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Abstract
In many formulations of controller architectures for variable-speed vapor compression ma-
chines, evaporator superheat temperature is commonly selected as a regulated variable due
to its correlation with cycle efficiency. Further, the superheat temperature setpoint is con-
veniently taken as a constant value over the wide range of operating conditions. However,
direct measurement of superheat is not always available, and estimates of superheat have
limited robustness. Therefore identifying alternate signals in the control of vapor compres-
sion machines that correlate to efficiency is desired. In this paper, we consider a model-free
extremum seeking algorithm that adjusts compressor discharge temperature setpoints in or-
der to optimize energy efficiency. While perturbation-based extremum seeking methods have
been known for some time, they suffer from slow convergence rates-a problem emphasized in
application by the long time constants associated with thermal systems. Our method uses
a new algorithm (time-varying extremum seeking), which has dramatically faster and more
reliable convergence properties. In particular, we regulate the compressor discharge tempera-
ture using setpoints selected from a model-free time-varying extremum seeking algorithm. We
show that the relationship between compressor discharge temperature and power consump-
tion is convex (a requirement for this class of realtime optimization), and use time-varying
extremum seeking to drive these setpoints to values that minimize power. The results are
compared to the traditional perturbation-based extremum seeking approach. Experiments
are performed demonstrating discharge temperature optimization from 72 degrees C to 62
degrees C for a particular set of experimental conditions where the power consumption is de-
creased from 525 W to 450 W, resulting in an increase in observed coefficient of performance
(COP) of 14%.
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Realtime Setpoint Optimization with Time-Varying Extremum Seeking
for Vapor Compression Systems

Daniel J. Burns, Walter K. Weiss, and Martin Guay

Abstract— In many formulations of controller architectures
for variable-speed vapor compression machines, evaporator
superheat temperature is commonly selected as a regulated
variable due to its correlation with cycle efficiency. Further,
the superheat temperature setpoint is conveniently taken as
a constant value over the wide range of operating condi-
tions. However, direct measurement of superheat is not always
available, and estimates of superheat have limited robustness.
Therefore identifying alternate signals in the control of vapor
compression machines that correlate to efficiency is desired.

In this paper, we consider a model-free extremum seek-
ing algorithm that adjusts compressor discharge tempera-
ture setpoints in order to optimize energy efficiency. While
perturbation-based extremum seeking methods have been
known for some time, they suffer from slow convergence
rates—a problem emphasized in application by the long time
constants associated with thermal systems. Our method uses
a new algorithm (time-varying extremum seeking), which has
dramatically faster and more reliable convergence properties.
In particular, we regulate the compressor discharge tempera-
ture using setpoints selected from a model-free time-varying
extremum seeking algorithm. We show that the relationship
between compressor discharge temperature and power con-
sumption is convex (a requirement for this class of realtime
optimization), and use time-varying extremum seeking to drive
these setpoints to values that minimize power. The results
are compared to the traditional perturbation-based extremum
seeking approach. Experiments are performed demonstrating
discharge temperature optimization from 72◦C to 62◦C for
a particular set of experimental conditions where the power
consumption is decreased from 525 W to 450 W , resulting in
an increase in observed coefficient of performance (COP) of
14%.

I. INTRODUCTION

Vapor compression systems (VCS), such as heat pumps,
refrigeration and air-conditioning systems, are widely used
in industrial and residential applications (Fig. 1A). The
introduction of variable speed compressors, electronically-
positioned valves, and variable speed fans to the vapor
compression cycle has greatly improved the flexibility of the
operation of such systems Whereas fixed speed machines
meet the heating load required to regulate the room temper-
ature by cycling the compressor in an on-off fashion, variable
speed machines allow the cooling capacity of the system to
be directly matched to the load. Further, the selection of the
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actuator values required to meet the load is not unique, and
these sets of actuator values consume different amounts of
electrical power [1]. Therefore, an energy optimal approach
to vapor compression system control selects combinations
of actuator values that both meet the load requirement and
minimize electrical power consumption.

In typical feedback control architectures for these sys-
tems (Fig. 1B), the increased degrees-of-freedom provided
by variable actuators imply that multiple simultaneous sig-
nals can be regulated. In addition to the zone temperature,
internal process signals can be regulated in order to im-
prove efficiency. Previous work has shown that the energy
efficiency of these systems is strongly dependent on these
setpoints [2], however, determining appropriate setpoints is
not always straightforward.

In a feedback controller for a typical air conditioning sys-
tem (Fig. 1B), setpoints may include (1) zone temperatures
selected by the user and (2) internal machine signals, the
regulation of which is required for delivering the required
cooling capacity in the presence of given thermodynamic
boundary conditions such as heat load and outdoor air
temperature. Assuming there exist flexibility with actual zone
temperatures, the optimization of setpoints of type (1) have
been extensively investigated, especially in the context of
a model predictive controller where disturbances such as
ambient temperature and occupancy may be predicted over
some horizon. The interested reader may refer to [3], [4], [5]
for more information on problems of this type. However, in
this paper, we consider the optimization of setpoints of type
(2); that is, internal machine process variables whose steady
state values determine the energy consumption of the vapor
compression machine.

Often, setpoints of type (2) are simply given as a constant
evaporator superheat temperature. In this case, it is assumed
that the superheat temperature is a good surrogate for overall
cycle efficiency, and by regulating the cycle such that all the
refrigerant passing through the evaporator becomes saturated
vapor upon exiting, it is assumed that the overall process
is performed efficiently. However, strict measurement of
superheat requires at least one temperature and one pressure
measurement (and perhaps more sensors depending on the
assumptions made regarding pressure losses in the evap-
orator), and these sensors are often too expensive to be
included in commercial systems. Additionally, for systems
with multiple evaporators, requiring independent regulation
of both superheat temperature and zone temperature may not
even be possible with the typical set of actuators, because
the number of regulated variables may exceed the number
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Fig. 1. A. The vapor compression system under study consists of a variable
speed compressor, condensing heat exchanger, electronically controlled
expansion valve, and evaporating heating exchanger. The inputs to the
VCS that are manipulated by the control system include (i) the compressor
frequency, (ii) the condenser fan speed, (iii) the EEV position, and (iv) the
evaporator fan speed. B. A feedback controller is nominally configured to
use measurements y(k) to drive regulated variables of a vapor compression
system and zone to their setpoints r(k) in the presence of disturbances d(k)
such as changes in outdoor air temperature and heat load.

of controls. Therefore, alternatives to superheat setpoints for
regulating cycle capacity and efficiency are desired.

In this paper, we select the compressor discharge tem-
perature as a signal to be regulated by feedback controller.
The discharge temperature is often measured for equipment
protection making it a commonly available signal, and be-
cause the refrigerant state at this location in the cycle is
always superheated, this signal is a one-to-one function of
the disturbances over the full range of expected operating
points. (Contrast this with evaporator superheat temperature,
which is not defined for values less than zero and produces no
change in sensible temperature when two-phase refrigerant
exits the evaporator. One of the main challenges of superheat
regulation is that low superheat temperature, which is good
for efficiency, is easily perturbed to zero in the presence
of disturbances, causing the loss of signal information and
therefore of feedback control.) Because discharge tempera-
ture changes with heat loads and outdoor air temperatures,
its setpoint cannot be regulated to a constant, but instead
must vary with these conditions. It is the aim of this paper
to automate the generation of such setpoints in order to

maximize energy efficiency.
Recently, model-free methods that operate in realtime and

aim to optimize a cost have received increased attention
and have demonstrated improvements in the optimization of
vapor compression systems and other HVAC applications [2],
[6], [7], [8] To date, the dominant extremum seeking algo-
rithm that appears in the HVAC research literature is the
traditional perturbation-based algorithm first developed in
the 1920s [9] and re-popularized in the late 1990s by an
elegant proof of convergence for a general class of nonlinear
systems [10].

While most extremum seeking techniques optimize a
performance metric by estimating its gradient and driv-
ing inputs such that the metric is optimized, the way in
which the gradient is estimated has a strong influence on
its convergence properties. In the traditional perturbation-
based method, a sinusoidal term is added to the input at a
slower frequency than the natural plant dynamics, inducing
a sinusoidal response in the performance metric [11]. The
extremum seeking controller then filters and averages this
signal to obtain an estimate of the gradient. Averaging the
perturbation introduces yet another (and slower) time scale in
the optimization process. For thermal systems such as vapor
compression machines where the dynamics are already on the
order of tens of minutes, the slow convergence properties of
perturbation-based extremum seeking become impediments
to wide-scale deployment.

However, new extremum seeking approaches have been
developed that estimate the gradient of the performance met-
ric in a way that does not introduce two time scales. Time-
varying extremum seeking uses adaptive filtering techniques
to estimate the parameters of the gradient function from
measured data, eliminating averaging in the controller [12].
In this paper, we apply time-varying extremum seeking to
the problem of obtaining setpoints that optimize energy
efficiency in a vapor compression system.

The rest of the paper is organized as follows: a descrip-
tion of time-varying extremum seeking control (TV-ESC) is
provided in Section II. In Section III, a comparison of TV-
ESC and perturbation-based ESC is provided in simulation
using a simple example. In Section IV, experimental results
for the application of the TV-ESC on an air conditioning
system are presented. Lastly, concluding remarks are offered
in section V.

II. EXTREMUM SEEKING CONTROLLER

The ESC provides a regulating feedback controller with
setpoints for discharge temperature r that will minimize
power consumption z. We follow the discrete-time ESC
update law outlined in [13].

The equilibrium cost z = `(r∗) satisfies the following
optimality conditions:

∂`(r∗)
∂ r

= 0 (1)

∂ 2`(r∗)
∂ r∂ rT > β I ∀r ∈ R (2)
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Fig. 2. Overview of the TV-ESC algorithm.

where β is a strictly positive constant.

Let φk = ∆rk . The dynamics of the cost function can be
parametrized as:

∆zk = θ
T
k ∆rk = φ

T
k θk (3)

Let the estimator for (3) be

∆ẑk = θ̂
T
k ∆rk = φ

T
k θ̂k (4)

where θ̂k is the vector of parameter estimates. The output
prediction error is defined as ek = ∆zk−∆ẑk.

The dynamical system operates at the faster time-scale
with sampling time ε∆t while the steady-state optimization
operates at the slow time scale with sampling time ∆t,
where ε is a time-scale separation parameter. The parameter
estimate update approach is as follows:
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−1(ek),Θ0

]
(7)

Where Σ ∈ Rnθ×nθ is the covariance matrix and Pro j is an
orthogonal projection operator. For a more detailed discus-
sion on this operator see [13] and [14].

The gradient descent controller is given by:

rk+1 = rk− εkgθ̂k + εdk (8)

where dk is a bounded dither signal and kg is the optimization
gain.

Together, the iterative extremum seeking routine is given

by:

rk+1 = rk− εkgθ̂k + εdk (9a)
φk = ∆rk = rk+1− rk (9b)

∆ẑk = φ
T
k θ̂k (9c)
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(9e)

As shown in Figure 2, at the kth iteration step, the
ESC algorithm uses the difference between current rk and
next input rk+1, and the difference between measured ∆zk
and predicted ∆ẑk change in power consumption for the
gradient estimation. The estimated gradient will be used
to parameterize the unknown but measured cost function
describing power consumption. The gradient is estimated
by employing a recursive least squares filter with forgetting
factor α . Further, the estimated gradient is used to compute
the gradient descent controller which will reduce power
consumption. The new setpoint is provided to the feedback
regulator, and the ESC algorithm is repeated.

Note that the time-varying extremum seeking controller
does not require averaging the effect of the perturbation as
in the case of the traditional perturbation-based extremum
seeking controller. For this reason, time-varying extremum
seeking converges substantially faster, as demonstrated in an
example in the following section.

III. COMPARISON OF TIME-VARYING AND
PERTURBATION EXTREMUM SEEKING CONTROL

To illustrate the differences in convergence rate between
perturbation-based ESC and TV-ESC, these two methods
are used to optimize a Hammerstein system consisting of
first-order linear difference equation and a static output
nonlinearity (see Figure 3A). The equations for this system
are given by

xk+1 = 0.8xk + rk (10)

zk = (xk−3)2 +1 (11)
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Fig. 3. Comparing TV-ESC with perturbation ESC. For this application,
TV-ESC converges considerably faster to the optimum.

which has a single optimum point at

r∗ = 0.6 (12)
z∗ = 1. (13)

Note that the pole location in the difference equation com-
ponent establishes a dominant timescale and therefore sets a
fundamental limit for the convergence rate.

In order to illustrate the difference in convergence rates,
a discrete-time perturbation-based extremum seeking con-
troller (perturb-ESC) and a time-varying extremum seeking
controller (TV-ESC) is applied to the problem of finding
the input r that minimizes the output z, without a model
of the process or any explicit knowledge of the nature of
the optimum. Reasonable effort is made to obtain algorithm
parameters for both ESC methods that achieve the best pos-
sible convergence rates. The parameters for the perturbation
based ESC used for simulation are

dk = 0.2sin(0.1k) (14)
ωLP = 0.03 (15)

K =−0.005 (16)

Where dk is the sinusoidal perturbation, ωLP is the cutoff

frequency for a first-order low-pass averaging filter, and K is
the adaptation gain. Note that the high-pass washout filter
was not used as convergence rate was improved without
it. For details of a discrete-time perturb-ESC formulation,
see [15].

The parameters used for the TV-ESC are

dk = 0.001sin(0.1k) (17)
kg = 0.001 (18)
α = 0.1 (19)
ε = 0.4 (20)

Where kg is the adaptation gain, α is the forgetting factor,
and ε is the timescale separation factor. No projection
algorithm was needed for this example.

Simulations are performed starting from an initial input
value of r = 2 and the ESC methods are turned on after 100
steps. The resulting simulations are shown in Figure 3B. The
perturb-ESC method converges to a neighborhood around the
optimum in about 4000 steps (not shown in the figure), while
the TV-ESC method converges in about 250 steps.

The fast convergence characteristic of TV-ESC is well
suited to the optimization of thermal systems with their asso-
ciated long time constants. In the next section, we apply the
TV-ESC algorithm to the problem of selecting setpoints for
the discharge temperature of a vapor compression machine
and present experimental results.

IV. EXPERIMENTAL RESULTS

A. Laboratory Description

In order to validate the proposed scheme for realtime
optimization of compressor discharge temperature setpoints,
an experiment using TV-ESC on a production vapor com-
pression system is performed. A residential split-ductless
style room air conditioner is configured as the device-under-
test. The indoor unit is installed in a 64 f t3 adiabatic test
chamber and the outdoor unit is installed in a 128 f t3

adiabatic test chamber. The device-under-test is a variable
refrigerant flow (VRF) air conditioner with variable speed
compressor, indoor and outdoor fan speeds and computer-
controlled electronic expansion valve. The system has a
nominal rated cooling capacity of 2.8 kW .

A balance-of-plant system is constructed to regulate ther-
modynamic test conditions during the experiment. In partic-
ular, the indoor unit test chamber includes variable capacity
electric heaters capable of supplying up to 5 kW of power
representing the thermal load, and the outdoor unit includes
electric heaters and a variable capacity chilled water fan
coil system capable of matching the heat rejected by the air
conditioner outdoor unit so that the outdoor air temperature
can be held constant. External control loops on the balance-
of-plant system are designed to regulate the indoor heat
load and the outdoor air temperature. With the indoor air
temperature regulated by the device-under-test, a realistic
test of air conditioner performance under normal operating
conditions is obtained.



The actuators for both the device-under-test and the
balance-of-plant are controlled by an external data acqui-
sition and control system (National Instruments), which is
also used to record various experimental measurements,
and prototype custom control algorithms. The device-under-
test is configured to regulate the room temperature using
the compressor speed and the discharge temperature is
regulated using the electronic expansion valve. Setpoints
to this discharge temperature control loop are determined
with the time-varying extremum seeking controller. Previous
experiments indicate that the dominant time constant of the
room air conditioner closed loop system is approximately
7 min and is associated with the indoor room air temperature
dynamics. This time constant sets the fundamental limit of
convergence rate of an optimization algorithm that operates
on the steady state manifold, `(r∗).

B. Experimental Conditions and Results

A 2000 W heat load is applied to the indoor unit test cham-
ber, with the outdoor air temperature regulated to 35◦C. The
device-under-test is set to regulate the indoor test chamber to
25◦C. The TV-ESC parameters used in this experiment are

dk = sin(0.001k) (21)
kg = 5 (22)
α = 0.001 (23)
ε = 0.004 (24)

wherein the TV-ESC algorithm is executed once every
second. Initially, the discharge temperature setpoint is set
to 72◦C, which is 10◦C higher than the optimal discharge
temperature determined a priori for these operating condi-
tions. Physically, discharge temperatures higher than optimal
indicate an evaporator that has an excessive amount of
superheated refrigerant, that is refrigerant in the vapor state.
It is expected that as the discharge temperature setpoint is
decreased, the cooling capacity of the evaporator will be
increased as a larger fraction of the heat exchanger performs
useful cooling, leading to a lower room temperature. In turn,
the inner room temperature feedback loop will lower the
compressor speed, decreasing overall power consumption. At
the initial operating condition of this experiment, the device-
under-test consumes about 525 W , yielding an observed
coefficient-of-performance (COP) of 2000 W/525 W = 3.8.

At t = 5 min, the TV-ESC algorithm is switched on and
begins estimating the gradient of the mapping from discharge
temperature setpoint rk to electrical power consumption zk.
Figure 4 shows the evolution of the discharge temperature
setpoint output from the TV-ESC controller in the top plot,
and the measured power consumption of the device-under-
test provided as a measurement in the middle plot. The
bottom plot shows the constant thermodynamic conditions
during the test (indoor and outdoor air temperature and heat
load).

From about t = 5 min to t = 20 min the discharge tem-
perature setpoint is decreased, causing little change in the
power consumption and the identified gradient estimate in
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Fig. 4. Top: The discharge temperature setpoint (black) is driven to
the optimal setpoint (blue) determined from previous experiments in about
160 min. Middle: The power consumption for this test is driven from an
initial value of about 525 W to about 450 W while the thermodynamic
conditions are held constant (bottom).

this range is near zero. However, from about t = 20 min to
t = 40 min, the discharge temperature is increased, causing
a large increase in power consumption as cooling capacity
is dramatically reduced and compressor speeds must be
increased to maintain room temperature. As a result, the
gradient is estimated as a large positive value, and the TV-
ESC controller drives the discharge temperature from 74◦C
to 63◦C (very near to the optimal value of 62◦C) from
t = 40 min to t = 60 min.

For the remainder of the experiment, the average value
of the discharge temperature approaches the optimal value.
The change in power consumption is relatively slow after t =
80 min (expect for a sharp increase at around t = 110 min),
indicating insensitivity in the power consumption to dis-
charge temperatures as the optimal value is approached (i.e.,
the region near the minimum of the convex mapping is nearly
“flat.”). The power consumption is driven to a final value of
450 W , yielded an observed COP of 2000 W/450 W = 4.4,
which is an improvement of 14%.

The optimization is shown in the plant input-output space
in Figure 5. Starting at 72◦C and 525 W , the discharge
temperature is steered toward 62◦C and 450 W . However,
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it should be noted that the convergence timescale is on the
order as the dominant plant time scale, and therefore some
dynamics are active during optimization. As a result, this fig-
ure should not be interpreted as the steady state performance
map, but one that is distorted due to influence of transients.
However, this highlights the main advantage of TV-ESC:
because the gradient can be estimated without averaging
over multiple perturbations, convergence can proceed much
faster—at about one time scale slower than the dominant
plant dynamics rather than two.

V. CONCLUSION

In this paper, we proposed an alternative signal for the
regulation of the vapor compression cycle in place of the
often difficult to measure evaporator superheat, namely the
compressor discharge temperature. We apply time-varying
extremum seeking to the problem of determining setpoints
for an inner loop feedback controller that uses the electronic
expasion valve to regulate discharge temperature.

TV-ESC is shown in experiments to provide a discharge
temperature setpoint that drives power consumption from
525 W to 450 W for a particular set of thermodynamic
conditions. Moreover, this optimzation occurs over reason-
able timescales (less than three hours in the case of a
vapor compression system a slow mode with a 7 min time
constant), whereas the time required for optimization using
the traditional pertubation-based ESC method would have
been impractical.
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