is the only part in which the feasible set of Problem 3 is
restricted. Therefore, it will be interesting to replace (34) with

−∆PAi −AT
i ∆P−AT

i P−PAi ∆P ∆AT
i

∆P γ−1In 0
∆Ai 0 γIn

 ≥ 0 (49)

γ > 0 (50)

and to see if better solutions can be obtained with γ ̸= 1. However, with γ involved, the constraints are
nonlinear and solving the optimization problem comprised of (33), (36), (49), and (50) becomes non-trivial.

4. Application to a load-positioning problem

In this section, we applied the proposed optimal co-design method to a mechanical system as shown in
Figure 1. Its dynamics can be described by the following continuous-time linear time-invariant system

10
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(Shilpiekandula et al., 2012):

ẍL = (u−dLẋL)(
1

mL
+

1
mB

)+
kB

mB
xB +

dB

mB
ẋB (51)

ẍB = (dLẋL −u)
1

mB
− kB

mB
xB −

dB

mB
ẋB (52)

where xL and xB denote the relative displacement of the load with respect to the platform, and the displace-
ment of the platform. dL, mB, mL, kB, and dB are system parameters to be designed.

The co-design objective is to optimize the system performance in tracking a step command. For this
purpose, we define x1 = xL − yd , with yd the desired constant output, x2 = ẋL, x3 = xB, and x4 = ẋB. The
system is converted to

ẋ = Ax+Bu (53)

where x = [x1,x2,x3,x4]
T , and

A =


0 1 0 0

0 − dL

mL
− dL

mB

kB

mB

dB

mB
0 0 0 1

0
dL

mB
− kB

mB
− dB

mB

 , B =


0

1
mL

+
1

mB
0

− 1
mB

 .

As shown in Remark 5, solving Problem 3 using linear matrix inequalities technique involves the linear
parametrization of ∆A and ∆B or equivalently A and B. It is evident that A and B are not linear over the orig-
inal system parameters [mB,mL,dL,kB,dB]

T , and thus re-parametrization is necessary to ensure the linear
parameterizations condition. It is also not straightforward to linearly re-parameterize A and B without over-
parametrization. For simplicity, we fix dL = 10 to avoid over-parametrization. With dL fixed, the number
of system parameters is reduced to 4, and various re-parametrization schemes are viable. In the simulation,
we consider new system parameters θ = [ 1

mL
, 1

mB
, kB

mB
, dB

mB
]T , and compute their lower bounds, upper bounds,

and initial values as shown in the second to fourth columns in Table 1. Given u = Kx and θ , we have the
linear parametrization: ∆A(θ ,K) = Σ4

i=1A( j)δθ (i) where δθ ( j) is the variation of θ ( j), and

A(1) =


0 0 0 0
0 −dL 0 0
0 0 0 0
0 0 0 0

+


0
1
0
0

K,

A(2) =


0 0 0 0
0 −dL 0 0
0 0 0 0
0 dL 0 0

+


0
1
0
−1

K,

A(3) =


0 0 0 0
0 0 1 0
0 0 0 0
0 0 −1 0

 , A(4) =


0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 −1

 .

Alternative definition of the system parameter after re-parametrization could be θ = [ 1
mL

+ 1
mB

, 1
mB

, kB
mB

, dB
mB

]T .
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Figure 2. Illustration of the convergence property of the proposed iterative technique, compared with the system-equivalence-based method.

The cost to be minimized is chosen as

J(x0,θ ,u) =
∫ ∞

0

(
1000x2

1 +0.1u2)dt. (54)

The initial condition is set to be x0 = [−1,0,0,0]T , and the initial stabilizing control policy is chosen
as the LQR control policy. The initial cost is J = 215.3952. The stopping criterion is set to ε = 0.02. The
algorithm stops after 24 iterations. For comparison purpose, we have also computed this problem using
the system-equivalence-based method described in (10)-(12). The optimized parameters are shown in the
fifth column of Table 1. The results obtained using the system-equivalence-based method are provided in
the last column of Table 1, and it can be seen that the ratios mL

mB
, kB

mB
, and dB

mB
are not changed at all, due

the conservative constraint (12). Note that optimal system parameters computed by the proposed algorithm
in this example tend to reach the bounds. This could be due to various factors such as the cost function.
Intuitively, θ1 and θ2 should reach the upper bounds corresponding to the smallest system. Determination
of other parameters θ3 and θ4 could be counter-intuitive. This is especially true for co-design of complex
systems. In fact, if the weight on u in the cost function is 1, the proposed algorithm gives a design solution:
θ ∗ = [1,0.0667,0.4,0.03]T , and the associated cost function value is less than the bound-based design
solution: θ ∗ = [1,0.0667,0.4,0.004]T .

In Figure 2, we see the proposed algorithm yields a system with a cost J = 169.5836, while the cost
corresponding to the system-equivalence-based method is J = 193.1239. Figures 3 and 4 also show that
a shorter settling time can be achieved while less control energy is required, after applying the proposed
co-design algorithm. Figure 3 however shows the load position trajectory tracking a unit step input from the
zero initial state. This is based on the understanding that for a linear system (53), regulating the state from
x0 = [−1,0,0,0]T to zero, implemented in simulation, is equivalent to controlling the zero-state system to
track a unit step reference, as shown in Figure 3.

Table 1. System parameters

Param. Min. Max. Init. Opt. S.E.-based
1

mL
0.3333 1 0.5 1 0.6667

1
mB

0.04 0.0667 0.05 0.0667 0.0667
kB
mB

0.4 1.3333 0.75 0.4393 0.75
dB
mB

0.004 0.0667 0.025 0.0369 0.025
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Figure 3. Tracking performance to a step command.
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Figure 4. Comparison of the control inputs.

5. Conclusions

In this paper, we have proposed a novel iterative technique to solve optimal co-design problems for a class of
linear control systems. After separating each iteration step into an optimal control problem and an optimal
system design problem, we have shown that the second problem can be achieved by solving a standard
semi-definite programming problem, without involving non-convexity and nonlinearity. We have proposed
a practical optimization algorithm, of which the related stability and convergence properties have been
proved. The application to the co-design of a load positioning example has been investigated to validate
the efficiency of the proposed algorithm. It will be interesting to extend the proposed method to study the
co-design of nonlinear systems.
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da Silva, M. M., Brüls, O., Desmet, W., and Van Brussel, H. (2009). Integrated structure and control design for

mechatronic systems with configuration-dependent dynamics. Mechatronics, 19(6):1016–1025.
de Farias, D. P. and Van Roy, B. (2003). The linear programming approach to approximate dynamic programming.

Operations Research, 51(6):850–865.
Fathy, H. K., Reyer, J. A., Papalambros, P. Y., and Ulsoy, G. (2001). On the coupling between the plant and the con-

troller optimization problems. In Proceedings of the American Control Conferences, pages 1864–1869, Arlington,
VA.

Filippov, A. F. (1962). On certain questions in the theory of optimal control. Journal of The Society for Industrial and
Applied Mathematics, Series A: Control, 1(1):76–84.

Freudenberg, J. S. and Looze, D. P. (1985). Right half plane poles and zeros and design tradeoffs in feedback systems.
IEEE Transactions on Automatic Control, AC-30(6):555–565.

Goh, K. C., Safonov, M. G., and Papavassilopoulos, G. P. (1994). A global optimization approach for the BMI
problem. In Proceedings of the IEEE Conference on Decision and Control, pages 2009–2014, Lake Buena Vista,
FL.

Grigoriadis, K. M., Carpenter, M. J., Zhu, G., and Skelton, R. E. (1993). Optimal redesign of linear systems. In
Proceedings of the American Control Conference, pages 2680–2684, San Francisco, CA.

Hale, A. L., Dahl, W., and Lisowski, J. (1985). Optimal simultaneous structural and control design of maneuvering
flexible spacecraft. Journal of Guidance, Control, and Dynamics, 8(1):86–93.

Harold, H. W. and Tucker, A. W. (1951). Nonlinear programming. In Proceedings of the Second Berkeley Symposium
on Mathematical Statistics and Probability, volume 5.

Hassibi, A., Jonathan, H., and Boyd, S. (1999). A path-following method for solving BMI problems in control. In
Proceedings of the American Control Conference, pages 1385–1389, San Diego, CA.

He, B., Xu, M., and Yuan, X. (2011). Solving large-scale least squares seimdefinite programming by alternating
direction methods. SIAM Journal of Matrix Analysis and Applications, 32(1):136–152.

Iwasaki, T. (1999). The dual iteration for fixed-order control. IEEE Transactions on Automatic Control, 44(4):783–
788.

Jacobson, D. H., Lele, M. M., and Speyer, J. L. (1971). New necessary conditions of optimality for control problems
with state-variable inequality constraints. Journal of Mathematical Analysis and Applications, 35:255–284.

Jiang, Y., Wang, Y., Bortoff, S. A., and Jiang, Z.-P. (2015). Optimal co-design of nonlinear control systems based on a
modified policy iteration method. IEEE Transactions on Neural Networks and Learning Systems, 26(2):409–414.

Kanev, S., Scherer, C., Verhaegen, M., and De Schutter, B. (2004). Robust output-feedback controller design via BMI
optimization. Automatica, 40(7):1115–1127.

Kleinman, D. (1968). On an iterative technique for Riccati equation computations. IEEE Transactions on Automatic
Control, 13(1):114–115.

Lewis, F. L., Vrabie, D., and Syrmos, V. L. (2012). Optimal Control, 3rd Edition. Wiley.
Li, Q., Zhang, W. J., and Chen, L. (2001). Design for control-a concurrent engineering approach for mechatronic

systems design. IEEE/ASME Transactions on Mechatronics, 6(2):161–169.
Lu, J. and Skelton, R. E. (2000). Integrating structure and control design to achieve mixed H2/H∞ performance.

International Journal of Control, 73(16):1449–1462.
Mangasarian, O. L. (1966). Sufficient conditions for the optimal control of nonlinear systems. SIAM Journal on

Control, 4(1):139–152.
Messac, A. (1998). Control-structure integrated design with closed-form design metrics using physical programming.

AIAA Journal, 36(5):855–864.
Onoda, J. and Haftka, R. T. (1987). An approach to structure/control simultaneous optimization for large flexible

spacecraft. AIAA Journal, 25(8):1133–1138.
Papalambros, P. Y. and Wilde, D. J. (2000). Principles of Optimal Design. Cambridge University Press, UK.
Patil, R., Filipi, Z., and Fathy, H. (2010). Computationally efficient combined design and control optimization using

a coupling measure. In Proceedings of the 5th IFAC Symposium on Mechatronic Systems, pages 144–151.
Patil, R., Filipi, Z., and Fathy, H. (2012). Computationally efficient combined design and control optimization using

a coupling measure. ASME Journal of Mechanical Design, 134(7):071008.
Peters, D. L., Papalambros, P. Y., and Ulsoy, A. G. (2010). Relationship between coupling and the controllability

14



September 1, 2015 International Journal of Control ijc14a˙Co-Design˙of˙linear˙systems˙final

grammian in co-design problems. In Proceedings of the American Control Conference, pages 623–628.
Peters, D. L., Papalambros, P. Y., and Ulsoy, A. G. (2011). Control proxy functions for sequential design and control

optimization. Journal of Mechanical Design, 133:091007.
Pil, A. C. and Asada, H. H. (1996). Integrated structure/control design of mechatronic systems using a recursive

experimental optimization method. IEEE/ASME Transactions on Mechatronics, 1(3):191–203.
Ravichandran, T., Wang, D., and Heppler, G. (2006). Simultaneous plant-controller design optimization of a two-link

planar manipulator. Mechatronics, 16(3):233–242.
Reyer, J. A. and Papalambros, P. Y. (2002). Combined optimal design and control with application to an electric DC

motor. Journal of Mechanical Design, 124(2):183–191.
Salama, M., Garba, J., Demsetz, L., and Udwadia, F. (1988). Simultaneous optimization of controlled structures.

Computational Mechanics, 3(4):275–282.
Serön, M. M., Braslavsky, J. H., and Goodwin, G. C. (1997). Fundamental Limitations in Filtering and Control.

Springer, Berlin.
Shilpiekandula, V., Bortoff, S. A., Barnwell, J. C., and El-Rifai, K. (2012). Load positioning in the presence of base

vibrations. In Proceedings of the American Control Conference, pages 6282–6287, Montreal, Canada.
Skelton, R. E. and Kim, J. H. (1992). The optimal mix of structure redesign and active dynamic controllers. In

Proceedings of the American Control Conference, pages 2775–2779, Chicago, IL.
Sussmann, H. J. (1999). A maximum principle for hybrid optimal control problems. In Proceedings of the IEEE

Conference on Decision and Control, pages 425–430, Phoenix, AZ.
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