
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com

Compressive sensing based 3D imaging using a moving
MIMO array

Liu, D.

TR2015-090 July 2015

Abstract
We consider a 3D configuration where a coherent cross-track MIMO radar with uniform spaced
transmit-receive antennas is mounted on a moving platform. Given a restricted number of
transmit channels and known motion errors, we propose to randomize the transmit channels
and employ a compressive sensing (CS)-based imaging approach to reconstruct 3D images by
exploiting sparsity of the scene to be reconstructed. Results on simulated data demonstrate
that our proposed moving MIMO platform performs much better than that with the same
number but fixed transmit channels in reconstructing 3D images, and close to that using full
channel MIMO operation but with much fewer transmit channels.

2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in
whole or in part without payment of fee is granted for nonprofit educational and research purposes provided that all
such whole or partial copies include the following: a notice that such copying is by permission of Mitsubishi Electric
Research Laboratories, Inc.; an acknowledgment of the authors and individual contributions to the work; and all
applicable portions of the copyright notice. Copying, reproduction, or republishing for any other purpose shall require
a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All rights reserved.

Copyright c© Mitsubishi Electric Research Laboratories, Inc., 2015
201 Broadway, Cambridge, Massachusetts 02139





COMPRESSIVE SENSING BASED 3D IMAGING WITH A MOVING MIMO ARRAY

Dehong Liu

Mitsubishi Electric Research Labs
201 Broadway, Cambridge, MA 02139

ABSTRACT

We consider a 3D configuration where a coherent cross-track
MIMO radar with uniform spaced transmit-receive antennas
is mounted on a moving platform. Given a restricted num-
ber of transmit channels and known motion errors, we pro-
pose to randomize the transmit channels and employ a com-
pressive sensing (CS)-based imaging approach to reconstruct
3D images by exploiting sparsity of the scene to be recon-
structed. Results on simulated data demonstrate that our pro-
posed moving MIMO platform performs much better than
that with the same number but fixed transmit channels in re-
constructing 3D images, and close to that using full channel
MIMO operation but with much fewer transmit channels.

Index Terms— MIMO imaging, 3D imaging, compres-
sive sensing

1. INTRODUCTION

Conventional radar systems make use of wide-band signal
and large aperture to generate high resolution radar images.
With a linear array, one can generate 2D range-azimuth im-
ages without any elevation information. When a planar array
is available for collecting radar echoes, 3D images in range-
azimuth-elevation can be formed. The planar array can be a
real planar array composed of antennas or a virtual array real-
ized by either multiple passes of a single-channel platform [1]
or a single pass of a multi-channel platform [2].

In recent years, multi-input multi-output (MIMO) system,
as a moving multi-channel platform with 3D imaging capa-
bility, attracts great attention in radar imaging [3, 4]. Com-
pared to single channel radar platforms, the degrees of free-
dom of MIMO are greatly increased by the multiple transmit-
receive channels, resulting significantly improved elevation
resolution. However, it is challenging to design independent
transmit signals such that the radar echoes do not interfere
each other during MIMO operation. Although the transmit-
ted signals can be designed to be orthogonal to each other,
the reflected echoes may inevitably interfere each other due
to the lack of orthogonality [5, 6]. In addition, moving radar
platforms typically exhibit motion errors due to speed vari-
ations in both direction and magnitude, forming nonuniform
virtual arrays [2]. Consequently, ambiguity and defocus will

be observed in radar images if the motion errors are not well
compensated.

In this paper, we re-examine these fundamental chal-
lenges and propose a compressive sensing (CS) based moving
MIMO array platform for 3D imaging. CS is a research topic
that has gained great attention in the applied mathematics
and signal processing communities in recent years [7]. It
allows robust reconstruction of an underlying signal using a
significantly smaller number of measurements compared to
its Nyquist rate under the assumption that the signal to be
reconstructed is sparse or compressible in some domain. In
the applications to radar imaging, CS based radar is studied
to reconstruct high resolution images with a small amount
of measurements [8–10]. In this proposed CS-based MIMO
array platform, we aim to resolve the issue of mutual infer-
ence in MIMO operation by reducing the number of transmit
channels. In particular, instead of fixing the transmit anten-
nas as conventional MIMO radars do, we randomly select
the restricted number of transmit antennas for each signal
transmission such that compressive measurements of the full
channel MIMO operation can be made. This randomization
of transmit channels ensures that the linear measurements
fully capture the scene information. As regarding to the
motion errors, we assume they are known or can be esti-
mated accurately. Under this assumption, we treat them as
a complementary source of randomness to favor CS recon-
struction. A CS-based imaging approach is then employed to
reconstruct the 3D reflectivity of interest using these random
measurements.

Our platform with randomized transmit channels provides
significant advantages over the conventional MIMO radar
systems with fixed channels. First, the imaging performance
of our system is comparable to that using full MIMO channel
operation, but with much fewer transmit channels, which re-
duces channel interferences and saves time and expense for
data collection. Second, with our CS-based imaging method,
we are able to suppress the ambiguity caused by speed varia-
tions and motion errors with improved imaging resolution.

2. MODEL OF MOVING MIMO ARRAY

We consider a 3D configuration in the range-azimuth-elevation
(x-y-z) space where a coherent MIMO radar is mounted on a



moving platform to illuminate an area of interest. The MIMO
radar is composed of a physical uniform linear array of N
transmit-receive antennas along the elevation direction with
half-wavelength spacing between adjacent antennas. As the
MIMO radar platform moves in the azimuth direction, a vir-
tual planar aperture is formed in the azimuth-elevation plane
with 3D imaging capability. For simplicity, we assume the
moving MIMO array operates in the spotlight mode, i.e., it
illuminates the same area of interest across its whole track.
Let the source pulse transmitted by the antenna located at
rt = (xt = 0, yt, zt) be p, and its frequency spectrum be P
given by

P (ω) =

∫
p(t)e−jωt dt, (1)

where ω = 2πf represents the angular frequency. The re-
ceived echo at rr = (xr = 0, yr = yt, zr) reflected by the
area due to pulse p emitted at rt can be approximated by

s(t, yt, zt, zr) =

∫
1

4π‖r − rt‖22
· 1

4π‖r − rr‖22
f(r)

p

(
t− ‖r − rt‖2 + ‖r − rr‖2

c

)
dr, (2)

where f(r) is the reflectivity at r = (x, y, z), ‖ · ‖2 denotes
the Euclidean distance, and c is the speed of light in the free
space. After range compression, the received echo can be
presented in the frequency domain by

S(ω, yt, zt, zr) = P ∗(ω)

∫
s(t, yt, zt, zr)e−jωt dt. (3)

The 3D spatial Fourier transform of the range-compressed
echo can be expressed in the ω–k space as

S(ω, k′y, k
′
zt, k

′
zr) = P ∗(ω)

∫
R4

s(t, yt, zt, zr)

e−j(ωt+k′
yyt+k′

ztzt+k′
zrzr) dtdyt dzt dzr. (4)

Using the method of stationary phase [11] and by redefining
the temporal origin to be centered at the 3D image cubic cen-
ter r0 = (x0, y0, z0), the equation (4) evaluates to

S(ω, k′y, k
′
zt, k

′
zr)

∝ P ∗(ω)P (ω)e−j〈k,r0〉+2k‖r0‖2
∫
R3

f(r)e−j〈k,r〉 dr

= P ∗(ω)P (ω)e−j〈k,r0〉+2k‖r0‖2F {f(r)}(k), (5)

where F denotes the 3D Fourier transform, and

k = (kx, ky, kz), 〈k, r0〉 = kxx0 + kyy0 + kzz0,

kx =

√
(
√
k2 − (k′zt)

2 +
√
k2 − (k′zr)2)2 − (k′y)2,

ky = k′y, kz = k′zs + k′zr, k = ω/c. (6)

The forward process, described in (5), models the data ac-
quisition as a function of the area reflectivity in the ω–k space.
Using (5), the radar echoes can be efficiently computed using
the fast Fourier transform given uniform spaced antennas and
a uniform gridded reflectivity map.

When there exist motion errors, we replace the transmit-
receive locations rt,r in (2) with

r′t,r = rt,r + ∆r, (7)

and make changes accordingly on (3)-(5). To efficiently sim-
ulate the data using the fast Fourier transform, we refine the
spatial grid such that all elements of the virtual planar array
lie in the grid points even with motion errors.

In the inverse process, we treat the moving MIMO data
in its entirety to generate a 3D reflectivity map. We note that
equation (5) also indicates that the reflectivity map f can be
expressed as the inverse Fourier transform of the collected
raw data. The corresponding adjoint process for image recon-
struction of the 3D reflectivity can be approximated by

f(r) ∝ F−1
{
S(ω, k′y, k

′
zt, k

′
zr)P ∗(ω)P (ω)ej〈k,r0〉−2k‖r0‖2

}
.

(8)
Thus, the image of the reflectivity can be efficiently recov-
ered using the 3D inverse Fourier transform in the ω–k space.
Note that to use (8) for reconstruction, the data acquired over
(ω, k′y, k

′
zt, k

′
zr) first needs to be weighted and rearranged into

a 3D format over k. This is done via the dispersion relation
defined in (6) using a 3D Stolt mapping.

3. CS-BASED 3D IMAGING

To better describe our CS-based 3D imaging algorithm, we
compactly denote the forward process in (5) as a linear trans-
formation

s = Φf , (9)

where s, Φ, and f represent the received signal, the forward
acquisition process, and the 3D ground reflectivity in the
matrix-vector form, respectively. The corresponding adjoint
process for inverse imaging is described by

f = ΦHs. (10)

With randomized transmit channels and known discretized
motion errors, the echoes acquired by the proposed system
can be simulated by subsampling the raw data collected by
antennas on refined uniform grid points, according to the
transmit-receive antenna locations. We denote the subsam-
pling operator with M. Thus, the acquired echoes can be
represented as a linear transform of f

u = Ms = MΦf = Ψf . (11)



Considering the sparse property of radar images, we decom-
pose f into a sparse component fs and a dense residual fr.
The sparse component fs is estimated by solving the follow-
ing minimization problem that promotes image-domain spar-
sity

f̂s = arg min
f
‖u−Ψf‖22 s.t. ‖f‖0 < T. (12)

The residual due to the dense component can be computed us-
ing the sparse estimate, i.e., ur = u−Ψf̂s. Theoretically the
dense component can be estimated using least squares with
the pseudo-inverse of Ψ as Ψ†ur. However, due to the size
of Ψ, the pseudo-inverse Ψ† is impossible to compute di-
rectly. Therefore, we rely on the adjoint with a line search to
estimate the dense part as follows

f̂r =
uH
r ur

uH
r ΨΨHur

ΨHur. (13)

Inspired by STOMP [12], we use an iterative algorithm to
efficiently estimate the sparse part f̂s. First a residual vector is
initialized from the measurements, u

(0)
r = u, with f̂

(0)
s = 0.

Each iteration, i, uses the residual u
(i−1)
r to estimate the sig-

nal f̃ (i) that was not explained yet. A threshold τ (i), which
is a fraction of the largest in magnitude component, is then
applied to hard threshold f̃ (i) by setting all components less
than τ (i) in magnitude to zero. The remaining strongest re-
flectors d(i) are scaled to capture most of the residual energy
in u

(i−1)
r , and added to the overall signal estimate from the

previous iteration f̂
(i−1)
s to produce the current signal esti-

mate f̂
(i)
s . The residual u

(i−1)
r is updated and the algorithm

iterates until the relative reconstruction error is smaller than a
preset small value ε. The final image f̂ combines the sparse
part of previous iterations and the dense part estimate. More
details about this algorithm are available at [13].

4. SIMULATIONS

To verify our approach, we consider a cross-track moving
MIMO array in the azimuth-elevation plane illuminating a
synthetic half cylinder-shaped object. For comparison, we
consider three MIMO platforms in simulation: (1) a bench-
mark full-channel platform moving along a straight-line track
with a constant speed as shown in Fig.1(a), (2) a conventional
moving platform with a restricted number of fixed transmit
channels as shown in Fig.1(b), and (3) our proposed platform
with randomized transmit channels as presented in Fig.1(c).

In particular, for the benchmark MIMO array platform,
we consider an ideal uniform linear array of 12 transmit-
receive antennas with full channel operation along its moving
track. For the second platform, we use the two end antennas
as the transmit channels to reduce mutual interference and all
the 12 antennas as receive antennas. For fair comparison, we

consider the same aperture size as the benchmark platform,
but with non-uniform virtual array due to motion errors. The
motion errors are discretized using unit of half element spac-
ing, and only translational motion errors are considered to
simplified our simulation. For our proposed MIMO array
platform, we consider the same aperture size, the same mo-
tion errors and the same number of transmit channels as the
second platform, except with randomized transmit antennas.

To unify the simulations of the aforementioned three plat-
forms, we simulate data using a refined virtual MIMO array in
the azimuth-elevation plane in which all elements of the three
platforms can be found correspondingly. For the benchmark
12-channel MIMO operation, we uniformly downsample the
noiseless simulated data in azimuth and elevation directions
according to the ideal locations of transmit-receive antennas.
For the conventional MIMO array platform and our proposed
MIMO array platform, we add white Gaussian noise to the
simulated time-domain data with a peak signal-to-noise ratio
of 30dB, and then downsample the noisy data corresponding
to the 2 transmit antennas, either fixed or randomly picked,
and all 12 receive antennas with motion errors.

Assuming all the data are perfectly aligned, we consider
two imaging methods: the conventional ω–k imaging method
described in Section 2, and the CS-based imaging approach
presented in Section 3. The imaging results of the synthetic
object are shown in Fig. 2. From left to right, we plot the
imaging results using (a) the conventional imaging method
on ideal linear motion track and noise-free data of full MIMO
operation, (b) the conventional imaging method on noisy data
of 2 fixed transmit channels with motion errors, and (c)the
CS-based iterative reconstruction method on noisy data of 2
random transmit channels with the same motion errors of (b).
As evident in the Fig. 2, the imaging result using idealized
data collection clearly retrieves the 3D object in the 3D space.
However, for the conventional system with a restricted num-
ber of transmit channels and motion errors, the imaging re-
sult is significantly degraded and exhibits ambiguity in both
the azimuth and elevation directions. While with our ran-
dom transmit channel scheme incorporated with the CS imag-
ing approach, the imaging result is significantly improved,
with about 11dB SNR improvement if we treat the bench-
mark imaging result as the noise-free signal in SNR compu-
tation. Our result is also very close to that using ideal full
channel MIMO operation but with much fewer transmit chan-
nels, which reduces potential mutual interference of channels
and cost of data collection.

5. CONCLUSION

We propose a compressive sensing based moving MIMO
radar platform using randomized transmit channels to over-
come the challenges of transmit channel reduction due to mu-
tual interference and compensation of motion errors. Imaging
results with simulated data demonstrate that we are able to
reconstruct a high resolution 3D image similar to that of the
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Fig. 1. Moving MIMO array of (a) ideal full-channel, (b)2 fixed transmit channels with motion errors, and (c)2 randomized transmit channels
with motion errors. Red x represent transmit-receive channels and black dots represent receive channels.
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Fig. 2. Imaging results using (a) noise-free data collected by ideal full-channel moving MIMO, (b) noisy data collected by practical moving
MIMO with 2 fixed transmitters, and(c) CS based moving MIMO with 2 randomized transmitters.

ideal full-channel MIMO array, but with much fewer trans-
mit channels. Compared to the conventional moving MIMO
array with fixed transmit channels, our CS-based platform
performs significantly better with reduced ambiguity.
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