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Abstract
For stabilizing model predictive control adjusting the prediction model requires the adjust-
ment of the terminal set and terminal cost. However, the conventional methods to design
these are not practical, and often impossible, to implement in microcontrollers. In this pa-
per, we pre-compute the terminal cost and terminal set in a form that allows to adjust
them with minimal computational effort, following an adjustment of the prediction model.
For unconstrained systems, a terminal cost and terminal controller are designed based on
parameter-dependent Lyapunov functions. For constrained systems, the terminal function is
also used to derive a robust polyhedral terminal set. We prove that the proposed method
guarantees the existence of a terminal set with non-empty interior, and asymptotic stability
of the closed-loop system.
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Model Adjustable Predictive Control
with Stability Guarantees

Stefano Di Cairano

Abstract— For stabilizing model predictive control, adjusting
the prediction model requires the adjustment of the terminal set
and terminal cost. However, the conventional methods to design
these are not practical, and often impossible, to implementin
microcontrollers. In this paper, we pre-compute the terminal
cost and terminal set in a form that allows to adjust them
with minimal computational effort, following an adjustmen t of
the prediction model. For unconstrained systems, a terminal
cost and terminal controller are designed based on parameter-
dependent Lyapunov functions. For constrained systems, the
parameter-dependent Lyapunov function is also used to derive
a polyhedral terminal set. We prove that the proposed method
guarantees the existence of a terminal set with non-empty
interior, and asymptotic stability of the closed-loop system.

I. I NTRODUCTION

While originally developed for chemical and process con-
trol, model predictive control (MPC) is now being explored
for applications in several other domains such as automotive,
aerospace, and manufacturing [1], [2]. These applications
impose new challenges and require new developments, such
as low complexity optimization algorithms [3]–[6], and
calibration methods [7], [8]. In particular, low complexity
optimization algorithms [3]–[6] have been motivated by
the fact that several of these recent applications exploit
microcontrollers that have limited computing power, and
where the code has to undergo extensive certification. Thus,
the deployed control algorithms should be kept as simple as
possible.

In applications where the controller is deployed to hun-
dreds or even thousands of instances of a plant, a significant
plant-to-plant variability can be exhibited by some parame-
ters, as well as aging effects, and as a consequence the MPC
prediction model may need to be adjusted after the controller
has been deployed in the microcontroller. However, when
the MPC closed-loop stability is guaranteed by appropriately
designed terminal cost and terminal set [9], if the prediction
model is adjusted but the terminal cost and terminal set
are not, the stability of the closed-loop may be lost. The
(re)design of the terminal cost and the terminal set requirethe
solution of LMIs or Riccati equations, and the computation
of constrained positive invariant sets. The corresponding
computational procedures results in code that is complex to
verify, and often has too large computational requirements
for production microcontrollers. For similar reasons, a-priori
robust MPC based on LMI [10], [11] may not be viable in
these applications.
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In this paper we propose a Model Adjustable Predictive
Control (MAPC) algorithm which guarantees with mini-
mal computational effort that stability is preserved after
a prediction model adjustment. By designing a parameter-
dependent terminal cost and a corresponding terminal set,
after the MAPC controller has been deployed, the plant can
be identified, and the terminal cost and terminal set for
guaranteeing the closed-loop stability of the plant controlled
by MAPC can be adjusted with a negligible computational
cost, i.e., with few simple operations.

We assume that the possible instances of the plant can
be obtained as convex combinations of vertex systems. For
the case of unconstrained systems, we compute the terminal
cost as a function of the convex combination vector of
the vertex systems in the form of a parameter-dependent
Lyapunov function (pLF). Parameter-dependent Lyapunov
functions have been introduced for analysis and robust con-
trol design for uncertain linear systems in [12], and have been
extended to the control of linear parameter-varying (LPV)
systems in [13], [14]. These results are used to design robust
MPC [11] and MPC for LPV systems [15], [16], which
require the online solution of LMIs. However, the limited
capabilities of the microcontroller and the complexity of the
LMI solver code makes these methods often impossible to
apply in aerospace, automotive, or manufacturing.

In this paper, we do not seek a robust MPC controller for
an LPV system, but rather for the possibility of adjusting an
MPC design to maintain stability after the prediction model
is modified. Thus, starting from [13] we computebefore
deploymenta pLF and a corresponding parameter-dependent
controller, so that, when the convex combination vector is
estimatedafter deployment, the terminal cost can be imme-
diately adjusted with minimal computational effort. Sincewe
are not trying to enforce robustness but onlyadjustability, the
actual controller only solves quadratic programs, for which
the solvers are much simpler and faster [4], [5].

For the case of constrained MAPC a terminal set is also
obtained as the robust maximum constraint admissible set
of the vertex systems in closed-loop with the components
of the parameter-dependent control law. We show that for
thespecificparameter-dependent controller obtained together
with the pLF, the maximal constraint admissible set has non-
empty interior, is polyhedral, and finitely determined.

The rest of the paper is structured as follows. In Section II
we describe the system model and the problem addressed in
this paper. In Section III we describe the computation of
the terminal cost and of a corresponding auxiliary control



law by parameter-dependent Lyapunov functions, and we
establish the stability of unconstrained MAPC. In Section IV
we discuss the terminal set design, prove its existence and
properties, and establish the stability of constrained MAPC.
In Section V we present some numerical examples of MAPC.
Finally, in Section VI we summarize the results and discuss
the future research directions towards an adaptive MPC
framework.

Notation: R, R0+, R+ are the sets of real, nonnegative
real, positive real numbers, andZ, Z0+, Z+ are the sets of
integer, nonnegative integer, positive integer numbers. For
intervals of numbers, we use the notationZ[a,b) = {z ∈ Z :
a ≤ z < b}. co{X} denotes the convex hull of the setX .
For vectors, inequalities are intended componentwise, while
for matrices indicate (semi)definiteness. By[x]i we denote
the i-th component of vectorx, and byI and0 the identity
and the “all-zero” matrices of appropriate dimension. For a
discrete time signalx ∈ R

n with sampling periodTs, x(t) is
the state at sampling instantt, i.e., at timeTst. The notation
xk|t denotes the predicted value ofx at samplet + k, i.e.,
x(t+ k), based on data at samplet, and x0|t = x(t). A
functionα : R0+ → R0+ is of classK∞ if it is continuous,
strictly increasing,α(0) = 0, and limc→∞ α(c) = ∞

II. M ODELING AND PROBLEM DEFINITION

First, we review some basic results, see, e.g., [9, App. B].
Definition 1: A set S ⊂ R

n is positive invariant (PI) for
x(t+ 1) = f(x(t)), x ∈ R

n, iff x ∈ S implies f(x) ∈ S.�
Result 1: Given x(t + 1) = f(x(t)), x ∈ R

n a function
V : R

n → R+ such that there exist a PI setS ⊆ R
n

with 0 ∈ S, and functionsα1, α2, α∆ ∈ K∞ such that
α1(‖x‖) ≤ V(x) ≤ α2(‖x‖), V(f(x))−V(x) ≤ −α∆(‖x‖)
for all x ∈ S, is a Lypaunov function forf in S. If
there exists a Lyapunov function forf in S, the origin is
asymptotically stable (AS) inS for f . �

Consider a discrete-time system sampled with periodTs,

x(t+ 1) = Ā(ω)x(t) +Bu(t) (1)

wherex ∈ R
n, u ∈ R

m, and the state update matrix̄A(ω)
depends on a parameter vectorω ∈ Ω ⊂ R

np . We assume
that there existsℓ ∈ Z+ and Ai ∈ R

n×n, i ∈ Z[1,ℓ] such
that for all ω ∈ Ω, there existsξ ∈ Ξ ⊂ R

ℓ, Ξ = {ξ ∈ R
ℓ :

0 ≤ ξ ≤ 1,
∑ℓ

i=1[ξ]i = 1}, such thatĀ(ω) =
∑ℓ

i=1[ξ]iAi.
Thus, system (1) can be represented by

x(t + 1) =
ℓ
∑

i=1

[ξ]iAix(t) +Bu(t), (2)

where ξ is not known a-priori, but here it is assumed not
to change. Due to the form of (2), we callξ the convex
combination vector andx(t+1) = Aix(t)+Bu(t), i ∈ Z[1,ℓ]

the vertex systems.
Let the constraints on the system state and input be

x ∈ X , u ∈ U (3)

whereX ∈ R
n, U ∈ R

m are the sets of admissible states
and inputs, respectively.

Consider now the case whereξ ∈ Ξ is known beforehand.
Model predictive control (MPC) uses (2), (3) to setup the
finite time optimal control problem

min
Ut

F (xN |t) +

N−1
∑

k=0

L(xk|t, uk|t) (4a)

s.t. xk+1|t =

ℓ
∑

i=1

[ξ]iAixk|t +Buk|t (4b)

u ∈ U (4c)

x ∈ X (4d)

xN |t ∈ XN (4e)

x0|t = x(t) (4f)

whereN is the prediction horizon,L : Rn × R
m → R0+ is

the stage cost,F : Rn → R0+ is the terminal cost,XN is
the terminal set andUt = [u0|t . . . uN−1|t] is the sequence
of control inputs along the prediction horizon. MPC applies
to the system the control inputu(t) = u∗

0|t, whereU∗
t =

[u0|t . . . uN−1|t] is the optimizer of (4). In (4), the terminal
costF and the terminal setXN are designed to guarantee
the recursive feasibility and the stability of the closed-loop
system, for instance according to the following well known
result.

Result 2 ( [9]): Let κ(x) and F (x) be such that:(i),
for all x ∈ XN , (4c), (4d) are satisfied for allx ∈
XN , with u(x) = κ(x); (ii), XN is positive invariant for
∑ℓ

i=1[ξ]iAix + Bκ(x); (iii), F (
∑ℓ

i=1[ξ]iAix + Bκ(x)) +
L(x, κ(x)) − F (x) ≤ 0 for all x ∈ XN . Then, the MPC
algorithm based on (4) renders the origin of the closed-loop
system asymptotically stable. �

When ξ in (2) is known a-priori, and the stage cost is
quadratic,

L(x, u) = x′Qx+ u′Ru, Q,R > 0, (5)

a quadratic terminal costF (x) = x′Px and a linear con-
troller κ(x) = Kfx satisfying the conditions in Result 2
can be computed by solving LMIs or Riccati equations.
A polyhedral terminal setXN is then computed as the
maximal constraint admissible set (MCAS) [17] ofx(t +
1) =

∑ℓ

i=1[ξ]i(Ai + BKf )x(t)) subject to the constraints
Kfx(t) ∈ U , x(t) ∈ X .

The computation of LMI requires fairly complicated algo-
rithms, which are unlikely to be deployable in a microcon-
troller, because they require several complex procedures of
linear algebra and large and complex code. Solving Riccati
equations may be more manageable, although it still requires
more code and more computations. If the terminal cost is ad-
justed online, even by Riccati equations, the MCAS needs to
be adjusted consequently, which once again requires further
code and more operations. To avoid additional operations and
complexity in the control algorithm, here we aim at solving
the following.

Problem 1: Given (2), (3) and (5), compute
(i) a parameter-dependent the terminal cost

F (x, ξ) = x′P(ξ)x (6)



where for any givenξ ∈ Ξ, P(ξ) ∈ R
n×n, P(ξ) > 0,

(ii) a terminal set

XN = {x ∈ R
n : MNx ≤ LN} ⊆ X (7)

whereMN ∈ R
q×n, LN ∈ R

q, q ∈ Z+,

such that, given anyξ ∈ Ξ, the origin of the closed-loop
of (2) with the MAPC controller that at any step solves (4)
with (5), (6), (7), and appliesu(t) = u∗

0|t is asymptotically
stable, and the constraints in (3) are enforced. �

The rationale for Problem 1 is that the terminal cost (6)
and terminal set (7) are designed offline and deployed to
the controller. When the value of the plant parameter vector
ω ∈ Ω is properly estimated, together with the (ora)
corresponding value forξ ∈ Ξ, the stabilizing terminal cost
and terminal set are adjusted with simple computations, and
no algorithm other than QP solver for (4)–(7) is needed.

Remark 1: It can be noted that it in Problem 1 the terminal
set is not function ofξ, and hence we search for a set that
is a valid terminal set for allξ ∈ Ξ. As it will be shown
later, for the approach developed here, such set always exists
and its conservativeness has a limited effect on the MPC
algorithm (unlessN is very small), because it is used only as
the terminal constraint, and because of the receding horizon
behavior of the MPC. The computation of a terminal set as
a function of the parameterξ is a challenging problem, left
for future research. �

Next, we first propose a design forP(ξ) in (10) based on
parameter-dependent Lyapunov functions [12], [13], which,
with a trivial choice ofXN , solves Problem 1 for uncon-
strained MAPC, i.e., whenX = R

n, U = R
m. Then, we

solve Problem 1 for constrained MAPC, i.e., whenX ⊂ R
n

and/orU ⊂ R
m, by a proper selection ofXN in (7).

III. U NCONSTRAINEDMAPC: TERMINAL COST DESIGN

Consider the linear parameter varying system

x(t+ 1) =

ℓ
∑

i=1

[ξ(t)]iAix(t) +Bu(t), (8)

where for all t ∈ Z+, ξ(t) ∈ Ξ, the parameter-dependent
(linear) control law

u = κ(ξ)x =

(

ℓ
∑

i=1

[ξ]iKi

)

x, (9)

and the parameter-dependent (quadratic) function

V(x, ξ) = x′P(ξ)x = x′

(

ℓ
∑

i=1

[ξ]iPi

)

x, (10)

wherePi > 0, i ∈ Z[1,ℓ].
Definition 2 ( [13]): A parameter-dependent Lyapunov

function for (8) in closed-loop with (9) is a function (10)
such that

V(x(t+1), ξ(t+1))−V(x(t), ξ(t)) ≤ 0, ∀ξ(t), ξ(t+1) ∈ Ξ,
(11)

that holds with equality only forx = 0. �

Next, we exploit Definition 2 to solve(i) in Problem 1.
Definition 2 provides a more stringent requirement that what
is necessary for solving Problem 1, since in Definition 2,ξ

is time varying, while in Problem 1,ξ is constant. However,
the more stringent requirement is useful for obtaining design
procedures, and for proving properties of the MAPC.

In order to obtain a terminal cost for (4)–(7), we mod-
ify (11) to enforce (iii) in Result 2, where the terminal control
law is (9). This results in
(

ℓ
∑

i=1

[ξ]i(Ai +BKi)

)′(
ℓ
∑

i=1

[ς ]iPi

)(

ℓ
∑

i=1

[ξ]i(Ai +BKi)

)

+x′Qx+

(

ℓ
∑

i=1

[ξ]iKi

)′

R

(

ℓ
∑

i=1

[ξ]iKi

)

−

ℓ
∑

i=1

[ξ]iPi < 0, ∀ξ, ς ∈ Ξ.

(12)

Thus we design (9) and (10) such that (12) is satisfied.
Lemma 1:Let Gi, Si ∈ R

n×n, Si > 0, i ∈ Z[1,ℓ], Ei ∈
R

m×n be such that








Gi +G′
i − Si (AiGi +BEi)

′ E′
i G′

i

(AiGi +BEi) Sj 0 0
Ei 0 R−1 0
Gi 0 0 Q−1









> 0,

∀i, j ∈ Z[1,ℓ].

(13)

Then,Gi is full rank for i ∈ Z[1,ℓ] andPi = S−1
i , Ki =

EiG
−1
i , i ∈ Z[1,ℓ] satisfy (12). �

The proof of Lemma 1 follow the lines of [13] with
modifications inspired from [11] nd from [18, Ch.3.4], which
deals with the case whereξ, ς can only take a subset of the
values of the standard basis inRℓ, and hence is not repeated.
Note that LMI (12) is a combination of those in [13], [18]
since (13) is similar to [13] in terms of allowing forξ, ς ∈ Ξ,
and similar to [13] due to the need of accounting for the
MAPC stage cost in the LMI. Note also that (13) is different
from the LMIs in [11] because here we aim at obtaining
a parameter dependent control lawκ(ξ), while in [11] a
parameter independent control law for robust control is
obtained. A similar, yet slightly different, LMI foronline
computation has been proposed in [15], and in fact it is
simple to prove that (13) and the LMI in [15] are equivalent.

Based on Lemma 1 we can design a parameter-dependent
terminal cost that, for any givenξ ∈ Ξ, achieves stability of
the closed-loop.

Theorem 1:Let (13) be feasible, and consider (2) con-
trolled by the unconstrained MAPC that at every step
solves (4)–(7) whereX = XN = R

n, U = R
m, F (x) =

∑ℓ

i=1[ξ]iPi, andPi = S−1
i , i ∈ Z[1,ℓ] satisfy (13). Given any

ξ ∈ Ξ, the origin of the closed-loop system is asymptotically
stable.

Proof: The proof follows the standard lines of the
proofs for unconstrained MPC based on terminal cost [9].



Let ξ ∈ Ξ be given and constant. The value function
of the MAPC finite horizon optimal control problem for
given ξ, V

(ξ)
MPC(x) is lower and upper bounded by class

K∞ functions,α(‖x(t)‖) = λmin(Q)‖x(t)‖2, α(‖x(t)‖) =
cFF (x(t)) for some cF ∈ R+, see [9, Sec. 2.4.5]. Let
U∗(t) = [u∗

0|t, . . . , u
∗
N−1|t] be the optimal solution of (4)

with initial condition x(t), and V
(ξ)
MPC(x(t)) be the corre-

sponding value function. At timet+1 from x(t+1) = x1|t,
the solutionŨ(t) = [ũ0|t+1, . . . , ũN−1|t+1] whereũi|t+1 =

u∗
i+1|t for i ∈ Z[0,N−2], ũN−1|t+1 =

∑ℓ

i=1[ξ]iKi, where

Ki is from (13) andξ ∈ Ξ is known, has costJ̃ ≤
V
(ξ)
MPC(x(t)) − x(t)′Qx(t), due to (12). SinceV(ξ)

MPC(x(t +

1) ≤ J̃ , we haveV(ξ)
MPC(t+1)−V

(ξ)
MPC(t) ≤ −x(t)Qx(t) ≤

−λmin(Q)‖x(t)‖2 = α∆(‖x(t)‖), α∆ ∈ K∞. Thus, for any
given ξ ∈ Ξ, V

(ξ)
MPC(x(t)) is a Lyapunov function for the

closed-loop system whenξ is constant, and hence the origin
is asymptotically stable.

Theorem 1 guarantees that once MAPC knows the value
of ξ ∈ Ξ, the terminal cost is adjusted by simple summations
and multiplications by scalars and the resulting closed-loop
is asymptotically stable. Indeed, from a theoretical pointof
view, MAPC has the same guarantees of an MPC where
the model is known at design time. However, MAPC allows
for the model to be determined after deployment, because
the terminal cost can be adjusted to the actual model by
computationally simple operations.

Remark 2: In (1) the input-to-state matrixB is inde-
pendent of the parameter vectorξ and, as a consequence,
also in (2) there is only one matrixB. Such limitation
can be removed, although in order to obtain LMIs, (9)
becomes a parameter-independent controllerκ(ξ) = K,
while (10) is still parameter-dependent, see, e.g., [11], [12].
Alternative approaches are also possible. For instance, given
a system with input-to-state matrixBω(ω), we may obtain
an augmented system with constantB by introducing the
incremental input form with an artificial input delay. �

IV. CONSTRAINED MAPC: TERMINAL SET DESIGN

BASED ON PLDI

Next, we consider the case of constrained MAPC, i.e.,
X × U ⊂ R

n × R
m. For constrained MAPC, we need to

modify Theorem 1 to guarantee also recursive feasibility of
the finite time optimal control problem (4)–(7). For this, we
exploit a terminal set, which is PI for the plant in closed-
loop with an auxiliary control law that generates feasible
trajectories from any initial state within the terminal set.
Since in MAPC the model is not exactly known at design
time, when (13) is feasible, we use the auxiliary control
law (9) designed by Lemma 1 to compute a robust PI set that
avoids the online recomputation of the terminal set when the
system parameters are identified, i.e., after deployment.

A. Existence of a constrained admissible invariant set

First notice that the trajectories of the LPV system

x(t + 1) =

ℓ
∑

i=1

[ξ(t)]i(Ai +BKi)x(t) (14)

where κ(ξ) designed according to Lemma 1, andξ(t) ∈
Ξ, for all t ∈ Z0+ include those obtained whenξ(t) = ξ,
constant. For arbitrarily varyingξ(t) ∈ Ξ, the trajectories
of (14) are the same as those generated by the pLDI

x(t+ 1) ∈ co({(Ai +BKi)x(t)}
ℓ
i=1). (15)

Techniques for computing PI sets for LPV systems such
as (14) are known, see e.g., [19]. Here we want to prove
that the maximal PI set for (14) contained in the feasible
setX∞ ⊆ X̄ , whereKi, i ∈ Z[1,ℓ] are obtained from (13),
X̄ = {x ∈ X : κ(ξ)x ∈ U , ∀ξ ∈ Ξ}, exists and has a
non-empty interior, i.e., it is not justX∞ = {0}, but instead
0 ∈ int(X∞). In what follows we outline the main steps of
the proof, which follows the lines of that in [17] for linear
systems, by stating a list of technical lemmas. The proofs
are omitted due to limited space.

Givenx(t) ∈ X̄ , if (Ai+BKi)x(t) ∈ X̄ for all i ∈ Z[1,ℓ],
then for anyξ(t) ∈ Ξ, x(t+ 1) obtained from (14), is such
thatx(t+1) ∈ X̄ . Similarly if (Aj+BKj)(Ai+BKi)x(t) ∈
X̄ for all i, j ∈ Z[1,ℓ], then for (14),x(t + 2) ∈ X , for all
ξ(t), ξ(t+ 1) ∈ Ξ. Generalizing, if
nξ
∏

i=1

(A[̟]i +BK[̟]i)x ∈ X̄ , ∀̟ ∈ Υℓ(nξ), ∀nξ ∈ Z[1,t],

(16)
where Υℓ(nξ) = Z

nξ

[1,ℓ] is the set of sequences of length

nξ of integers in[1, ℓ], then for any{ξ(h)}t−1
h=0 ∈ Ξt, any

sequence{x(h)}th=1 generated by (14) fromx(0) = x is
such thatx(h) ∈ X for all h ∈ Z[1,t].

The existence of PI sets for (8) can be argued by (10)
designed according to Lemma 1 being a Lyapunov function
for (8). Next, we characterize the shape of such PI sets.

Lemma 2:Let Ki, Pi, i ∈ Z[1,ℓ] be obtained as in
Lemma 1. For everyν ∈ R0+, the setS(ν) =

⋂ℓ
i=1 Si(ν),

whereSi(ν) = {x : Vi(x) ≤ ν} andVi(x) = x′Pix, is PI
for (14). �

Lemma 2 identifies a family of PI sets for (14) that is
described by the level sets ofVi(x) = x′Pix, i ∈ Z[1,ℓ]

and suggests that we should only track the value of the
functionsVi along the trajectories obtained by considering
all the sequences of the vertex systems of the pLDI (15).

Lemma 3:Considerx(t + 1) = (Ai(t) + BKi(t))x(t),
i(t) ∈ Z[1,ℓ]. Given any bounded̃X , for everyρ > 0 there
exists a finiteh̄(ρ) ∈ Z+ such that for alx(t) ∈ X̃ and for
all sequences{i(t + h)}

h̄(ρ)
h=0, Vj(x(t + h̄(ρ))) ≤ ρ, for all

j ∈ Z[1,ℓ]. �

Lemma 4:Consider (14). There exists a finite indexh̄ ∈
Z0+ such that ifx(t + h) ∈ X̄ for all h ∈ Z[0,h̄], then
x(t+ h) ∈ X̄ for all h ≥ 0. �

Theorem 2:For (14) whereKi, i ∈ Z[1,ℓ] are designed
based on Lemma 1, there exists a finetely determined con-
straint admissible setX∞ ⊆ X̄ which is positive invariant,
and maximal. Furthermore, if̄X is a polytope, then such
constraint admissible set is a polytope.

Proof: Considerh̄ from Lemma 4, and the setX∞ =
{x ∈ X̄ : (16) holds fort = h̄}. Thus, all the trajectories



of (14) such thatx(0) = x, satisfyx(t) ∈ X̄ for t ∈ Z[0,h̄].
By Lemma 4, if x(t) ∈ X̄ for all t ∈ Z[0,h̄], x(t) ∈ X̄
for all t ∈ R0+. Positive invariance follows directly from
the definition of constraint admissible set [17]. As in [17],
maximality follows fromX∞ = {x ∈ X̄ : x(0) = x =⇒
x(t) ∈ X̄ , ∀t ∈ [0, h̄]}, and from the definition of the
maximal constraint admissible setXM = {x ∈ X̄ : x(0) =
x =⇒ x(t) ∈ X̄ , ∀t ∈ [0,∞)}. Thus,X∞ ⊇ XM , and
by maximality of XM , XM ⊇ X∞, so thatXM = X∞.
Finally, if X̄ is a polytope, then the constraints in (16) define
a polytope with finite facets, since at any stept, a finite
number of constraints is added.

B. Stabilizing constrained MAPC with terminal set

Next, we exploit the existence of the PI set within̄X
proved in Section IV-A to construct a terminal setXN for the
constrained MAPC. Due to the guaranteed existence ofX∞,
this can be computed efficiently by backward reachability
iterations [19].

Lemma 5:Consider (2) andκ(ξ) =
∑

i[ξi]Ki as in
Lemma 1. . LetX∞ be a convex PI set for allx(t + 1) =
(Ai +BKi)x(t), i ∈ Z[1,ℓ]. Then,X∞ is PI for x(t+ 1) =
∑ℓ

i=1[ξ]iAix(t) +Bκ(ξ)x(t), for all ξ ∈ Ξ. �

X∞ in Lemma 5 can be interpreted as a PI set contained
in X̄ for the pLDI (15), and it can be computed as follows.

Lemma 6:Consider (15) subject to constraintsx ∈ X ,
u ∈ U , whereX , U are convex sets, and letKi, i ∈ Z[1,ℓ]

be designed as in Lemma 1. LetX (0) = {x ∈ R
n : x ∈

X , Kix ∈ U , ∀i ∈ Z[1,ℓ]} and the set sequence
{

X (h)
}∞

h=0
be such that

X (h+1) = {x ∈ R
n : (Ai +BKi)x ∈ X (h),

∀i ∈ Z[1,ℓ]} ∩ X (h). (17)

There exists̄h ∈ Z0+ such thatX (h̄) = X (h̄+1), X∞ = X (h̄)

is PI, and for allx ∈ X∞ and for all ξ ∈ Ξ, it holds that
x ∈ X , κ(ξ)x ∈ U . �

The proof, omitted here due to limited space, is based on
standard invariant set methods [19] combined with Theo-
rem 2 which guarantees the existence ofh̄ ∈ Z0+ such that
if the constraints are satisfied forh̄ steps, they are satisfied
for any number of stepsh > h̄.

Theorem 3:Consider (2), (3),Ki, Pi, i ∈ Z[1,ℓ] be
obtained as in Lemma 1, and letX∞ be the PI set obtained
as in Lemma 6. LetXN = X∞ = {x : HNx ≤ KN}, and
P (ξ) =

∑

ξiPi in the MPC problem (4). Then, for every
ξ ∈ Ξ, the origin of the closed-loop system is asymptotically
stable inXf = {x ∈ X : (4) feasible forx(t) = x}.

Proof (sketch):The proof of Theorem 3 follows from
the existence ofX∞ with non-empty interior by Theo-
rem 2 using the standard arguments of the stability proofs
for constrained MPC based on terminal cost and terminal
set [9], and it is only sketched due to space limitations.
The invariance ofXf ⊆ X for the closed-loop system
is proved by constructing a feasible input sequence as in
Theorem 1, where now̃uN−1|t+1 = κ(ξ)xN−1|t+1, and by
exploiting thatxt|N ∈ XN = X∞ ⊆ X̄ , that (9) is feasible
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Fig. 1. MAPC for the case ofℓ = 6 random stable2nd order systems.
Top: time trajectories,x1 (blue),x2 (black),u (blue). Bottom: phase plane
trajectories (black),X (red),X∞ (green).

for xN−1|t+1 ∈ XN , and thatXN is PI for (2) in closed-loop
with (9), for all ξ ∈ Ξ. The rest of the proof follows using
as Lyapunov functionV(ξ)

MPC as in Theorem 1, withXf as
the PI set. �

V. EXAMPLES

First, we consider the case whereℓ = 6 and the vertex
systems of (2) are second order systems with randomly
generated AS state update matricesAi, i ∈ Z[1,ℓ], with a
single input and a common input to state matrixB. The
system is subject to constraints−100 ≤ x ≤ 100, −2 ≤ u ≤
2. In the MAPC we setN = 10, Q = 0.1 · I, R = 1. We
design the terminal cost and auxiliary control law based on
Lemma 1, and the terminal set based on Lemma 6. We show
the simulations for8 initial conditions x(0) = sat(c0v),
wheresat denotes saturation in the admissible state range,v

is randomly chosen in{vi}
nv

i=1, which is the set of vertices
of X∞, andc0 = 50. For each initial condition,4 different
simulations are obtained by randomly choosing values of
ξ ∈ Ξ. The results are shown in Figure 1.

Next, we consider a case whereℓ = 5, A1 = [ 1 0.2
0 1 ],

A2 = 1.1 ·A1, A3 = 0.9 ·A1, A4 = [ 0.9 0.3
0.4 0.6 ] A5 = [ .95 0

.8 1.03 ],
and B = [−0.035 −0.905 ]. Note that some of the vertex
systems of (2) are stable and some are unstable. The system
is subject to constraints−40 ≤ x ≤ 40, −10 ≤ u ≤ 10.
In the MAPC we setN = 7, Q = 0.01 · I, R = 1. Again,
we show the simulations for8 initial conditions chosen with
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Fig. 2. MAPC for the case ofℓ = 5 stable and unstable2nd order systems.
Top: time trajectories,x1 (blue),x2 (black),u (blue). Bottom: phase plane
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the same method as in the previous test, withc0 = 2, and
for each initial condition,4 different systems obtained by
randomly choosing values ofξ ∈ Ξ. The results are reported
in Figure 2, which shows again that the closed loop is AS.

For this case it can be shown that an MPC designed with
the exact prediction model (i.e., with the correct value for
ξ ∈ Ξ in (4)) but with terminal cost designed based on a
single vertex system, may fail to asymptotically stabilizethe
closed loop, and may actually result in a steady state error.

VI. CONCLUSIONS ANDFUTURE RESEARCH

We have proposed a model adjustable predictive con-
trol strategy that allows to retain stability guarantees with
minimal computations after adjusting the prediction model.
Thus, the method allows for fine tuning of the model after
deployment in a microcontroller. The key idea is to use a
parameter-dependent Lyapunov function to design the MAPC
terminal cost and an auxiliary terminal control law, and to use
the auxiliary control law to determine a constraint-admissible
polyhedral invariant set that is used as MAPC terminal set.
We proved the existence of such a terminal set with non-
empty interior and asymptotic stability of the closed-loop.

Besides solving the problem of MAPC we believe that
the proposed framework establishes the basis for an adaptive
model predictive control with stability guarantees, where
the adjustments to the prediction model parameters occur
concurrently to the control, i.e., the convex combination

vector is a time-varying parameter. Even if for MAPC it
introduces conservativeness, the property that the pLF is
guaranteed to decrease regardless of a change in the convex
combination vector is of fundamental importance to this
end. The development of such an adaptive model predictive
control strategy is currently being investigated.
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