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Abstract
Model predictive control (MPC) anticipates future events to take appropriate control ac-
tions. Nonlinear MPC (NMPC) deals with nonlinear models and/or constraints. A Con-
tinuation/GMRES Method for NMPC, suggested by T. Ohtsuka in 2004, uses the GMRES
iterative algorithm to solve a forward difference approximation Ax = b of the original NMPC
equations on every time step. We have previously proposed accelerating the GMRES and
MINRES convergence by preconditioning the coefficient matrix A. We now suggest simplify-
ing the construction of the preconditioner, by approximately solving a forward recursion for
the state and a backward recursion for the costate, or simply reusing previously computed
solutions.
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iterative algorithm to solve a forward difference approximation Ax = b of the original NMPC
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1. INTRODUCTION

Model Predictive Control (MPC) is an optimal control
technology, which is capable to cope with constrained
systems and widely used in industry and academia; see,
e.g., Qin et al. (2003), Camacho et al. (2004), and Grüne
et al. (2011). Nonlinear MPC (NMPC) deals with nonlin-
ear models and/or constraints. Main numerical methods
applied in NMPC are surveyed by Diehl et al. (2009).

The Continuation/GMRES by Ohtsuka (2004) is one of
the real-time numerical methods for NMPC. Ohtsuka’s
method combines several techniques including replacement
of inequality constraints by equality constraints, numerical
elimination of the state, by the forward recursion, and
the costate, by the backward recursion, and the Krylov
subspace iterations for solving nonlinear equations via
parameter continuation. Tanida et al. (2004) have intro-
duced a preconditioned C/GMRES method, however, their
preconditioner is inefficient.

Our previous work in Knyazev et al. (2015a) extends
Ohtsuka’s approach in various ways. The Continuation
NMPC (CNPMC) method is formulated for a more general
optimal control model with additional parameters and
terminal constraints, which allows us solving minimal time
problems. We also use preconditioners for CNMPC, based
on an explicit construction of the Jacobian matrices at
some time steps, improving convergence of the Krylov
iterations. We propose substituting the MINRES iterative
solver for GMRES in CNMPC, reducing the memory
requirements and the arithmetic costs per iteration.

The present note shows how to reduce the cost of the pre-
conditioning setup, by approximating the Jacobian matrix
in the Newton iterations. The idea of such an approxi-
mation relies on the observation that most entries of the

Jacobian weakly depend on small perturbations of the
state and costate. Most columns of the Jacobian can be
built from a single instance of the state and costate vari-
ables computed, e.g., during generation of the right-hand
side of the system solved by the Newton method. Only
a small number of columns of the Jacobian, specifically,
responsible for treating the terminal constraints and the
parameter, is sensitive to changes of the state and costate.
We recalculate the state and costate corresponding just to
these sensitive columns. Moreover, for the purpose of the
preconditioner setup, we can, in addition, compute the
state and costate on a coarser grid on the horizon with
subsequent linear interpolation of them at the intermedi-
ate points. We can also use other general techniques for
fast preconditioner setup, e.g., computation of the state
and costate variables, as well as the preconditioner and its
factorization, in a reduced computer precision. Our numer-
ical results demonstrate that the preconditioned GMRES
and MINRES, where the preconditioner is constructed us-
ing the approximate state and costate variables, converge
faster, compared to their analogs without preconditioning.
The paper discusses basic principles of preconditioning,
and detailed algorithms of computation of the precondi-
tioning schemes are to be reported in our extended paper.

The rest of the note is as follows. In Section 2, we derive the
nonlinear equations, which are solved by the continuation
Newton-Krylov method. Section 3 describes how GMRES
or MINRES iterations are applied to numerical solution of
these nonlinear equations. Section 4 presents our main con-
tribution by giving details of the preconditioner construc-
tion, which is based on reusing the previously computed
and approximated state and costate variables. Section 5
defines a representative test example; and Section 6 gives
numerical results illustrating the quality of the method
with the suggested preconditioner.



2. DERIVATION OF THE OPTIMALITY
CONDITIONS

The MPC approach is based on the prediction by means of
a finite horizon optimal control problem along a fictitious
time τ ∈ [t, t + T ]. Our model finite horizon problem
consists in choosing the control u(τ) and parameter vector
p, which minimize the performance index J as follows:

min
u,p

J,

where

J = φ(x(t+ T ), p) +

∫ t+T

t

L(τ, x(τ), u(τ), p)dτ

subject to the equation for the state dynamics

dx

dτ
= f(τ, x(τ), u(τ), p), (1)

and the equality constraints for the state x and control u

C(τ, x(τ), u(τ), p) = 0, (2)

ψ(x(t+ T ), p) = 0. (3)

The initial value x(τ)|τ=t for (1) is the state vector x(t)
of the dynamic system. The control vector u = u(τ),
solving the problem over the prediction horizon, is used
afterwards as an input to control the system at time t. The
components of the vector p(t) are parameters of the system
and do not depend on τ . In our minimum-time example
in Section 5, the scalar parameter p(t) denotes the time to
destination, and the horizon length is T = p(t).

The prediction problem stated above is discretized on a
uniform, for simplicity of presentation, time grid over the
horizon [t, t + T ] partitioned into N time steps of size
∆τ , and the time-continuous vector functions x(τ) and
u(τ) are replaced by their sampled values xi and ui at
the grid points τi, i = 0, 1, . . . , N . The integral of the
performance cost J over the horizon is approximated by
the rectangular quadrature rule. Equation (1) is integrated
by the the explicit Euler scheme, which is the simplest
possible method. We note that more sofisticated one-step
adaptive schemes can be used as well. The discretized
optimal control problem is formulated as follows:

min
ui,p

[
φ(xN , p) +

N−1∑
i=0

L(τi, xi, ui, p)∆τ

]
,

subject to

xi+1 = xi+ f(τi, xi, ui, p)∆τ, i = 0, 1, . . . , N −1, (4)

C(τi, xi, ui, p) = 0, i = 0, 1, . . . , N − 1, (5)

ψ(xN , p) = 0. (6)

The necessary optimality conditions for the discretized
finite horizon problem are the stationarity conditions for
the discrete Lagrangian function

L(X,U) = φ(xN , p) +

N−1∑
i=0

L(τi, xi, ui, p)∆τ

+λT0 [x(t)− x0] +

N−1∑
i=0

λTi+1[xi − xi+1 + f(τi, xi, ui, p)∆τ ]

+

N−1∑
i=0

µTi C(τi, xi, ui, p)∆τ + νTψ(xN , p),

where X = [xi λi]
T , i = 0, 1, . . . , N , and U = [ui µi ν p]

T ,
i = 0, 1, . . . , N − 1. Here, λ is the costate vector, µ
is the Lagrange multiplier vector associated with the
constraint (5). The terminal constraint (6) is relaxed by
the aid of the Lagrange multiplier ν.

The necessary optimality conditions are the system of
nonlinear equations Lλi = 0, Lxi = 0, i = 0, 1, . . . , N ,
Luj = 0, Lµj = 0, i = 0, 1, . . . , N − 1, Lνk = 0, Lpl = 0.

For further convenience, we introduce the Hamiltonian
function H(t, x, λ, u, µ, p) = L(t, x, u, p) + λT f(t, x, u, p) +
µTC(t, x, u, p).

The optimality conditions are reformulated in terms of
a mapping F [U, x, t], where the vector U combines the
control input u, the Lagrange multiplier µ, the Lagrange
multiplier ν, and the parameter p, all in one vector:

U(t) = [uT0 , . . . , u
T
N−1, µ

T
0 , . . . , µ

T
N−1, ν

T , pT ]T .

The vector argument x in F [U, x, t] denotes the state
vector at time t, which serves as the initial vector x0 in
the following procedure.

(1) Starting from the current measured or estimated state
x0, compute all xi, i = 0, 1 . . . , N , by the forward
recursion

xi+1 = xi + f(τi, xi, ui, p)∆τ.

Then starting from

λN =
∂φT

∂x
(xN , p) +

∂ψT

∂x
(xN , p)ν

compute all costates λi, i = N, . . . , 1, 0, by the
backward recursion

λi = λi+1 +
∂HT

∂x
(τi, xi, λi+1, ui, µi, p)∆τ.

(2) Using just obtained xi and λi, calculate the vector

F [U, x, t] =



∂HT

∂u
(τ0, x0, λ1, u0, µ0, p)∆τ

...
∂HT

∂u
(τi, xi, λi+1, ui, µi, p)∆τ

...
∂HT

∂u
(τN−1, xN−1, λN , uN−1, µN−1, p)∆τ

C(τ0, x0, u0, p)∆τ
...

C(τi, xi, ui, p)∆τ
...

C(τN−1, xN−1, uN−1, p)∆τ

ψ(xN , p)

∂φT

∂p
(xN , p) +

∂ψT

∂p
(xN , p)ν

+

N−1∑
i=0

∂HT

∂p
(τi, xi, λi+1, ui, µi, p)∆τ



.

The equation with respect to the unknown vector U(t)

F [U(t), x(t), t] = 0 (7)

gives the required necessary optimality conditions.



3. NUMERICAL ALGORITHM

The controlled system is sampled on a uniform time grid
tj = j∆t, j = 0, 1, . . .. Solution of equation (7) must
be found at each time step tj in real time, which is a
challenging part of implementation of NMPC.

Let us denote xj = x(tj), Uj = U(tj), and rewrite the
equation F [Uj , xj , tj ] = 0 equivalently in the form

F [Uj , xj , t]− F [Uj−1, xj , tj ] = bj ,

where

bj = −F [Uj−1, xj , tj ]. (8)

Using a small h, which may be different from ∆t and ∆τ ,
we introduce the operator

aj(V ) = (F [Uj−1 + hV, xj , tj ]− F [Uj−1, xj , tj ])/h. (9)

We note that the equation F [Uj , xj , tj ] = 0 is equivalent to
the equation aj(∆Uj/h) = bj/h, where ∆Uj = Uj −Uj−1.

Let us denote the k-th column of the m×m identity matrix
by ek, where m is the dimension of the vector U , and define
an m × m matrix Aj with the columns Ajek = aj(ek),
k = 1, . . . ,m. The matrix Aj is an O(h) approximation of
the Jacobian matrix FU [Uj−1, xj , tj ], which is symmetric.

Suppose that an approximate solution U0 to the initial
equation F [U0, x0, t0] = 0 is available. The first block entry
of U0 is taken as the control u0 at the state x0. The next
state x1 = x(t1) is either sensor estimated or computed by
the formula x1 = x0 + f(t0, x0, u0)∆t; cf. (1).

At the time tj , j > 1, we have the state xj and the vector
Uj−1 from the previous time tj−1. Our goal is to solve the
following equation with respect to V :

aj(V ) = bj/h. (10)

Then we can set Uj = Uj−1+hV and choose the first block
component of Uj as the control uj . The next system state
xj+1 = x(tj+1) is either sensor estimated or computed by
the formula xj+1 = xj + f(tj , xj , uj)∆t.

A direct way to solve (10) is generating the matrix Aj and
then solving the system of linear equations Aj∆Uj = bj ;
e.g., by the Gaussian elimination.

A less expensive alternative is solving (10) by the GMRES
method, where the operator aj(V ) is used without explicit
construction of the matrix Aj (cf., Kelly (1995); Ohtsuka
(2004)). Some results on convergence of GMRES in the
nonlinear case can be found in Brown et al. (2008).

We recall that, for a given system of linear equations
Ax = b and initial approximation x0, GMRES con-
structs orthonormal bases of the Krylov subspaces Kn =
span{r0, Ar0, . . . , An−1r0}, n = 1, 2, . . ., given by the
columns of matrices Qn, such that AQn = Qn+1Hn with
the upper Hessenberg matrices Hn and then searches for
approximations to the solution x in the form xn = Qnyn,
where yn = argmin‖AQnyn − b‖2.

A more efficient variant of GMRES, called MINRES, may
be applied when the matrix A is symmetric, and the
preconditioner is symmetric positive definite. Using the
MINRES iteration in Ohtsuka’s approach is mentioned in
Knyazev et al. (2015a).

4. PRECONDITIONING

The convergence of GMRES can be accelerated by pre-
conditioning. A matrix M that is close to the matrix A
and such that computing M−1r for an arbitrary vector
r is relatively easy, is referred to as a preconditioner.
The preconditioning for the system of linear equations
Ax = b with the preconditioner M formally replaces the
original system Ax = b with the equivalent precondi-
tioned linear system M−1Ax = M−1b. If the condition
number ‖M−1A‖‖A−1M‖ of the matrix M−1A is small,
convergence of iterative Krylov-based solvers for the pre-
conditioned system can be fast. However, in general, the
convergence speed of, e.g., the preconditioned GMRES is
not necessarily determined by the condition number alone.

A typical implementation of the preconditioned GMRES
is given below. The unpreconditioned GMRES is the same
algorithm but with M = I, where I is the identity matrix.
We denote by Hi1:i2,j1:j2 the submatrix of H with the
entries Hij such that i1 ≤ i ≤ i2 and j1 ≤ j ≤ j2.

Algorithm Preconditioned GMRES(kmax)

Input: a(v), b, x0, kmax, M
Output: Solution x of a(x) = b
r = b− a(x0), z = M−1r, β = ‖z‖2, v1 = z/β
for k = 1, . . . , kmax do
r = a(vk), z = M−1r
H1:k,k = [v1, . . . , vk]T z
z = z − [v1, . . . , vk]H1:k,k

Hk+1,k = ‖z‖2
vk+1 = z/‖z‖2

end for
y = arg miny‖H1:kmax+1,1:kmax

y − [β, 0, . . . , 0]T ‖2
x = x0 + [v1, . . . , vkmax ]y

In Knyazev et al. (2015a), the matrix Aj is exactly com-
puted at some time instances tj and used as a precondi-
tioner in a number of subsequent time instances tj , tj+1,
. . . , tj+jp . In the present note, we propose to use a close
approximation to Aj , which needs much less arithmetic
operations for its setup. Construction of such approxima-
tions Mj is the main result of this note.

We recall that computation of the k-th column of Aj
requires computation of all states x(τi) and costates λ(τi)
for the parameters stored in the vector Uj−1 + hek. Is it
possible to replace them by x(τi) and λ(τi) computed for
the parameters stored in the vector Uj−1? The answer is
yes, for the indices k = 1, . . . ,m− l, where l is the sum of
dimensions of ψ and p. These k indices correspond to the
terms containing the factor ∆τ in the Lagrangian L.

The first m−l columns (and rows, since the preconditioner
Mj is symmetric) are calculated by the same formulas as
those in Aj , but with the values x(τi) and λ(τi) computed
only once for the parameters stored in the vector Uj−1,
i.e., when computing the vector bj . Thus, the setup of Mj

computes the states x(τi) and costates λ(τi) only l times
instead of m times as for the matrix Aj . It is this reduction
of computing time that makes the preconditioner Mj more
efficient, especially in cases where dimension of the state
space is very large.



The preconditioner Mj is obtained from Aj by neglect-
ing the derivatives ∂xi1/∂ui2 , ∂λi1/∂ui2 , ∂xi1/∂µi2 and
∂λi1/∂µi2 . Therefore, the difference Aj −Mj is of order
O(∆τ) since ∂xi1/∂ui2 = O(∆τ), ∂λi1/∂ui2 = O(∆τ),
∂xi1/∂µi2 = 0 and ∂λi1/∂µi2 = O(∆τ).

The preconditioner application M−1r requires the LU
factorization M = LU , which is computed by the Gaussian
elimination. Then the vector M−1r = U−1(L−1r) is ob-
tained by performing back-substitutions for the triangular
factors L and U . Further acceleration of the preconditioner
setup is possible by faster computation of the LU factoriza-
tion. For example, when computation with lower number
of bits is cheaper than computation with the standard
precision, the preconditioner Mj and its LU factorization
may be computed in lower precision.

Another way of reduction of the arithmetical work in the
preconditioner setup is the computation of the states x
and costates λ with the double step 2∆τ thus halving the
arithmetical cost and memory storage. The intermediate
values of x and λ are then obtained from the computed
values by simple linear interpolation.

5. EXAMPLE

We consider a test nonlinear problem, which describes
the minimum-time motion from a state (x0, y0) to a state
(xf , yf ) with an inequality constrained control:

• State vector x =

[
x
y

]
and input control u =

[
u
ud

]
.

• Parameter variable p = tf − t, where tf denotes the
arrival time at the terminal state (xf , yf ).
• Nonlinear dynamics is governed by the system of

ordinary differential equations

ẋ = f(x,u,p) =

[
(Ax+B) cosu
(Ax+B) sinu

]
.

• Constraint: C(x,u,p) = (u − cu)2 + u2d − r2u = 0,
where cu = c0 + c1 sin(ωt) and ud is a slack variable,
i.e., the control u always stays within the sinusoidal
band cu − ru ≤ u ≤ cu + ru).

• Terminal constraints: ψ(x,p) =

[
x− xf
y − yf

]
= 0 (the

state should pass through the point (xf , yf ) at t = tf )
• Objective function on the horizon interval [t, tf ]:

J = φ(x,p) +

∫ t+p

t

L(x,u,p)dt,

where

φ(x,p) = p, L(x,u,p) = −wdud
(the state should arrive at (xf , yf ) in the shortest
time; the function L serves to stabilize the slack
variable ud)
• Constants: A = B = 1, x0 = y0 = 0, xf = yf = 1,
c0 = 0.8, c1 = 0.3, ω = 10, ru = 0.2, wd = 0.005.

The horizon interval [t, tf ] is parametrized by the affine
mapping τ → t+ τp with τ ∈ [0, 1].

The components of the corresponding discretized problem
on the horizon are given below:

• ∆τ = 1/N , τi = i∆τ , cui = c0 + c1 sin(ω(t+ τip));

• the participating variables are the state

[
xi
yi

]
, the

costate

[
λ1,i
λ2,i

]
, the control

[
ui
udi

]
, the Lagrange

multipliers µi and

[
ν1
ν2

]
, the parameter p;

• the state is governed by the model equation{
xi+1 = xi + ∆τ [p (Axi +B) cosui] ,
yi+1 = yi + ∆τ [p (Axi +B) sinui] ,

where i = 0, 1, . . . , N − 1;
• the costate is determined by the backward recursion

(λ1,N = ν1, λ2,N = ν2){
λ1,i = λ1,i+1

+ ∆τ [pA(cosuiλ1,i+1 + sinuiλ2,i+1)] ,
λ2,i = λ2,i+1,

where i = N − 1, N − 2, . . . , 0;
• the equation F (U, x0, y0, t) = 0, where

U = [u0, ud,0, . . . , uN−1, ud,N−1,

µ0, . . . , µN−1, ν1, ν2, p],

has the following rows from the top to bottom:{
∆τ [p(Axi +B) (− sinuiλ1,i+1 + cosuiλ2,i+1)

+ 2 (ui − cui)µi] = 0
∆τ [2µiudi − wdp] = 0{
∆τ
[
(ui − cui)2 + u2di − r2u

]
= 0{

xN − xr = 0
yN − yr = 0
∆τ [

N−1∑
i=0

(Axi +B)(cosuiλ1,i+1 + sinuiλ2,i+1)

− 2(ui − cui)µic1 cos(ω(t+ τip))ωτi
−wdudi] + 1 = 0.

Let us compare the computation costs of the matrices Aj
and Mj for this example. We do not take into account the
computation of the right-hand side bj = −F [Uj−1, xj , tj ]
because it is a necessary cost. Computation of the matrix
Aj requires 3N + 3 evaluations of the vector F [Uj−1 +
hV, xj , tj ], where N is the number of grid points on the
prediction horizon. Setup of Mj requires only 3 evaluations
of F [Uj−1 + hV, xj , tj ], which is N + 1 times faster.

6. NUMERICAL RESULTS

In our numerical experiments, the weakly nonlinear sys-
tem (10) for the test problem from Section 5 is solved
by the GMRES and MINRES iterations. The number of
evaluations of the vector a(V ) at each time tj does not
exceed an a priori chosen constant kmax = 20. In other
words, the maximum number of GMRES or MINRES
iterations is less or equal kmax. The error tolerance in
GMRES and MINRES is tol = 10−5. The number of grid
points on the horizon is N = 50, the sampling time of
simulation is ∆t = 1/500, and h = 10−8.

The preconditioners are set up at the time instances ltp,
where tp = 0.2 is the period, and l = 0, 1, . . .. After each
setup, the same preconditioner is applied until next setup.
Preconditioners for MINRES must be symmetric positive
definite and are built here as the absolute value of Mj , i.e.,



if Mj = UΣV T is the singular value decomposition, then
|Mj | = UΣUT ; see Vecharinski et al. (2013).

Figure 1 shows the computed trajectory for the test
example. Figure 2 shows the optimal control by the MPC
approach using the preconditioned GMRES. Figure 3
displays ‖F‖2 and the GMRES residuals.

The number of iterations of preconditioned GMRES is
displayed in Figure 4. For comparison, we show the number
of iterations of the preconditioned MINRES in Figure 5.

Figure 6 displays ‖F‖2 and the 2-norm of the residual
after iterations of GMRES without preconditioning. The
corresponding number of iterations of GMRES without
preconditioning is shown in Figure 7. The number of
iterations of MINRES without preconditioning is shown
in Figure 8.

Effect of preconditioning is seen when comparing Figures 4
and 7 for GMRES and Figures 5 and 8 for MINRES.
Preconditioning of GMRES reduces the number of iter-
ations by factor 1.2. Preconditioning of MINRES reduces
the number of iterations by factor 1.4.

The number of iterations does not necessarily account for
the additional complexity that preconditioning brings to
the on-line algorithm. However, the computation time is
machine and implementation dependent, while our tests
are done in MATLAB on a generic computer. Specific
implementations on dedicated computer chips for on-line
controllers is a topic of future work.

CONCLUSIONS

We have found a new efficient preconditioner Mj , which
approximates the Jacobian matrix Aj of the mapping F
defining equation (7). Computation of Mj is O(N) times
faster than that of Aj , where N is the number of grid
points on the prediction horizon.

The preconditioner Mj can be very efficient for the NMPC
problems, where dimension of the state space is large, for
example, in the control of dynamic systems described by
partial differential equations.

Other useful techniques for accelerating the preconditioner
setup include computation of the matrices Mj and their
LU factorizations in lower precision, computation of the
state and costate on a coarse grid over the horizon and
linear interpolation of the computed values on the fine grid.
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Fig. 1. Trajectory by NPMC using the preconditioned
GMRES

0 0.2 0.4 0.6 0.8 1
0.4

0.6

0.8

1

1.2

1.4

Time

 

 

Control

Constraints

Fig. 2. NMPC control u using the preconditioned GMRES
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Fig. 3. Preconditioned GMRES, kmax = 20
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Fig. 4. Preconditioned GMRES, kmax = 20

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

Time

N
u

m
b

e
r 

o
f 

M
IN

R
E

S
 i
te

ra
ti
o

n
s

Fig. 5. Preconditioned MINRES, kmax = 20
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Fig. 6. GMRES without preconditioning, kmax = 20

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

Time

N
u

m
b

e
r 

o
f 

P
G

M
R

E
S

 i
te

ra
ti
o

n
s

Fig. 7. GMRES without preconditioning, kmax = 20
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Fig. 8. MINRES without preconditioning, kmax = 20
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