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Abstract
Bandwidth limitation hinders the economical and broad application of induction motors
promised by speed sensorless drive. This paper proposes an integrated control and observer
design for speed sensorless control of induction motors with stator voltage and current mea-
surements. With a general observer structure, the backstepping-based robust control design
explicitly considers the errors of both the state estimation and tracking, and thus avoids the
commonly used time scale separation. The gain selection for the controller becomes easy and
straightforward. As a case study, the extended Kalman filter is used as a state estimator
in order to simplify the gain tuning process. Simulation results validate the effectiveness of
proposed method.
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1 Introduction

Speed regulation of induction motors is an old but inter-
esting problem. Techniques to achieve the speed regulation
have evolved from variable frequency control to vector con-
trol and its variants for instance direct/indirect field-oriented
state feedback control, speed-sensorless control [1, 2], adap-
tive field-oriented control [1,3]. The vector control with full
state or the rotor speed measurements results in good perfor-
mance at expenses of extra sensors, and thus limits its appli-
cation in practice. Recent work is devoted to speed sensor-
less control algorithms, e.g. without the speed measurement.

Speed-sensorless control design problem is practically
meaningful and challenging, and thus attracts a lot of the-
oretical interests, e.g. [4, 5]. Adaptive idea, where the
rotor speed is typically treated as an unknown parame-
ter to avoid nonlinearity in dynamics, was initially ex-
ploited and is still prevailing in the speed-sensorless mo-
tor drives [6–10]. Designs relying on the assumption of the
speed as a constant/slow-varying parameter suffer unsatis-
factory transient performance inherent to adaptation. Nu-
merous work tried to avoid the speed-as-parameter assump-
tion for instance high gain observer [2], sliding mode ob-
server [11–13], and extended kalman filter (EKF) [14] etc.,
but failed to address the drive performance aspect. As an ex-
ample, resorting to nonlinear observer design techniques en-
tails the system in certain normal forms, which turns out to
be difficult. Well-known high gain observer design assumes
observable form (OF). The induction motor model under any
frame is hardly put into OF due to the complexity of the state
transformation and difficulty to compute the inverse transfor-
mation. Various work circumvented the problem by consid-
ering open-loop flux observer, e.g. [2], thus lead to drives
with slow responses.

This paper proposes an integrated control and observer
design framework for speed sensorless control of induction
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motors with stator current measurements. With a general ob-
server structure, the backstepping-based robust control de-
sign explicitly considers all the state estimation and tracking
errors. The gain selection for the controller is straightfor-
ward. On the state estimation side, as a case study, an ex-
tended Kalman filter is designed to simplify the gain tuning
process. Simulation results are presented to show the fol-
lowing facts: 1) the proposed method can achieve high band-
width and high precision speed sensorless tracking control of
a typical induction motor under practical constraints (200Hz
control bandwidth for 20KHz sampling rate); 2) the gain se-
lection for the proposed method is systematic and simple; 3)
the proposed method can track various trajectories as long
as the state and control input constraints are considered. No
dependence of controller and/or observer on the trajectory is
found.
2 Preliminaries

2.1 The Induction Motor Model
With the assumption of linear magnetic circuits and bal-

anced operating conditions, the two-phase equivalent model
of an induction motor, represented in the fixed a−b reference
frame, can be written as follows [15],

ω̇ =
3

2

npM

JLr
(φraisb − φrbisa)− TL/J,

i̇sa =
MRr
σL2

r

φra +
npM

σLr
ωφrb − γisa +

1

σ
usa,

i̇sb =
MRr
σL2

r

φrb −
npM

σLr
ωφra − γisb +

1

σ
usb,

φ̇ra = −Rr
Lr
φra − npωφrb +

Rr
Lr
Misa,

φ̇rb = −Rr
Lr
φrb + npωφra +

Rr
Lr
Misb,

y =
[
isa, isb

]T
,

(1)

where the subscripts r and s stand for the stator and the rotor,
respectively; the subscripts a and b denote the a and b axis,



respectively; ω is the angular speed of the rotor, i denotes
the current, and φ denotes the flux linkage; u is the stator
voltage input; R, L, M , J , TL and np denote the resistance,
inductance, mutual inductance, rotor inertia, load torque, and
number of pole pairs, respectively. For compact notations,
following lumped parameters are introduced with α = Rr

Lr
,

β = M
σLr

, σ = Ls − M2

Lr
, γ =

M2Rr+L
2
rRs

σL2
r

= Rs

σ + αβM ,

and µ =
3

2
npM
JLr

. We assume that the load torque TL can be

parameterized as TL(ω) = T0 + Cfω with T0 an unknown
constant. With the following change of notations, x1 = ω,
x2 = isa, x3 = isb, x4 = φra, x5 = φrb, u1 = usa,
u2 = usb, b = 1

σ , a1 = µ, a2 = T0

J , a3 =
Cf

J , a5 = αβ,
a6 = npβ, a7 = γ, a8 = α, a9 = np, and a10 = αM , one
can rewrite the induction model (1) as

ẋ = f(x, u) = g(x) +Bu,

y = Cx,

g(x) =


a1(x3x4 − x2x5)− a2 − a3x1

a5x4 + a6x1x5 − a7x2
a5x5 − a6x1x4 − a7x3
−a8x4 − a9x1x5 + a10x2
−a8x5 + a9x1x4 + a10x3

 ,

B =


0 0
b 0
0 b
0 0
0 0

 , C =

[
0 1 0 0 0
0 0 1 0 0

]
,

(2)

with x = [x1, x2, x3, x4, x5]T and u = [u1, u2]T .

2.2 Problem Formulation
General specifications for speed-sensorless electric drives

using vector control is to regulate two variables: the rotor
speed and the rotor flux magnitude [1, 2] given by

[
x1

x24 + x25

]
. (3)

More specifically, the problem considered in this work is:
Given the IM model (2), synthesize control inputs u1 and u2
such that x1 and x24 + x25 track ωd(t) and ψ2

d, respectively.

3 Main Results: Observer Design

3.1 A General Observer
For the integrated design of observer and controller, a gen-

eral observer structure is first assumed as ˙̂xi = f̂i + sii,1 ≤
i ≤ 5, i.e.,

˙̂x1 = a1(x3x̂4 − x2x̂5)− â2 − a3x̂1 + si1(x̃2, x̃3)
˙̂x2 = a5x̂4 + a6x̂1x̂5 − a7x̂2 + bu1 + si2(x̃2, x̃3)
˙̂x3 = a5x̂5 − a6x̂1x̂4 − a7x̂3 + bu2 + si3(x̃2, x̃3)
˙̂x4 = −a8x̂4 − a9x̂1x̂5 + a10x̂2 + si4(x̃2, x̃3)
˙̂x5 = −a8x̂5 + a9x̂1x̂4 + a10x̂3 + si5(x̃2, x̃3)

(4)

For continuous case, such as Extended Kalman Filter (EKF)
and Luenberger observer:

si1(x̃2, x̃3) = l11x̃2 + l12x̃3
si2(x̃2, x̃3) = l21x̃2 + l22x̃3
si3(x̃2, x̃3) = l31x̃2 + l32x̃3
si4(x̃2, x̃3) = l41x̃2 + l42x̃3
si5(x̃2, x̃3) = l51x̃2 + l52x̃3,

(5)

where L is the matrix form of the observer gains l11, ...,
l52. For discontinuous case, such as sliding mode observer
(SMO):

si1(x̃2, x̃3) = h11S(x̃2) + h12S(x̃3)
si2(x̃2, x̃3) = h21S(x̃2) + h22S(x̃3)
si3(x̃2, x̃3) = h31S(x̃2) + h32S(x̃3)
si4(x̃2, x̃3) = h41S(x̃2) + h42S(x̃3)
si5(x̃2, x̃3) = h51S(x̃2) + h52S(x̃3).

(6)

Switching, however, induces chattering and thus continuous
approximations are often adopted instead: S(x̃2) ≈ l2eff x̃2
and S(x̃3) ≈ l3eff x̃3. L can still be defined with effective
gains l2eff and l3eff .

Define estimation errors as x̃ = x − x̂. Using prior in-
formation of the original system states, one can construct a
projection mapping to ensure the boundedness of state esti-
mates:

˙̂xi = Projx̂i
(τi)

τi = f̂i + sii
f̂i = fi(x̂, â2).

(7)

The projection mapping of a scalar is defined in [16] as

Projx̂i
(•i) =


0 if x̂i = ximax and •i > 0

0 if x̂i = ximin and •i < 0

•i otherwise

(8)

When applied to a vector x̂, the project map-
ping is component-wise, i.e., Projx̂(•) =
[Projx̂1

(•1), ..., P rojx̂5
(•5)]T . It can be shown that

for any adaptation function τ , the projection mapping used
in (8) guarantees

(P1)

x̂ ∈ Ωx , {x̂ : ximin ≤ x̂ ≤ ximax} . (9)

A slowly varying load torque can be treated by augment-
ing the state x with a2 which will be adapted in the observer
design. In addition, other slowly changing quantities, Rr, a5
a7 a8 a10, can also be treated as unknown parameters θ and
extended for adaptation within the same design framework.

3.2 Observer Design
As a case study, the EKF is designed to simplify the gain

tuning process as the Kalman gains are automatically ad-
justed along the state trajectory. With sampling rate of the
filter as Ts and forward difference method, the system dy-
namics (2) can be discretized as

xk = Tsf(xk−1, uk−1) + xk−1 = f ′(xk−1, uk−1) (10)



Linearization of the dynamics,

A =
∂f

∂x
=


−a3 −a1x5 a1x4 a1x3 −a1x2
a6x5 −a7 0 a5 a6x1
−a6x4 0 −a7 −a6x1 a5
−a9x5 a10 0 −a8 −a9x1
a9x4 0 a10 a9x1 −a8


(11)

Thus
Ak = TsA+ I (12)

Predict:
Predicted state estimate

x̂k|k−1 = f ′
(
x̂k−1|k−1, uk|k−1

)
(13)

Predicted covariance estimate

Pk|k−1 = Ak−1Pk−1|k−1A
T
k−1 +Qk−1 (14)

Update:
Measurement residual

ỹk = zk − Cx̂k|k−1 (15)

Residual covariance

Sk = CkPk|k−1C
T
k +Rk (16)

Near-optimal Kalman gain

Kk = Pk|k−1C
T
k S
−1
k (17)

Updated state estimate

x̂k|k = x̂k|k−1 +Kkỹk (18)

Updated covariance estimate

Pk|k = (I −KkCk)Pk|k−1. (19)

For general observer form

L =
Kk

Ts
. (20)

4 Main Results: Integrated Control Design

We consider the control design for the simplified case
where a system suffers from uncertainties d̃. For the induc-
tion motor case, uncertain nonlinearities could be result from
the state estimation errors. The following practical assump-
tion thus is required to establish stability results.

Assumption 4.1 Uncertain nonlinearities are bounded, i.e.,

d̃ ∈ Ωd ,
{
d̃ : ||d̃|| ≤ δd

}
, (21)

where d̃ = d−dn, and δd is also a known bounding function.

With (P1) in (9), the state observer can guarantee the
bounded state estimation error. The following assumption
can be made for the control design,

Assumption 4.2 The bounds of state estimation errors are
known, i.e.,

x̃ ∈ Ωx̃ , {x̃ : x̃min ≤ x̃ ≤ x̃max} (22)

where x̃min = [x̃1min, ..., x̃5min]T and x̃max =
[x̃1max, ..., x̃5max]T are known.

The control design consists of four steps. Step 1 is the
speed control loop with electromagnetic torque as an virtual
control; step 2 is a robust torque control loop which regu-
lates the electromagnetic torque from the speed loop in the
first step; step 3 is the flux tracking loop which regulates the
magnetic flux magnitude for efficient operation; step 4 de-
livers the required virtual control from step 3 using a similar
robust control design. State estimation errors are explicitly
taken into account within all control design steps as bounded
model uncertainties. The controller and observer structure
are illustrated in Fig. 1 with notations to be introduced in the
following design steps.
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control
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Flux control
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Flux control
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V

Fig. 1: Controller and observer structure.

4.1 Step 1–Speed Loop Control Design
Define the speed tracking error z1 = x̂1−ωd, and compute

its time derivative

ż1 =− a3z1 + a1(x3x̂4 − x2x̂5) + si1(x̃2, x̃3)

− ω̇d − a3ωd − â2.
(23)

Introduce a virtue control v1, and define the discrep-
ancy between v1 and the estimated electromagnetic torque
a1(x3x̂4 − x2x̂5) as follows

z2 = a1(x3x̂4 − x2x̂5)− v1. (24)

Thus the speed tracking error can be rewritten as

ż1 = −a3z1+v1+z2+si1(x̃2, x̃3)−ω̇d−a3ωd− â2. (25)

The virtual control v1 is split into two parts

v1 = v1a + v1s, (26)

where v1a is the feedforward model compensation given by

v1a = −si1(x̃2, x̃3) + ω̇d + a3ωd + â2, (27)

and v1s is the feedback stabilization control

v1s = −k1s1z1. (28)

Thus (25) can be rewritten as follows

ż1 = −k1z1 + z2, k1 = a3 + k1s1. (29)



Overall the virtual control v1 is given by

v1 = −k1s1z1 − si1(x̃2, x̃3) + ω̇d + a3ωd + â2, (30)

and its derivative is computed as follows

v̇1 =k1s1k1z1 + ω̈d + a3ωd + â2

+ (l11a7 + l11l21 + l12l31) x̃2

+ (l12a7 + l11l22 + l12l32) x̃3

− (l11a5 − l12a6x̂1) x̃4 − (l12a5 + l11a6x̂1) x̃5

− (l11a6x5 − l12a6x4) x̃1 − k1s1z2,
(31)

which will be used in the second step.

4.2 Step 2–Robust Torque Control Design
According to (24), (31), and (4), we have

ż2 = v2 + ψ2 + d̃2, (32)

where v2 = a21bu1 + a22bu2 with a21 = −a1x̂5, a22 =
a1x̂4, and

ψ2 =− (a7 + a8) v1 − a1a6x̂1
(
x̂24 + x̂25

)
− a1a9x̂1 (x̂5x3 + x̂4x2)

+ a1a10 (x̂2x3 − x̂3x2) + a1x3si4 (x̃2, x̃3)

− a1x2si5 (x̃2, x̃3)− k1s1k1z1 − ω̈d − a3ω̇d
− ˙̂a2 − (l11a7 + l11l21 + l12l31) x̃2

− (l12a7 + l11l22 + l12l32) x̃3 + k1s1z2

d̃2 =a1a5 (x̃5x̂4 − x̃4x̂5)− a1a6x1 (x̃4x̂4 + x̃5x̂5)

− a1a6x̃1
(
x̂24 + x̂25

)
+ (l11a5 − l12a6x̂1) x̃4

+ (l12a5 + l11a6x̂1) x̃5

+ (l11a6x5 − l12a6x4) x̃1,

(33)

where d̃2 denotes the disturbance due to state estimation er-
rors. One can try to estimate it which may result in improved
system performance or reject it using the prior knowledge of
its bounds. We here treat it as a bounded disturbance. The
control v2 is rewritten as follows

v2 = v2a + v2s, (34)

where the feedforward model compensation term is

v2a = −ψ2 − d̃2 − z1, (35)

and the feedback stabilization term v2s consists of the nom-
inal stabilization term v2s1 and the robust control term v2s2

v2s = v2s1 + v2s2,
v2s1 = −k2s1z2,
k2 = a7 + a8 + k2s1.

(36)

Thus (32) can be rearranged as follows

ż2 = −k2z2 + v2s2 + d̃2 − z1. (37)

Given Assumption 4.2, d̃2 is bounded. Thus there exists
v2s2 such that the following conditions hold
• z2(v2s2 + d̃2) ≤ ε2,
• z2v2s2 ≤ 0,

where ε2 is a design parameter and can be arbitrarily small.
One example of v2s2 that satisfies above conditions can be
taken as follows

v2s2 = − 1

4ε2
h22z2, (38)

where h2 = δd2 and δd2 is the bound of d̃2.

Remark 4.3 The aforementioned control v1 and v2 ensures
that all signals are bounded. We define a positive definite
function

Vs2 =
1

2
z21 +

1

2
z22 (39)

and have its time derivative

V̇s2 =− k1z21 + z1z2 + z2ż2

=− k1z21 − k2z22 + z2(v2s2 + d̃2)

≤− k1z21 − k2z22 + ε2

≤− λ2Vs2 + ε2.

(40)

Hence, Vs2 is bounded above by

Vs2 ≤ exp(−λ2t)Vs2(0) +
ε2
λ2

[1− exp(−λ2t)], (41)

where λ2 = 2 min(k1, k2).

4.3 Step 3–Flux Outer Loop Control Design
Flux tracking control is designed using backstepping. De-

fine the flux modules tracking error

z3 = x̂24 + x̂25 − ψd, (42)

and compute its time derivative

ż3 = 2a10 (x2x̂4 + x3x̂5) + ψ3, (43)

where

ψ3 =− 2a8
(
x̂24 + x̂25

)
− 2a10 (x̃2x̂4 + x̃3x̂5)

+ 2l41x̃2x̂4 + 2l42x̃3x̂4 + 2l51x̃2x̂5 + 2l52x̃3x̂5 − ψ̇d.

Note that ψ3 depends on accessible signals. Introduce a vir-
tual control v3, and a state z4 to denote the discrepancy be-
tween v3 and 2a10(x2x̂4 + x3x̂5), i.e.,

z4 = 2a10(x2x̂4 + x3x̂5)− v3. (44)

Similar to v1, the virtual control v3 is rewritten as

v3 = v3a + v3s, (45)

where the feedforward model compensation is v3a = −ψ3

and the feedback stabilization term v3s = −k3s1z3. Thus we
have

ż3 = −k3z3 + z4, k3 = k3s1. (46)

4.4 Step 4–Flux Inner Loop Control Design
The derivative of the virtue control discrepancy is

ż4 = v4 + ψ4 + d̃4, (47)



where

ψ4 = 2a10a5
(
x̂24 + x̂25

)
− 2a10a7 (x̂2x̂4 + x̂3x̂5)

+ 2a10 (l21x̃2x̂4 + l22x̃3x̂4 + l31x̃2x̂5 + l32x̃3x̂5)

+ 2 (l41x̂4 + l51x̂5) (− (a7 + l21) x̃2 − l22x̃3)

+ 2 (l42x̂4 + l52x̂5) (−l31x̃2 − (a7 + l32) x̃3)

+ 2 (l41x̃2 + l42x̃3 + a10x̂2 − 2a8x̂4)

× (−a8x̂4 − a9x̂1x̂5 + a10x̂2)

+ 2 (l41x̃2 + l42x̃3 + a10x̂2 − 2a8x̂4) (l41x̃2 + l42x̃3)

+ 2 (l51x̃2 + l52x̃3 + a10x̂3 − 2a8x̂5)

× (−a8x̂5 + a9x̂1x̂4 + a10x̂3)

+ 2 (l51x̃2 + l52x̃3 + a10x̂3 − 2a8x̂5) (l51x̃2 + l52x̃3)

+ k3 (−k3z3 + z4)− ψ̈d
d̃4 = (2a5l41x̂4 − 2a6l42x̂4x̂1 + 2a5l51x̂5 − 2a6l52x̂5x̂1) x̃4

+ (2l41a6x̂1x̂4 + 2l51a6x̂1x̂5 + 2l42a5x̂4 + 2l52a5x̂5) x̃5

+ 2 (l41x̂4 + l51x̂5) a6x̃1x5 − 2 (l42x̂4 + l52x̂5) a6x̃1x4.

Note d̃4 is the disturbance due to state estimation errors, and

v4 = a21bu1 + a22bu2,
a41 = 2a10x̂4,
a42 = 2a10x̂5.

(48)

Design control input as

v4 = v4a + v4s, (49)

where the feedforward model compensation is

v4a = −ψ4 − z3, (50)

and the feedback stabilization control term consists of the
nominal stabilization term v4s1 and the robust control term
v4s2,

v4s = v4s1 + v4s2,
v4s1 = −k4z4.

(51)

Thus
ż4 = −k4z4 + v4s2 + d̃4 − z3. (52)

From the assumption of the boundedness of state estima-
tion error, there exists a v4s2 such that
• z4(v4s2 + d̃4) ≤ ε4,
• z4v4s2 ≤ 0,

where ε4 is a design parameter which can be arbitrarily
small. One example of v4s2 that satisfying above conditions
is:

v4s2 = − 1

4ε4
h24z4, (53)

where h4 = δd4 and δd4 is the bound of d̃4.

Remark 4.4 The control input can be determined by[
u1
u2

]
=

1

b

[
−a1x̂5 a1x̂4
2a10x̂4 2a10x̂5

]−1 [
v2a + v2s
v4a + v4s

]
. (54)

For control input voltage to has unique solution, we have∣∣∣∣−a1x̂5 a1x̂4
2a10x̂4 2a10x̂5

∣∣∣∣ = −2a1a10
(
x̂24 + x̂25

)
6= 0, (55)

which means flux modulus estimate should not be zero.

4.5 Stability Analysis
Remark 4.5 Control v3 and v4 guarantees the boundedness
of z3 and z4. Similar to the Remark 4.3, taking a Lyapunov
function candidate

Vs4 =
1

2
z23 +

1

2
z24 (56)

and computing its time derivative, one can derive

Vs4 ≤ exp(−λ4t)Vs4(0) +
ε4
λ4

[1− exp(−λ4t)], (57)

with λ4 = 2 min(k3, k4). This implies the boundedness of
z3 and z4. If further assuming z3 and z4 dynamics are only
subject to parametric uncertainties (i.e., d̃4 = 0), the zero
solution of z3 and z4 dynamics is asymptotically stable, i.e.,
z3, z4 → 0, as t→∞.

To analyze the stability of the entire closed-loop system,
we first define a Lyapunov function candidate

Vs = Vs2 + Vs4. (58)

Theorem 4.6 Given Assumption 4.2, the closed-loop system
(2) with a state estimator (4) and the control u (54) has
bounded states, and the Lyapunov function candidate Vs in
(58) is bounded by

Vs ≤ exp(−λt)Vs(0) +
ε

λ
[1− exp(−λt)], (59)

with λ = 2 min(k1, k2, k3, k4).

Proof: Given the Lyapunov function candidate Vs and As-
sumption 4.2, we have

V̇s = −k1z21 − k2z22 − k3z23 − k4z24
+ z2(v2s2 + d̃2) + z4(v4s2 + d̃4)

≤ −k1z21 − k2z22 − k3z23 − k4z24 + ε2 + ε4

≤ −λVs + ε,

(60)

which implies (59) and the boundedness of all states. This
completes the proof.

5 Simulation Results

In this section, we present simulation results for the pro-
posed speed sensorless control algorithm which includes the
EKF as an state observer. The goal is to demonstrate the
following:

1) the proposed method can achieve high bandwidth
(200Hz) and high precision speed sensorless tracking con-
trol of a typical induction motor under practical implemen-
tation constraints (20KHz sampling rate and 400V input sat-
uration) with only stator voltage and current measurements;

2) the gain selection for the proposed method is straight-
forward;

3) the proposed method can track various trajectories as
long as the state and control input constraints are consid-
ered. No dependence of controller and/or observer on the
trajectory is found.

The simulation is implemented in Matlab with sampling
rate of 20KHz and the following induction motor parame-
ters [2] Rs = 2.3Ω, Rr = 4.95Ω, Lm = 0.523H , Ls =



0.538H , Lr = 0.5396H , J = 0.02kg.m2, b1 = 0.001,
np = 2, and Tf = 0.50.

To achieve the control bandwidth of 200Hz, the control
gains are selected as k1 = k2 = k3 = k4 = 1200, and
no further gain tuning is necessary. As a result, there is no
fundamental limitation on the achievable control bandwidth,
as long as the control input is not severely saturated before
the observer, which is independent from the controller, con-
verges. The desired flux modulus is φd = 0.5 for all cases.

The initial condition for the states are x =
[ωd(0), 2, 2, 0.5, 0.5]T , where ωd(0) is the desired speed at
t = 0. The control inputs has a saturation limit of 400V .
The observer has initial estimation errors of 10 percent.
For implementation of EKF, the current measurements are
assumed to have noises of 2mA and the process noises are
all assumed to be 0.001× Ts.

We tested the proposed observer-controller by tracking
different trajectories. Fig. 2 shows the high-bandwidth
tracking of 200Hz sinusoidal trajectory. After the short tran-
sient for the observer to converge, the controller tracks the
speed reference signal closely. Fig. 3 shows the simulations
result of tracking a step reference speed signal, which is first
filtered by a second order critically damped transfer func-
tion with 200Hz natural frequency. The tracking transient
shows small settling time close to 1/200 second. Fig. 4 fur-
ther demonstrates the excellent tracking performance for a
ramp up and down speed reference trajectory. The controller
performs consistently well for all tested trajectories, and the
closed-loop system performance appears to be independent
of the reference trajectory.
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Fig. 2: Tracking of 200Hz sinusoidal trajectory.
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Fig. 3: Tracking a step reference with 0.005sec(200Hz) set-
tling time.
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Fig. 4: Tracking a ramp reference trajectory.



6 Conclusion and Future Work

In this paper, we proposed an integrated control and ob-
server design framework for speed sensorless control of in-
duction motors with only current measurements. With a gen-
eral observer structure, the backstepping-based robust con-
trol design explicitly considers all the state estimation and
tracking errors. Simulation results shown that the proposed
method leads to high bandwidth and high precision speed
sensorless tracking control of a typical induction motor un-
der practical implementation constraints, in contrast to the
severe bandwidth and performance limitations inherent to
previous methods. Ongoing work includes experimental ver-
ification of the proposed method.
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