MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com

Model Adjustable Predictive Control with Stability
Guarantees

Di Cairano, S.

TR2015-059  July 2015

Abstract

For stabilizing model predictive control adjusting the prediction model requires the adjust-
ment of the terminal set and terminal cost. However, the conventional methods to design
these are not practical, and often impossible, to implement in microcontrollers. In this pa-
per, we pre-compute the terminal cost and terminal set in a form that allows to adjust
them with minimal computational effort, following an adjustment of the prediction model.
For unconstrained systems, a terminal cost and terminal controller are designed based on
parameter-dependent Lyapunov functions. For constrained systems, the terminal function is
also used to derive a robust polyhedral terminal set. We prove that the proposed method
guarantees the existence of a terminal set with non-empty interior, and asymptotic stability
of the closed-loop system.
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Model Adjustable Predictive Control
with Stability Guarantees

Stefano Di Cairano

Abstract— For stabilizing model predictive control, adjusting In this paper we propose a Model Adjustable Predictive
the prediction model requires the adjustment of the termindset  Control (MAPC) algorithm which guarantees with mini-
and terminal cost. However, the conventional methods to démn mal computational effort that stability is preserved after

these are not practical, and often impossible, to implemenin dicti del adiust t Bv desiani ¢
microcontrollers. In this paper, we pre-compute the termiral a prediction model adjustment. By designing a parameter-

cost and terminal set in a form that allows to adjust them dependent terminal cost and a corresponding terminal set,
with minimal computational effort, following an adjustment of  after the MAPC controller has been deployed, the plant can
the prediction model. For unconstrained systems, a termina pe identified, and the terminal cost and terminal set for

cost and terminal controller are designed based on paramete guaranteeing the closed-loop stability of the plant cdredo

dependent Lyapunov functions. For constrained systems, th . . i .
parameter-dependent Lyapunov function is also used to deve by MAPC can be adjusted with a negligible computational

a polyhedral terminal set. We prove that the proposed method COSt, i.€., with few simple operations.
guarantees the existence of a terminal set with non-empty = We assume that the possible instances of the plant can
interior, and asymptotic stability of the closed-loop sysem. be obtained as convex combinations of vertex systems. For
the case of unconstrained systems, we compute the terminal
_ . i cost as a function of the convex combination vector of
While originally developed for chemical and process cong,o yertex systems in the form of a parameter-dependent
trol, model predictive control (MPC) is now being exploredLyapunov function (pLF). Parameter-dependent Lyapunov
for applications in several other domains such as autoR0tVtnetions have been introduced for analysis and robust con-

aerospace, and manufacturing [1], [2]. These applications,| gesign for uncertain linear systems in [12], and hawerbe
impose new challenges and require new developments, sychenged to the control of linear parameter-varying (LPV)
as low complexity optimization algorithms [3]-[6], and 5y qtems in [13], [14]. These results are used to design tobus
calibration methods [7], [8]. In particular, low complexit \ipc [11] and MPC for LPV systems [15], [16], which
optimization algorithms [3]-[6] have been motivated byr,equire the online solution of LMIs. However, the limited
the fact that several of these recent applications explqifnapijities of the microcontroller and the complexity bét

microcontrollers that have limited computing power, anq \y solver code makes these methods often impossible to
where the code has to undergo extensive certification. Th%ply in aerospace, automotive, or manufacturing

the deployed control algorithms should be kept as simple as|’nis paper, we do not seek a robust MPC controller for

possible. L ) an LPV system, but rather for the possibility of adjusting an
In applications where the_ controller is deployed to hl_mMPC design to maintain stability after the prediction model
dreds or even thousands of instances of a plant, a significagt ., gified. Thus starting from [13] we computefore
plant-to-plant varia_lbility can be exhibited by some parameyq loymenta pLF and a corresponding parameter-dependent
ters, as well as aging effects, and as a consequence the Mgqiroller, so that, when the convex combination vector is
prediction model may need to _be adjusted after the controllgqimatedafter deploymentthe terminal cost can be imme-
has been deployed in the microcontroller. However, whegaiely adjusted with minimal computational effort. Sinee
the MPC closed-loop stability is guaranteed by appropiiate ;¢ o trying to enforce robustness but oadjustability, the

designed terminal cost and terminal set [9], if the preditti ;.41 controller only solves quadratic programs, for \hic
model is adjusted but the terminal cost and terminal sgf. sojvers are much simpler and faster [4], [5]

are not, the stability of the closed-loop may be lost. The £q; the case of constrained MAPC a terminal set is also
(re)design of the terminal cost and the terminal set reghee obtained as the robust maximum constraint admissible set
solution of LMIs or Riccati equations, and the computation¢ {ha vertex systems in closed-loop with the components
of constr_ained positive invariant _sets. The c_orrespondir]& the parameter-dependent control law. We show that for
computational procedures results in code that is complex {ge specificparameter-dependent controller obtained together

verify, and often has too large computational requiremen{giy, ie n1 F, the maximal constraint admissible set has non-
for production microcontrollers. For similar reasons,raip empty interior, is polyhedral, and finitely determined.

robust MPC based on LMI [10], [11] may not be viable in tpg rest of the paper is structured as follows. In Section Il
these applications. we describe the system model and the problem addressed in

S. Di Cairano is with Mitsubishi Electric Research Labor@®, Cam- this papgr. In Section Il we describe .the cor_n_putat|on of
bridge, MA, email:di cai r ano@ eee. or g the terminal cost and of a corresponding auxiliary control

|. INTRODUCTION



law by parameter-dependent Lyapunov functions, and we Consider now the case whefec = is known beforehand.
establish the stability of unconstrained MAPC. In Sectidn | Model predictive control (MPC) uses (2), (3) to setup the
we discuss the terminal set design, prove its existence afidite time optimal control problem

properties, and establish the stability of constrained \ZAP N_1

In Section V we present some numerical examples of MAPC. min - Fleyy) + L@y, tgpe) (4a)

Finally, in Section VI we summarize the results and discuss Ut P

the future research directions towards an adaptive MPC ¢

framework. st Tppgpp = Z[ﬁ]iAixk\t + Buy);,  (4b)
Notation: R, Ry, R, are the sets of real, nonnegative i=1

real, positive real numbers, at#] Zq., Z, are the sets of ueld (4c)

integer, nonnegative integer, positive integer numbeos. F reX (4d)

intervals of numbers, we use the notatidp ;) = {z € Z :
a < z < b}. co{ ¥} denotes the convex hull of the sat.
For vectors, inequalities are intended componentwiselewhi o = x(t) (4f)

for matrices indicate (semi)definiteness. By; we denote \\here N is the prediction horizonf : R" x R™ — Ro is

the i-th component of vectar, and by’ and0 the identity o stage costF’ : R — Ry, is the terminal costXy is
apd the “gll-ze_ro” matrices pf appropriate d_imension. .For the terminal set and/, — oy - un_1y] iS the sequence
discrete time signat < R™ with sampling period’s, x(t) IS of control inputs along the prediction horizon. MPC applies
the state at sampling instahti.e., at time7t. The notation ;5 the system the control input(t) = u?,, whereU; =
xy); denotes the predicted value ofat samplet + £, i.e., !

[ugl¢ - ..un—_1)¢ is the optimizer of (4). In (4), the terminal
(t + k), based on data at sampleand zo; = z(t). A o5t and the terminal sefty are designed to guarantee
functiona : Ropy — Ry is of classK if it is continuous,

X . 1 X the recursive feasibility and the stability of the closeds
strictly increasing(0) = 0, andlim a(c) = oo system, for instance according to the following well known
result.

Result 2 ( [9]): Let x(x) and F(x) be such that:(:),

First, we review some basic results, see, e.g., [9, App. Blor all + ¢ Xy, (4¢c), (4d) are satisfied for alk €

Definition 1: A setS C R" is positive invariant (Pl) for x, with u(z) = x(z); (ii), Xy is positive invariant for
z(t+1) = f(z(t)), x € R, iff 2 € S implies f(z) € S.0 Zle[f]iAiI + Br(z); (i), F(Zle[ﬂiAix + Br(z)) +

Result 1:Given z(t + 1) = f(z(t)), € R™ a function [,z x(z)) — F(z) < 0 for all z € Xy. Then, the MPC
V : R" — R, such that there exist a Pl s& C R"  gjgorithm based on (4) renders the origin of the closed-loop
with 0 € S, and fUnCtionSOél,OZQ,OLA € Ko such that system asymptotica”y stable. O
ar(lz])) < V() < ax(l|z]]), V(f(x)) = V(z) < —aa(||lz]) When ¢ in (2) is known a-priori, and the stage cost is
for all x € S, is a Lypaunov function forf in S. If  quadratic,
there exists a Lyapunov function fgf in S, the origin is

TN € AN (4e)

Il. MODELING AND PROBLEM DEFINITION

asymptotically stable (AS) i for f. O L(z,u) =2'Qx +u'Ru, Q,R >0, (5)
Consider a discrete-time system sampled with pefipd 4 quadratic terminal cosF(z) = 2/Pz and a linear con-
z(t+1) = A(w)z(t) + Bu(t) (1) troller x(z) = Kyx safisfying the conditions in Result 2

- can be computed by solving LMIs or Riccati equations.
wherexz € R, u € R™, and the state update matrik(w) A polyhedral terminal set¥y is then computed as the
depends on a parameter vectore 2 C R"». We assume maximal constraint admissible set (MCAS) [17] oft +
that there existd € Z; and A; € R"*", i € Zp 4 such 1) = Zle[é]i(/li + BKy)x(t)) subject to the constraints
that for allw € Q, there exists e EC R, E={{ € R":  Ku(t) e U, z(t) € X.

0<€<1, Y0 €], =1}, such thatd(w) = 31 [€]i Ai. The computation of LMI requires fairly complicated algo-
Thus, system (1) can be represented by rithms, which are unlikely to be deployable in a microcon-
’ troller, because they require several complex procedures o
a(t+1) = Z[ﬁ]iAiw(t) + Bu(t), (2) linear algebra and large and complex code. Solving Riccati
= equations may be more manageable, although it still regjuire

fnore code and more computations. If the terminal cost is ad-
justed online, even by Riccati equations, the MCAS needs to
be adjusted consequently, which once again requires furthe
code and more operations. To avoid additional operatiods an
complexity in the control algorithm, here we aim at solving
the following.

xekX, ueld 3) Problem 1: Given (2), (3) and (5), compute

(1) a parameter-dependent the terminal cost

where ¢ is not known a-priori, but here it is assumed no
to change. Due to the form of (2), we cdllthe convex
combination vector and(t+1) = A;x(t)+Bu(t), i € Zp g
the vertex systems.

Let the constraints on the system state and input be

where X € R", U € R™ are the sets of admissible states
and inputs, respectively. F(z,8) = 2'P(&)x (6)



where for any givert € =, P(£) € R™*™, P(£) > 0, Next, we exploit Definition 2 to solvéi) in Problem 1.
(ii) a terminal set Definition 2 provides a more stringent requirement that what
n is necessary for solving Problem 1, since in Definitior¢ 2,
Iy ={eeR": Myz<In}CX (1) g ime varying, while in Problem % is constant. However,
where My € R?*" Ly € R?, g € Zy, the more stringent requirement is useful for obtaining giesi
such that, given ang € =, the origin of the closed-loop Procedures, and for proving properties of the MAPC.
of (2) with the MAPC controller that at any step solves (4) [N order to obtain a terminal cost for (4)~(7), we mod-
with (5), (6), (7), and applies(t) = Ul is asymptotically ify (11) to enforce (iii) in Result 2, where the terminal coit
stable, and the constraints in (3) are enforced. 0 lawis (9). This results in
The rationale for Problem 1 is that the terminal cost (6) . ¢
and terminal set (7) are designed offline and deployed téZ[ﬁ]i(Ai +BKZ-)> <Z[§]iPi> <Z[5]i(Ai +BK1-)>
the controller. When the value of the plant parameter vectoxi=1 i=1 i=1
w € Q is properly estimated, together with the (e ¢ ! ‘
corresponding value fof € =, the stabilizing terminal cost +2'Qx + <Z[§]iKi> R <Z[§]iKi>
and terminal set are adjusted with simple computations, and i=1
no algorithm other than QP solver for (4)—(7) is needed. ¢
Remark 1:1t can be noted that it in Problem 1 the terminal - Z[ﬁ]ipi <0, V¢,s €E
set is not function of, and hence we search for a set that =1
is a valid terminal set for alf € Z. As it will be shown (12)
later, for the approach developed here, such set alwaysexi$hus we design (9) and (10) such that (12) is satisfied.
and its conservativeness has a limited effect on the MPC Lemma 1:Let G;,S; € R**", S; > 0,17 € Zpy, Ei €
algorithm (unlessV is very small), because it is used only asR™*" be such that
the terminal constraint, and because of the receding horizo . +G'—S; (AG;+BE) E G

behavior of the MPC. The computation of a terminal set as (AZZ-GZ- + BE;) S; 0 0
a function of the parametéris a challenging problem, left B 0 Rl 0 >0,
for future research. 0 G, 0 0 Q!

Next, we first propose a design f@(¢) in (10) based on ViiieZ
parameter-dependent Lyapunov functions [12], [13], which bJ [1*(‘5]_'3)

with a trivial choice of Xy, solves Problem 1 for uncon-
strained MAPC, i.e., whemit = R", I/ = R™. Then, we Then, G is full rank fori € Zp 4 and P = S, UK, =
solve Problem 1 for constrained MAPC, i.e., wh&nC R"  E,G 1, i ¢ Zp g satisty (12). O

and/orid C R™, by a proper selection oty in (7). The proof of Lemma 1 follow the lines of [13] with

modifications inspired from [11] nd from [18, Ch.3.4], which

IIl. UNCONSTRAINEDMAPC: TERMINAL COST DESIGN deals with the case whetg ¢ can only take a subset of the

Consider the linear parameter varying system values of the standard basisi{, and hence is not repeated.
’ Note that LMI (12) is a combination of those in [13], [18]
z(t+1) =Y [E(B)]iAi(t) + Bu(t), (8) since (13)is similar to [13] in terms of allowing fgr< € =,
= and similar to [13] due to the need of accounting for the

MAPC stage cost in the LMI. Note also that (13) is different
from the LMIs in [11] because here we aim at obtaining
a parameter dependent control law¢), while in [11] a
¢ parameter independent control law for robust control is
u=r()z = <Z[£]JQ> z, (9)  obtained. A similar, yet slightly different, LMI foonline
i=1 computation has been proposed in [15], and in fact it is
and the parameter-dependent (quadratic) function simple to prove that (13) and the LMI in [15] are equivalent.
¢ Based on Lemma 1 we can design a parameter-dependent
V(z, &) =2’ P&z =2 <Z[5]1Pi> z, (10) terminal cost that, for any givefi€ =, achieves stability of
i1 the closed-loop.
where P, > 0, i € Zpy . Theorem 1:Let (13) be feasible, and consider (2) con-

Definition 2 ( [13]): A parameter-dependent Lyapunovtm“ed by the unconstrained MAPC that at every step

function for (8) in closed-loop with (9) is a function (10) SOIves (4)—(7) where¥ = Xy = R", U = R™, F(z) =
such that ZZ &P, andP, = S;7' i € Zpy ¢ satisty (13). Given any

¢ € E, the origin of the cIosed Ioop system is asymptotically
V(z(t+1),6(+1))—V(x(t),£(t)) < 0,VE(1),&(t+1) €E,  stable.
(11) Proof: The proof follows the standard lines of the
that holds with equality only for = 0. L proofs for unconstrained MPC based on terminal cost [9].

where for allt € Z,, &(t) € =, the parameter-dependent
(linear) control law



Let £ € = be given and constant. The value functionwhere x(¢) designed according to Lemma 1, ag¢t) €
of the MAPC finite horizon optimal control problem for =, for all t € Zy, include those obtained wheiit) = ¢,
given &, Vl(él)gc(a:) is lower and upper bounded by classconstant. For arbitrarily varying(t) € =, the trajectories

Koo functions,a([|z(t)]]) = Muin(@Q)||lz(t)||?, @(||z(t)]) = of (14) are the same as those generated by the pLDI
crF(x(t)) for somecp € Ry, see [9, Sec. 2.4.5]. Let _ _ ¢

U*(t) = [ugy - - un_y),] be the optimal solution of (4) 2t +1) € co{(Ai + BK)z()}ia ) (15)
with initial condition z(t), and V{{).(z(t)) be the corre- Techniques for computing Pl sets for LPV systems such
sponding value function. At time+ 1 from z(t +1) = x,),, &S (14) are known, see e.g., [19]. Here we want to prove
the SOIUtOND (t) = [figjs1,- - - »iin1je11] Whered,y, = that the maximal Pl set for (14) contained in the feasible

£

“fﬂ\t for i € Zion—o lin—1jis1 = 3, [€]:K;, where setx*> C X, whereK;, i € Z; 4 are obtained from (13),

: . ~ X ={z e X¥X: k(zr € U,V € E}, exists and has a
K; is from (13) and¢ € = is known,- has cost < non-e;{nptyinterior,(i.e)., it is notjus’(oo}: {0}, but instead
Vb (@(t)) — () Qu(t), due to (12). SINCa\e(x(t + () ¢ i yoe - :

X B © € int(X*°). In what follows we outline the main steps of
1) < J, we haveVype(t+1) — Wype(t) < —2(t)Qz() < the proof, which follows the lines of that in [17] for linear
—Amin(Q)[l2()]|2 = aa(llz(®)]), aa € Ko Thus, for any  gystems, by stating a list of technical lemmas. The proofs
given{ € E, Vype(z(t)) is a Lyapunov function for the are omitted due to limited space.
closed-loop system whefis constant, and hence the origin Givenz(t) € X, if (A;+BK;)x(t) € X forall i € Zp, 4,
is asymptotically stable. B then for anyé(t) € =, z(t + 1) obtained from (14), is such
Theorem 1 guarantees that once MAPC knows the Vall{ﬁatx(t+1) € X. Similarly if (A;+BK;)(A;+BK;)z(t) €

of £ € E, the terminal cost is adjusted by simple summationg o, g| i,j € Zp g, then for (14),z(t + 2) € X, for all
and multiplications by scalars and the resulting closexlo (), E(t+1) € E. Generalizing, if

is asymptotically stable. Indeed, from a theoretical paoiht e
view, MAPC has the same guarantees of an MPC wher 5

the model is known at design time. However, MAPC aIIowsT[l(A[Wh + BK[w),)z € X, Vo € Ty(ng), Vng € Zp 4,
for the model to be determined after deployment, becausé (16)

the terminal cost can be adjusted to the actual model Qyhere Yo(ng) = Z?fé] is the set of sequences of length

computationally simple o_perations. o ne of integers in[1, /], then for aHY{E(h)}Z;lo € =t any
Remark 2:In (1) the input-to-state matrixB is inde- sequence{z(h)}._, generated by (14) from(0) = x is

pendent of the parameter vectorand, as a consequence,q ., thate(h) € X forall he Zpg.

also in (2) there is only one matrig. Such_limitation The existence of Pl sets for "(8) can be argued by (10)

Ean be removed, altho_ug(;jh in ((j)rder to Otham LMls, (gbesigned according to Lemma 1 being a Lyapunov function
ecomes a pa_lrameter-ln ependent controiief) = K, for (8). Next, we characterize the shape of such PI sets.

while (10) is still parameter-dependent, see, e.g., [1113].] Lemma 2:Let K;, P, i € 7y, be obtained as in

Alternative approaches are also possible. For instangengi Lemma 1. For e e;’ Z’R the[éca]us A s

a system with input-to-state matrig,,(w), we may obtain whereS-(z./) i {;/. i(ex) 2*;} and V»((xy)) __QF;C ;s(UI)D’I

an augmented system with constadtby introducing the L T = O v

incremental input form with an artificial input delay. O for (14). ) . _ - )
_ Lemma 2 identifies a family of PI sets for (14) that is
IV. CONSTRAINED MAPC: TERMINAL SET DESIGN described by the level sets of(z) = a'Px, i € Zy
BASED ON ALDI and suggests that we should only track the value of the

Next, we consider the case of constrained MAPC, i.efunctions); along the trajectories obtained by considering
X xU C R™ x R™. For constrained MAPC, we need toall the sequences of the vertex systems of the pLDI (15).
modify Theorem 1 to guarantee also recursive feasibility of Lemma 3:Considerz(t + 1) = (Ajey + BE1))x(t),

the fir_1ite time _optimal control problem (4)—(7). For this, we;(¢) ¢ Zp - Given any boundedt, for everyp > 0 there
exploit a terminal set, which is PI for the plant in closedeyists a finiteh(p) € Z, such that for ak(t) € X and for
loop with an auxiliary control law that generates feasible sequencegi(t + h) h(p) Vi(a(t + hip))) < p, for all
trajectories from any initial state within the terminal .setj € Zpy . h=0r 7 - [
Since in MAPC the model is not exactly known at design Lem’ma 4:Consider (14). There exists a finite indBx
time, when (13) is feasible, we use the auxiliary contro L P B

law (9) designed by Lemma 1 to compute a robust Pl set thg + such that ifa(t + ) € & for all h € Zpp), theDn

. . ; . z(t+h) € X forall h > 0.
ds th | tat f the t | set when th . :
avoids the online recomputation of the terminal set when the'. % 000 o erere, e 71y are designed

system parameters are identified, i.e., after deployment. . . .
y _ P _ T p y based on Lemma 1, there exists a finetely determined con-
A. Existence of a constrained admissible invariant set  straint admissible set> C X which is positive invariant,

First notice that the trajectories of the LPV system and maximal. Furthermore, i is a polytope, then such
p constraint admissible set is a polytope.
z(t+1)= Z[E(t)]i(Ai + BK;)z(t) (14) Proof: Considerh from Lemma 4, and the set> =

p {x € X : (16) holds fort = h}. Thus, all the trajectories



of (14) such thatr(0) = x, satisfyz(t) € X' for t € Z . 100

By Lemma 4, ifz(t) € X for all t € Zyy, =(t) € X 8

for all ¢ € Ry4. Positive invariance follows directly from 5" 0

the definition of constraint admissible set [17]. As in [17],

maximality follows fromx> = {z € X : z(0) =2 = ~100] 5 . 5 5 10
xz(t) € X, ¥t € [0,h]}, and from the definition of the t

maximal constraint admissible sat; = {x € X : z(0) = 2

r = x(t) € X, Vt € [0,00)}. Thus, X> D X, and

by maximglity of Xy, Xy 2 X°, so thatX)y, = X°. s of

Finally, if X is a polytope, then the constraints in (16) define

a polytope with finite facets, since at any stgpa finite - ‘ ‘ ‘
number of constraints is added. [ | 0 2 4 " 6 8 10

B. Stabilizing constrained MAPC with terminal set

Next, we exploit the existence of the Pl set withi
proved in Section IV-A to construct a terminal s&f; for the
constrained MAPC. Due to the guaranteed existenc of
this can be computed efficiently by backward reachability
iterations [19].

Lemma 5:Consider (2) ands(§) = > ,[&]K; as in
Lemma 1. . Let¥> be a convex Pl set for ali(t + 1) =
(Ai + BK;)x(t), i € Zj1 4. Then, X is Pl forz(t +1) =
Zle[f]iAiI(t) + B/@(f) (t), for all £ € =. O ~10%0 -50 0 50 100

X in Lemma 5 can be interpreted as a Pl set contained 1
in & for the pLDI (15), and it can be computed as fOIIOWS'Fig. 1. MAPC for the case of = 6 random stable™? order systems.

Lemma 6: Consider (15) subject to constraintsc X',  Top: time trajectoriesz1 (blue), z> (black), u (blue). Bottom: phase plane
u € U, where X, U are convex sets, and Iét;, i € Zy ,  Uaectories (black) (red), x> (green).
be designed as in Lemma 1. Lat® = {z ¢ R" : = €
X, Kz €U, Vi € Zj 4} and the set sequender™) } *

)

-50]

be such that for zy_1141 € Xn, and that¥y is Pl for (2) in closed-loop
XD — fp e R™ : (4; + BK;)z € XW with (9), for all ¢ € =. The rest of the proof follows using

. ’ ) as Lyapunov functiorvls/f%,C as in Theorem 1, with¥; as

VieZpgiNX. (17)  the PI set. 0

There exists: € Zg, such thatt(®) = x(+1) yoo — y(h)

is PI, and for allz € X* and for all¢ € Z, it holds that

zeX, k()rel. U First, we consider the case whefe= 6 and the vertex

The proof, omitted here due to limited space, is based ®ystems of (2) are second order systems with randomly

standard invariant set methods [19] combined with Theagenerated AS state update matricés i € Zp 4, with a

rem 2 which guarantees the existencehaf Z,, such that single input and a common input to state matfx The

if the constraints are satisfied far steps, they are satisfied system is subject to constraintd 00 < z < 100, —2 < u <

for any number of steps > h. 2. In the MAPC we setN =10, Q@ =0.1-1, R=1. We
Theorem 3:Consider (2), (3),K;, P;, i € Zpj, be design the terminal cost and auxiliary control law based on

obtained as in Lemma 1, and |&t> be the Pl set obtained Lemma 1, and the terminal set based on Lemma 6. We show

as in Lemma 6. Letty = X = {z : Hyx < Ky}, and the simulations for8 initial conditions z(0) = sat(cov),

P ) > & P; in the MPC problem (4). Then, for every wheresat denotes saturation in the admissible state range,

¢ € E, the origin of the closed-loop system is asymptoticallys randomly chosen idu;};*;, which is the set of vertices

stable inX; = {x € X : (4) feasible forz(t) = z}. of X>°, and¢y, = 50. For each initial condition4 different
Proof (sketch):The proof of Theorem 3 follows from simulations are obtained by randomly choosing values of

the existence ofY>° with non-empty interior by Theo- ¢ € =. The results are shown in Figure 1.

V. EXAMPLES

rem 2 using the standard arguments of the stability proofs Next, we consider a case whefe= 5, A; = [(1J 0.2],
for constrained MPC based on terminal cost and terminal, = 1.1- 4, A3 =0.9- A1, Ay = [3993] A5 =% 193],
set [9], and it is only sketched due to space limitationsand B = [-0.035 —0.905]|. Note that some of the vertex

The invariance oft; C X for the closed-loop system systems of (2) are stable and some are unstable. The system
is proved by constructing a feasible input sequence as is subject to constraints40 < z < 40, —10 < u < 10.
Theorem 1, where nowiy 1441 = K(§)zy_1j¢41, and by In the MAPC we setV =7, Q = 0.01- I, R = 1. Again,
exploiting thatz, y € Ay = &> C X, that (9) is feasible we show the simulations fa¥ initial conditions chosen with



40 ' vector is a time-varying parameter. Even if for MAPC it
g 207 1 introduces conservativeness, the property that the pLF is
§ Or guaranteed to decrease regardless of a change in the convex
-20 1 combination vector is of fundamental importance to this
—40 ‘ ‘ ‘ ‘ ‘ ‘ end. The development of such an adaptive model predictive
0 5 10 15 20 25 30 35 : o :
t control strategy is currently being investigated.
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