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Abstract
Condition monitoring for batteries involves tracking changes in physical parameters and oper-
ational states such as state of health (SOH) and state of charge (SOC), and is fundamentally
important for building high-performance and safety-critical battery systems. A model-based
condition monitoring strategy is developed in this paper for Lithium-ion batteries on the basis
of an electrical circuit model incorporating hysteresis effect. It systematically integrates 1)
a fast upper-triangular and diagonal recursive least squares algorithm for parameter identi-
fication of the battery model, 2) a smooth variable structure filter for the SOC estimation,
and 3) a recursive total least squares algorithm for estimating the maximum capacity, which
indicates the SOH. The proposed solution enjoys advantages including high accuracy, low
computational cost, and simple implementation, and therefore is suitable for deployment and
use in real-time embedded battery management systems (BMSs). Simulations and experi-
ments validate effectiveness of the proposed strategy.
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Abstract

Condition monitoring for batteries involves tracking changes in physical parameters and opera-
tional states such as state of health (SOH) and state of charge (SOC), and is fundamentally impor-
tant for building high-performance and safety-critical battery systems. A model-based condition
monitoring strategy is developed in this paper for Lithium-ion batteries on the basis of an electrical
circuit model incorporating hysteresis effect. It systematically integrates 1) a fast upper-triangular
and diagonal recursive least squares algorithm for parameter identification of the battery model,
2) a smooth variable structure filter for the SOC estimation,and 3) a recursive total least squares
algorithm for estimating the maximum capacity, which indicates the SOH. The proposed solution
enjoys advantages including high accuracy, low computational cost, and simple implementation,
and therefore is suitable for deployment and use in real-time embedded battery management sys-
tems (BMSs). Simulations and experiments validate effectiveness of the proposed strategy.

Keywords: Lithium-ion battery monitoring, fast upper-triangular and diagonal recursive least
squares, maximum capacity estimation, recursive total least squares, smooth variable structure
filter, state of charge, state of health

1. Introduction

Lithium-ion (Li-ion) batteries have gained widespread usein applications ranging from con-
sumer electronics devices to power tools and to electric vehicles (EVs) due to their high energy
and power densities and long cycle life [1]. However, effective battery monitoring and control,
equivalently battery management systems (BMSs), remains aremarkable challenge and necessity,
having spurred a wealth of research on their core algorithms[2]. A key mission of a BMS is to
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monitor the state of charge (SOC) [3, Sec. 3.2], state of health (SOH), and battery parameters
including impedance and capacity [4]. A precise understanding of these variables is crucial for a
series of BMS tasks, e.g., charging, discharging, cell balancing, and fault prognosis and diagnos-
tics, to improve operational performance, safety, reliability and lifespan of batteries. However, it
cannot be obtained by direct measurement and instead, needsto be built upon estimation. Such
estimation algorithms are expected to have low complexity and high computational efficiency, a
prerequisite for their online implementation on resource constrained platforms such as embedded
BMSs.

Research efforts on online battery parameter estimation have led to two families of methods:
Kalman filter (KF)-based and regression-based. A variety ofKFs, including the linear KF [5],
extended KF (EKF) [3], and sigma point KF (SPKF) [6] have beenused to estimate battery pa-
rameters and states simultaneously. Compared to the KF-based solution, the least squares method
and its variant are more computationally competitive without compromising much accuracy, thus
holding significant potential for battery model identification. See [7–11] and references therein
for details. Recently, an upper-triangular and diagonal (UD) factorization-based RLS estimation
method with an EF [12] was proposed to solve the digital computer implementation problem of the
RLS. In additional to fast speed, this method has improved numerical stability with preservation
of a positive covariance.

The SOC estimation has been a subject of intensive research,which leads to a variety of esti-
mation algorithms. The easiest-to-implement ones includevoltage translation and Coulomb count-
ing [13]. However, multiple issues render them unreliable,especially the sensitivity to initial SOC
estimate and accumulative integration errors. The computational intelligence (CI)-based methods,
e.g., artificial neural network (ANN) [14], fuzzy logic [15], and support vector machine [16], con-
duct the SOC estimation through data-driven learning of thenonlinear relationship between the
SOC and measured quantities such as battery voltage, current and temperature. The learning pro-
cess is nonetheless adverse to real-time execution due to the high computational burden. Applying
state filters and observers to electrochemical or electrical circuit models, model-based methods
have been attracting considerable attention as an effective means to improve the SOC estimation
accuracy. The EKF has been widely used for SOC estimation [17, 18], and its upgraded variant,
the iterated EKF (IEKF), is used in [19] for simultaneous SOCand model parameter estimation.
In [6, 20], the hysteresis effect inherent in batteries [21]is accounted for with the development
of approaches based on a dual EKF and a dual sigma-point KF (SPKF), respectively. However,
the IEKF, dual EKF and SPKF increases the accuracy at the expense of higher computational ef-
fort. One major alternative thus is the more computationally efficient observer-based approaches,
e.g., linear observer [10], sliding mode observer [9, 11], nonlinear geometric adaptive observer
[22], and partial differential equation (PDE) observer [23]. A further advantage they have is the
availability of convergence analysis for the estimation error dynamics. Meanwhile, some work
attempts to combine the advantages of the aforementioned methods, an example of which is the
SOC estimation using neural networks and EKF in [24].

The SOH measures the battery aging and wear, which correspond to capacity fade and power
fade [20]. Accordingly, battery maximum capacity [17, 25],and impedance components (e.g.
impedance [26], internal resistance [27], diffusion resistance [28] and a diffusion capacitance
[29]) are the commonly used parameters to quantify the SOH. Some straightforward ways to infer
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SOH, e.g., evaluating the maximum capacity via a full discharge test with a small current [25]
or measuring the impedance [26], are not suitable for real-time estimation. This is because the
maximum capacity declines gradually due to the aging and degradation, and fluctuates according
to temperature. A knowledge of its accurate value is indispensable for SOC estimation (espe-
cially in the standalone case), health prognosis and other battery management tasks. The online
SOH estimation has been tackled by CI-based methods, e.g., ANN [30, 31], adaptive recurrent
NN [32], and structured neural network (SNN) [33], and model-based methods, such as the dual
EKF [6, 17, 20, 34] and the dual sliding mode observer [35]. Additionally, analytical approaches,
including the two-point (TP) of SOCs method [11] and recursive total least squares (RTLS) [36],
have been developed and exploited to estimate the maximum capacity based on Coulomb counting.

This paper proposes a comprehensive strategy for online condition monitoring of Li-ion bat-
teries. Its design is based on a battery model that captures both the electrical circuit characteristics
and the hysteresis. The monitoring solution consists of three interrelated algorithms for battery
parameter, SOC, and SOH estimation, respectively. Specifically, a fast UD recursive least squares
(FUDRLS) method is built to identify the battery model parameters. Based on the fully identi-
fied model, a smooth variable structure filter (SVSF) is designed to perform the SOC estimation.
Finally, the battery’s maximum capacity is determined by a Rayleigh quotient-based RTLS algo-
rithm taking the estimated SOCs and measured current as inputs. The proposed algorithms are
integrated to run in parallel but at multiple time scales to achieve the best use of computational
resources. A short time scale is used in FUDRLS and SVSF to deal with the fast time-varying
electrical parameters and SOC, and the RTLS algorithm is executed at a longer time scale for
tracking the slowly time-varying capacity. The proposed strategy is endowed with high computa-
tional efficiency and accuracy, and thus is suitable for real-time embedded BMS applications. The
proposed method is validated by both simulation and experimental studies.

2. The Real-time Battery Model

The battery model should be carefully chosen to ensure high-quality state and parameter esti-
mation. In particular, a balance between the fidelity and complexity of the battery model should be
made for the real-time condition monitoring in embedded BMSs. Electrical circuit battery models
are arguably the most suitable for embedded applications due to their low complexity and the abil-
ity of characterizing the current-voltage dynamics of battery cells [37]. A real-time electric circuit
model with the hysteresis will be considered throughout thepaper. The voltage hysteresis effect
between the charge and discharge curve widely exists in Li-ion batteries, especially the popular
LiFePO4-type [21]. The SOC estimation accuracy will deteriorate ifthe battery model fails to
account for this phenomenon. The model considered here is based on a first-order RC electrical
circuit with hysteresis, as shown in Fig. 1, which features both simplicity and effectiveness [38].

As shown in Fig. 1, the open-circuit voltage (OCV), denoted asVoc, includes two parts. The
first part,Vs(SOC), represents the average equilibrium OCV as a function of theSOC. Since the
Vs is bijective, the SOC can be inferred fromVs. The second partVh is the hysteresis voltage to
capture the hysteresis behavior of the OCV curves. The RC circuit models the current-voltage
characteristics and the transient response of the battery cell. Particularly, the series resistance,
Rs, is used to describe the charge/discharge energy loss in thecell; the charge transfer resistance,
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Rc, and double layer capacitance,Cd, are used to characterize the charge transfer and short-term
diffusion voltage,Vd, of the cell;VB represents the terminal voltage of the cell.

Fig. 2 shows two measured OCV curves and their average:Voc,c, Voc,d, andVoc,a, respectively.
Particularly,Voc,c andVoc,d are obtained by slowly charging and discharging the battery, and rep-
resent major upper and lower hysteresis loops, respectively. We treat the average voltageVoc,a as
Vs(SOC). The instantaneous open circuit voltageVoc is bounded by the major hysteresis loops. By
subtractingVh(k) from VOC, theVs(SOC) can be extracted.

We will use the following voltage hysteresis model [39]:

∂Vh

∂ t
=−ρ(η iB−υSD)[Vhmax+sign(iB)Vh], (1)

whereρ is the hysteresis parameter representing the convergence rate,η the Coulomb efficiency
(assumingη = 1), iB the instantaneous current applied to the battery,υ the self-discharge mul-
tiplier for hysteresis expression,SD the self-discharge rate, andVhmax the maximum hysteresis
voltage. The model (1) describes the dependency of the hysteresis voltageVh on the current, self-
discharge, and hysteresis boundaries. The parameterρ is chosen to minimize the voltage error
between theVoc−SOCcurves from simulation and experiments, respectively. Note thatρ and
Vhmax may depend on the SOC and the battery temperature [21, 39].

A discrete-time battery model, including the electrical circuit model and the hysteresis model,
can be written as follows

X(k+1) =




1 0 0
0 γ 0
0 0 H


X(k)+



− ηTs

Cmax
0

Rc(1− γ) 0
0 (H−1)sign(iB)



[

iB(k)
Vhmax

]
,

y(k) =VB(k) =Voc(SOC(k))−Vd(k)−RsiB(k)+Vh(k),

Vs(SOC) = a0exp(−a1SOC)+a2+a3SOC−a4SOC2+a5SOC3,

(2)

whereX(k+1) =
[
SOC(k+1) Vd(k+1) Vh(k+1)

]T
is the state,y(k) is the measured output,

k is the time index,Cmax denotes the maximum capacity of the battery,Ts is the sampling period,
γ = exp(−Ts

τ ) with τ = RcCd, H(iB) = exp(−ρ |iB|Ts), anda j for 0≤ j ≤ 5 are the coefficients
used to parameterize theVoc-SOC curve. A concise form of the dynamics (2) is given by

X(k+1) = f (X(k), iB(k)),

y(k) = h(X(k), iB(k)),

where f andh are vectors of smooth functions with appropriate dimensions. Coefficientsa j for
0≤ j ≤ 5 can be extracted by pulsed current tests [37] or constant charge and discharge current
test using a small current to minimally excite transient response of the battery cell [40]. Although
the temperature dependency is ignored in this paper by testing the battery under the ambient tem-
perature, the proposed strategy might be extended to incorporate the thermal effects.

4



3. The Proposed Strategy

The proposed condition monitoring strategy, shown in Fig. 3, consists of three parts:

1) an FUDRLS-based parameter estimator,
2) an SVSF-based SOC estimator, and
3) an RTLS-based SOH (i.e., capacity) estimator.

The strategy operates at different time scales, where the FUDRLS and SVSF runs at a fast speed
to estimate the fast time-varying parameters and the SOC, and the RTLS runs slower to track the
slowly time-varying capacity parameter. In this way will the computational resources be used
economically with guaranteed estimation performance.

3.1. Parameter Estimation by the FUDRLS
Since battery parameters (e.g, impedance) change with the SOC, temperature, and current

rates, etc., online parameter estimation is required. Previous work [41] formulated the impedance
estimation as a least squares (LS) problem and proposed the FUDRLS algorithm to identify three
impedance parameters:Rs, Rc, andCd. In this paper, we overcome the difficulty due to the time-
varying dynamics and establish that both the impedance and the hysteresis parameter estimation
can be approximately formulated as an LS problem, and thus the FUDRLS can be readily em-
ployed to estimate the hysteresis parameterVhmax.

We first present procedures for impedance estimation for completeness, then show how similar
idea can be used to estimate the hysteresis parameter. To estimate the impedance, we ignore the
hysteresis voltage dynamics, and assumeVoc = b1SOC+b0. The battery model (2) is reduced to

[
SOC(k+1)
Vd(k+1)

]
= A

[
SOC(k)
Vd(k)

]
+BiB(k),

VB(k) =C

[
SOC(k)
Vd(k)

]
+DiB(k)+b0,

(3)

where

A=

[
1 0
0 γ

]
, B=

[ −ηTs
Cmax

Rc(1− γ)

]
, C=

[
b1 −1

]
, D =−Rs.

Taking z-transformation of (3), we have [42]

V̄B(z)
iB(z)

=C(zI2−A)−1B+D =
x3+x4z−1+x5z−2

1+x1z−1+x2z−2 , (4)

whereV̄B(z) =VB(z)−b0, I2 ∈ R
2×2 is an identity matrix, and

x1 = γ−1, x2 = γ, x3 =−Rs,

x4 =
−b1Ts

Cmax
+Rc(γ−1)+Rs(γ +1),

x5 = Rc(1− γ)+ γ(
b1Ts

Cmax
−Rs).
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The difference equation corresponding to (4) is given by

VB(k) =−x1VB(k−1)−x2VB(k−2)+x3iB(k)+x4iB(k−1)+x5iB(k−2)+b0(1+x1+x2). (5)

Considering 1+x1+x2 = 0, (5) can be reformulated into the following regression form

VB(k)−VB(k−1) = ΦT(k)Θ, (6)

whereΘ = [x2,x3,x4,x5]
T , and

ΦT(k) =
[
VB(k−1)−VB(k−2) iB(k) iB(k−1) iB(k−2)

]
.

Since the map from parametersRs,Rc,Cd and b1 to Θ is a diffeomorphism, one can uniquely
determine the estimates of parametersRs,Rc,Cd,b1 from the estimatedΘ.

Remark 1. The approach proposed above leads to a regression model for impedance estimation.
It does not require additional high-pass filtering [8], thussaving on computational cost and ad-
ditional effort to develop a high-pass filter. Moreover, it brings better accuracy than the methods
assuming a constant Voc [7, 9, 12], especially when Voc is highly nonlinear with respect to the
SOC. In addition, the form given in(6) only uses four parameters while the work [10, 11] utilizes
five parameters.

Remark 2. Because matrices A,B,C,D are time invariant, the z-transformation technique is ap-
plicable to derive(6). Alternatively, one can perform derivation in the time domain, i.e., directly
work on the difference equation(5), and establish(6).

The derivation of (6) is performed on the basis of the second-order battery model (3) and
parameterizingVoc asb0+b1SOC. Specifically, linear parameterizations of theVoc is critical to the
derivation, and the second-order battery model (6) is merely to simplify the presentation. Linear
parameterizations ofVoc is valid in a neighborhood ofSOCwhile the hysteresis voltagevhmax
reaches steady state, but is invalid during the transient ofVh. We propose to address this limitation
by imposing a less restrictive assumption: linear parameterizations of theVs-SOC curve, which
is always valid locally. This allows us to perform parameteridentification based on the following
dynamics

X(k+1) =




1 0 0
0 γ 0
0 0 H


X(k)+



− ηTs

Cmax
0

Rc(1− γ) 0
0 (H−1)sign(iB)



[

iB(k)
Vhmax

]
,

y(k) = b0+b1SOC−Vd(k)−RsiB(k)+Vh(k).

(7)

Note that notationb0,b1 are abused here.
Since the state matrices are current-dependent or time-varying, the model (7) does not admit

z−transformation. It is not straightforward to rewrite (7) into a linear regression form. We how-
ever show that an approximate linear regression form of the model (7) can be derived, and thus
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parameter identification can be readily carried out. Noticethat the main difficulty in establishing
the linear regression form arises from the time-varyingVh-dynamics, which is fortunately inde-
pendent of theVd andSOC-dynamics. This decoupling feature allows us to obtain an approximate
linear regression form.

We essentially try to obtain an approximate linear parameterization of y. We consider the
following system

ξ (k+1) = Hξ (k)+(H−1)sign(iB), ξ (0) = ξ0.

ConsideringVh(k) = ξ (k)Vhmax for ξ0 =Vh(0)/Vhmax, we obtain linear parameterizations ofy(k)
as follows

y(k) = b0+b1SOC(k)−Vd(k)−RsiB(k)+ξ (k)Vhmax, (8)

whereVhmax is unknown. We introduce a time-varying open-loop filter to estimateξ

ξ̂ (k+1) = Hξ̂ (k)+(H−1)sign(iB), ξ̂ (0) = 0.

SinceH < 1, the aforementioned time-varying open-loop filter produces an exponentially conver-
gent estimate ofξ (k), i.e., ξ̂ (k) converges toξ (k) ask→ ∞ for any boundedξ0. Combining (9)
and the fact that̂ξ (k)→ ξ (k) ask→ ∞, we have the approximate linear parameterizations ofy(k)
as follows

y(k) = b0+b1SOC(k)−Vd(k)−RsiB(k)+ ξ̂ (k)Vhmax, (9)

from which, together with dynamics ofSOC,Vd, the approximate linear regression of (7) can be
established. Compared to (6), the approximate linear regression has an extra parameterVhmax in
Θ, and an extra signal̂ξ (k) in Φ(k).

Given (6), the parameter vectorΘ can be estimated by a multitude of algorithms, for instance
the conventional Bierman’s UD method [12], Gentleman’s UDRLS [43], etc. The Gentleman’s
UDRLS is attractive to embedded applications due to its parallel implementation and the resultant
fast computational speed. The RLS-based methods can be improved by using the forgetting factor
[7]. The estimation algorithm with a small forgetting factor may track time-varying parameters
fairly well at the expense of increased susceptibility to the noise; while the forgetting factor is
large, the tracking ability will be poor but robust to noises. In general, the RLS technique utilizes
an exponential forgetting (EF) whose forgetting rate is constant [7], [12]. The main drawback of
the EF method is called wind-up, and it comes when a data vector is not persistently exciting [44]
as well as non-optimal tracking ability and noise influence due to the constant forgetting rate [44].

The FUDRLS algorithm combines the Gentleman’s UDRLS with a variable forgetting factor
to estimateΘ. Methods with variable forgetting (VF) adaptively change the forgetting rate. The
main VF mechanism is: the algorithm takes a smaller forgetting factor at the presence of large
prediction errors, and a larger forgetting factor, otherwise. In this paper, the forgetting factorλ is
adjusted as follows

λ (k+1) = 1−
v1(k)

N0σ2
0

, λmin≤ λ ≤ λmax,

v1(k+1) = δ1v1(k)+(1−δ1)e
2(k),

(10)

whereδ1 is a weighting factor to be taken close to 1;v1 is time-average expressions ofe2(k) and
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v1(0) is set to beσ2
0 ; the parameterσ2

0 is the mean value of the prediction error variance obtained
from the method implemented in the FUDRLS with constant forgetting factor (e.g.,λ = 0.98),
assuming that the expected noise variance is much smaller than σ2

0 ; N0 represents the memory
length (e.g.,N0 = 50 corresponding to mean forgetting factor of 0.98); λmax (e.g., 0.999) and
λmin (e.g., 0.95) denote maximum and minimum forgetting factors, respectively. An intuitive
interpretation of (10) is that the forgetting factorλ is adjusted according to the square of the
time-averaged estimation of the autocorrelation of posterior errore(k).

In the FUDRLS, the regression matrixΦT(k) is combined withv(k) = VB(k)−VB(k−1) to
produce an augmented matrix:

ΦT
a (k) =

[
ΦT(k) v(k)

]
.

The detailed FUDRLS algorithm is given in Table 1, whereδ denotes an initial covariance value
(e.g., 105). For real-time implementation, the computation ofF and the triangularization can be
pipelined.

In practical BMS applications, the parameter identification algorithm can be implemented in
system-on-a-chip [45]. Due to the advent of the VLSI technology, the features of parallel process-
ing and pipelining implementation will be attractive to improve the computation speed and reduce
the size of ICs [46]. The FUDRLS will be beneficial to the development of real BMS ICs in this
sense.

3.2. SOC Estimation by the SVSF

With parameters estimated by the FUDRLS algorithm, the SVSFcan be employed to estimate
the battery SOC based on the model (2). Originally proposed in [47] and built on integration of the
variable structure theory and the sliding mode notion, the SVSF is a predictor-corrector method for
state and parameter estimation. A schematic diagram of the SVSF-based state estimation is shown
in Fig. 4, where the solid line is the system state trajectory. The estimated state trajectory is forced
towards the system state trajectory until it enters a neighborhood of the actual state trajectory,
referred to as the existence subspace. The existence subspace is an invariant set because once
the estimated state enters, it remains within the region driven by a switching gain. The SVSF
demonstrates good robustness to modeling uncertainties and noises, given that uncertainties are
upper-bounded. It has been applied to estimate battery parameters and the SOC in [48], with only
simulation results available.

3.2.1. The SVSF
The dynamics of the SVSF are given by

X̂k+1|k = f (X̂k|k, iB(k)),

ŷk+1|k =CSVSFX̂k+1|k,
(11)

whereX̂K+1|k is the predicted state,̂Xk|k is the state estimate at timek, ŷk+1|k is the predicted
measurement, andCSVSFis the linearized measurement matrix given by

CSVSF=
∂h(X, iB)

∂X
= diag

[
∂Vs(SOC)

∂SOC −1 1
]
.
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Defining the innovation as
ez,k+1|k = yk+1−CSVSFX̂k+1|k,

the SVSF gain is calculated as follows

KSVSF,k+1 =C−1
SVSF(|ez,k+1|k|+ γ|ez,k|k|)◦sat(ez,k+1|k,Ψ), (12)

whereez,k|k is a posteriori measurement error;Ψ is the smoothing boundary layer widths;γ ∈ (0,1)
is the SVSF convergence rate;◦ is the Schur product. To ensure the numerical stability, the
components ofCSVSFshould not take singular values. This can be accomplished byusing a simple
if statement with a very small threshold (i.e., 10−10) or calculating the pseudoinverseC−1

SVSFwith
a small damping parameterω (e.g., 10−8) as the following

C−1
SVSF=CT

SVSF(CSVSFC
T
SVSF+ωI3)

−1. (13)

The corrected (or posteriori) state estimates are computedas follows

X̂k+1|k+1 = X̂k+1|k+KSVSF,k+1.

3.3. SOH Estimation by the RTLS

As the maximum capacity is a key factor for the battery’s health, this paper considers the
following quantity as a measure of the SOH

SOH(n) =
Cmax

Cmaxnew
, (14)

wheren is the maximum capacity estimation algorithm update index,andCmaxnew is the maximum
capacity of a new battery cell. Such an SOH represents the capacity degradation of the cell.
Also, it is clear that an accurateCmax is prerequisite for Coulomb-counting-based SOC estimation
algorithms to provide a good estimation of the SOC.

In [11, 49], the maximum capacity is simply calculated as follows

Cmax=
TsΣk2

k=k1

η iB(k)
3600

SOC(k2)−SOC(k1)
, (15)

wherek1 andk2 are time indices. Rearrangement of (15) gives the followinglinear regression form

z=Cmaxu,

whereu= SOC(k2)−SOC(k1) and

z= TsΣk2
k=k1

η iB(k)
3600

.

Under certain conditions onz andu, an unbiased estimation ofCmax can be achieved by solving
an LS problem. The total least squares (TLS) problem was proposed to alleviate the limitation of
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the LS formulation by performing orthogonal regression [50].
The TLS problem is generally solved by using singular value decomposition (SVD) algo-

rithms [50] which incur high computational complexity, andthus are not suitable for embedded
applications [51]. In this paper, a fast RTLS algorithm is applied for maximum capacity estima-
tion. The estimated maximum capacity will be consequently used for the SOH estimation using
(14). The proposed RTLS algorithm is based on the constrained Rayleigh quotient, which can run
in real time and enjoys fast convergence [52]. Compared to the TLS, the proposed RTLS algo-
rithm entails much lower computational load, and the estimation accuracy is comparable to the
TLS algorithm.

To facilitate the presentation of the proposed algorithm, it is firstly assumed that the noisy
output and input are given by

z(n)−∆z︸ ︷︷ ︸
z̃(n)

=Cmax(u(n)−∆u)︸ ︷︷ ︸
ũ(n)

, (16)

whereu(n) andz(n) are the true input and output, respectively; ˜un andz̃n are the noisy input and
output, respectively; the output error∆z is assumed zero-mean Gaussian with known variance of
σ2

z ; the SOC estimation error∆u is assumed zero-mean Gaussian with known variance ofσ2
u . The

autocorrelation matrix of the noisy input is defined as:

R̃u(n) = E[ũ(n)ũT(n)] = Ru(n)+σ2
u I ,

whereRu(n) =E[u(n)uT(n)]. Define the augmented data ¯x(n) = [ũ(n), z̃(n)]T . The autocorrelation
matrix of x̄(n) can be expressed as

R̄x = E[x̄(n)x̄T(n)] =

[
Ru(n) b(n)
bT(n) c(n)

]

whereb(n) = E[ũ(n)z̃T(n)] andc(n) = E[z̃(n)z̃T(n)]. Whenn is sufficiently large, the stochastic
quantitiesR(n),b(n), andc(n) can be expressed as follows [52]

Ru(n) = µRu(n−1)+ ũ(n)ũT(n),

b(n) = µb(n−1)+ ũ(n)ỹT(n),

c(n) = µc(n−1)+ ỹ(n)ỹT(n),

whereµ is the forgetting factor.
The maximum capacity estimation on the basis of (16) is performed by minimizing the follow-

ing constrained Rayleigh quotient

J(Cmax) =
qTR̄xq
qTD̄q

=
RuC2

max−2bCmax+c
C2

max+β
(17)

where the eigenvectorq= [Cmax,−1]T , andD̄ = diag(1,β ) is a diagonal matrix withβ = σ2
z/σ2

u .
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If the eigenvector vectorq∗ which minimizesJ(Cmax) corresponds to the smallest eigenvalue of
R̄x, thenq∗ is the unbiased TLS solution [53].

To avoid solving the constrained Rayleigh quotient minimization problem at each step, the
Cmax is assumed to be updated as follows

Cmax(n) =Cmax(n−1)+α(n)ũ(n), (18)

whereα(n) is chosen to minimize (17) in the direction of ˜u(n), i.e.,

∂J(Cmax(n−1)+α(n)ũ(n))
∂α(n)

=
c1α2(n)+c2α(n)+c3

d(α(n))
= 0. (19)

where

c1 = 2ũ3(n)b(n),

c2 = 2ũ2(n)[2b(n)Cmax(n−1)+βR(n)−c(n)],

c3 = 2ũ(n)[b(n)C2
max(n−1)− (βR(n)+c(n))Cmax(n−1)+βb(n)].

Then,α(n) can be obtained by solving the following quadratic equationformed by the numerator
term of (19):

c1α2(n)+c2α(n)+c3 = 0. (20)

The quadratic equation (20) has two roots, from which the solution of α(n) can be obtained as
follows

α(n) =
−c2+

√
c2

2−4c1c3

2c1
. (21)

4. Strategy Validation

Simulation and experiments are carried out to validate the proposed condition monitoring strat-
egy for a Li-ion battery cell subject to various pulsed current operations. Comparisons with exist-
ing DEKF [20] methods demonstrate advantages of the proposed strategy in terms of estimation
accuracy quantified by root mean square error (RMSE) and computational cost quantified by run-
ning time. Simulation and experiments are performed in MATLAB R© on a computer with 2.2GHz
Intel R© CoreTMDuo 2 CPU T6600 and 64-bit OS.

4.1. Simulation Study: Non-Aging Case

For the non-aging case, simulation study assumes the battery model (2) with constant param-
eters and that the battery model is subject to a current profile which is proportional to the speed
profile in the standard Urban Dynamometer Driving Schedule (UDDS). In an urban driving envi-
ronment, a vehicle switches frequently between acceleration, deceleration and steady state. This
would lead to battery discharging profiles containing sufficient frequencies, thus bringing about
improved identifiability and observability of the battery model [19].
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Table 2 lists the values of model parameters, which are basedon a polymer Li-ion battery
cell [37] but with the maximum capacity scaled up to 10 Ah. Theinitial actual and estimated
states are set, respectively, as follows:

[SOC(0),Vd(0),Vh(0)]
T = [0.95,0,0]T,

[ŜOC(0),V̂d(0),V̂h(0)]
T = [0.8,0,0]T.

The initial maximum capacitŷCmax of the estimators is set to be 6 Ah. The value ofN0 andδ1

are defined as 50 and 0.995, respectively, for the FUDRLS withthe proposed VF (λmin = 0.95
and λmax = 0.995). In the SVSF, the value ofγ and Ψ are set to be 0.1 and 1. Input current
is corrupted by zero-mean Gaussian noise with varianceσ2

z = (0.01)2. In the RTLS, the SOC
estimation accuracy of the SVSF is assumed 1% (i.e.,σu = 0.01), and thus an overallσ2

u is 2×
(0.01)2 since two estimated SOC points are required [36]. Hence,β = (0.001)2/(0.01)2. Also,
the forgetting factorµ = 0.98. The DEKF [20], which includes an EKF for SOC estimation
and another EKF for estimatingRs, Rc, Cd, andCmax, is implemented to make comparison. In
the DEKF design, the initial state covariance, process noise covariance matrix, and measurement
noise covariance matrix, are defined as diag[1,1,1], diag[0.09,0.09,0.09] and 0.25, respectively;
and those of the EKF for parameter estimation are specified asdiag[10−13,10−2,5×10−2,10−4],
diag[10−9,10−4,10−5,10−7] and 0.25, respectively. The parameters of the proposed algorithms
and the DEKF are selected by trial-and-error in an effort to minimize the estimation error.

Both the FUDRLS and the SVSF run at a sampling periodTs= 1 second, while the RTLS runs
at a longer periodTl = 200 seconds. The DEKF however has only one sampling period:Ts = 1
second. Simulation results are shown in Fig. 5. Particularly, Fig. 5(a) plots the UDDS current
profile; Fig. 5(b) gives the corresponding voltage responseof the battery cell; Figs. 5(c)-5(e)
compare the impedance estimation results; Fig. 5(f) shows the estimated SOC and the true SOC
computed from the Coulomb counting; and Fig. 5(g) compares the estimatedCmax. One can see
that the proposed algorithms lead to at least comparable estimation accuracy as the DEKF does.
Table2 3-4 compare the proposed algorithms and the DEKF using performance metrics: RMSE
as a measure of estimation accuracy and simulation time as a measure of computational load.
Simulation shows that the proposed strategy outperforms the DEKF in the sense of comparable
estimation accuracy but lower computational cost.

4.2. Simulation Study: Aging Case

Proceeding further, we make a more compelling simulation study to verify that the proposed
condition monitoring algorithm detects effectively the aged cell condition. From Table 2, capacity
fade and internal resistance deterioration are consideredas major indicators in the aging battery
cell, where the trueCmax decreases from 15Ah to 12Ah andRs increase linearly over time. Fig. 6
summarizes simulation results. Particularly, Fig. 6(a) gives the pulsed current cycle applied on the
battery model; Fig. 6(b) shows the cell voltage; Fig. 6(c) compares the trueRs with its estimates;
and Fig. 6(d) compares the true maximum capacity with its estimates. Simulation results indicate
that the proposed method and the DEKF can track theRs and the time-varying maximum capacity
with similar accuracy.
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4.3. Experimental Studies

The proposed condition monitoring algorithm is further validated against experimental data,
which were collected from a LiMn2O4/hard-carbon battery in the Advanced Technology R&D
Center, Mitsubishi Electric Corporation. The experiment was conducted, under the ambient tem-
perature 21.6◦, using a rechargeable battery test equipment produced by Fujitsu Telecom Net-
works. The tuning parameters of the proposed condition monitoring algorithm are given in Table 5.
In the DEKF design, the initial state covariance, process noise covariance matrix, and measure-
ment noise covariance matrix, used in the EKF for SOC estimation are defined as diag[1,1,1],
diag[0.16,0.16,0.16] and 0.25, respectively; and those used in the EKF for parameter estima-
tion are specified as diag[10−14,10−4,10−5,10−6], diag[4×10−10,10−7,10−10,10−11] and 0.25,
respectively. The true SOC trajectory is obtained using theCoulomb counting method. The pa-
rameters of the OCV-SOC function of the battery cell are extracted [40]. The estimated statesX̂(0)
and maximum capacitŷCmax are initialized to be[0.4,0,0]T and 5 Ah, respectively; the true states
X(0)= [0.31,0,0]T andCmax= 4.732Ah. In order to set the test battery cell with the desired initial
SOC, the battery cell was first fully charged and rest for one hour. Then the cell is discharged us-
ing a small current (e.g., 0.2 A) to the desired initial SOC value. The true maximum capacity was
extracted offline from full discharge test with a small current (e.g., 0.2 A) at ambient temperature
before testing the battery.

At first, the FUDRLS is executed for 30 seconds to estimate parameters, and then the SVSF
starts estimating the SOC. Both the FUDRLS and the SVSF have the same sampling periodTs= 1
second, while the RTLS has a distinctive sampling periodTl = 20 seconds. On the other hand,
the DEKF runs at the sampling periodTs = 1 second. Estimation results are shown in Fig. 7.
Particularly, Fig. 7(a) shows the high pulse current cycle (iB = 10C) applied on the battery; Fig.
7(b) gives the measured cell voltage; Figs. 7(c)-7(e) show the impedance estimation results; Fig.
7(f) compares the estimated SOCs; and Fig. 7(g) compares theCmax estimates. One can observe:
the proposed algorithms yield accurate SOC estimation; forthe maximum capacity estimation,
the proposed algorithms converge to the true value, albeit the DEKF does not; and the DEKF
provides more consistent estimation of impedance parameters than the proposed algorithms. Table
6 summarizes simulation time and estimation accuracy of both condition monitoring algorithms.
Experimental results validate that the proposed algorithms can provide reliable SOC and SOH
estimation at fairly low computational cost, and thus can besuitable for real-time embedded BMSs
for various applications.

5. Conclusions

Motivated to address the challenges arsing in the deployment and use of Li-ion batteries, this
paper has proposed a novel model-based condition monitoring strategy for real-time impedance,
SOC, and maximum capacity/SOH estimation. A set of interdependent algorithms have been
constructed and validated by both simulation and experimental studies. Owing to its low complex-
ity, easy implementation, and high accuracy, the proposed strategy will be particularly suitable
for real-time embedded BMSs strongly demanded in applications such as EVs and PHEVs. In
addition, the proposed strategy can be extended to build promising solutions to SOP and SOF es-
timation, battery prognosis and fault diagnosis. In the future work, the thermal and aging effects
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will be incorporated, and adaptive condition monitoring will be investigated. Another future ef-
fort will be to develop capacity estimation approaches robust to colored noises, which will find
important application in EVs and PHEVs.
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1: algorithm initialization: setk= 0, Θ̂ = Θ0, andP0 = δ I5 =U0D0UT
0 where

U0 =




1 0 0 0 θ1

0 1 0 0 θ2

0 0 1 0 θ3

0 0 0 1 θ4

0 0 0 0 −1



, D0 = δ




1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 0



.

2: repeat
3: k← k+1
4: read new dataVB(k) andiB(k)
5: computef =UT

0 Φa(k)
6: initialize r(0) = λ
7: for h= 1 to 5do
8: compute the parameters Gentleman’s transformation

r(h) = r(h−1)+D0(h) f 2(h)

D(h) = D0(h)r(h−1)/(λ r(h))

α(h) =− f (h)

β (h) = D0(h) f (h)/r(h)

K(h) = β (h)

9: end for
10: for j = 2 to 5do
11: compute the Gentleman’s transformation
12: for i = 1 to j−1 do
13: compute the Gentleman’s transformation

U(i, j) =U0(i, j)+α( j)K(i)

K(i) = K(i)+β ( j)U(i, j)

14: end for
15: end for
16: update parameter estimateΘ̂ andU0,D0

Θ̂ = [U(1,5),U(2,5),U(3,5),U(4,5)]T

U0 =U, D0 = D

17: mapΘ̂ to R̂s, R̂d,Ĉd, b̂1

18: check whether estimated parameters are within the predefined range of values
19: update the internal parameters
20: until parameter estimation task ends

Table 1: The FUDRLS algorithm.
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Table 2: Simulated battery model parameters

Cmax 10Ah Cd 4000F Rs 0.06ohm Rd 0.02ohm
Vhmax 0.01V ρ 2.47e-4 a0 -0.852 a1 63.867

a2 3.692 a3 0.559 a4 0.51 a5 0.508

Table 3: Simulation comparison of RMSE for impedance estimation

DEKF FUDRLS
Rs (ohm) 7.4814e-4 2.9532e-4
Rc (ohm) 8.7396e-4 3.7908e-4
Cd (F) 359.85 178.06

Table 4: Simulation comparison of RMSE and simulation time

FUDRLS SVSF RTLS DEKF
Estimation Impedance SOC Capacity Impedance SOC Capacity

Accuracy (RMSE) In Table 3 0.0243 2.0989 In Table 3 0.0269 2.4685
Simulation Time (s) 0.8933 5.6676 0.0034 13.0559

Table 5: Tuning parameters of the proposed algorithms

λmin 0.95 λmax 0.995 N0 50
δ1 0.995 γ 0.1 Ψ 1
υ 0.01 σ2

u 2(0.02)2 σ2
z (0.01)2

µ 0.98 Ts 1 Tl 20

Table 6: Experimental comparison of RMSE and simulation time

FUDRLS SVSF RTLS DEKF
Estimation Impedance SOC Capacity Impedance SOC Capacity

Accuracy (RMSE) N/A 0.0171 0.1617 N/A 0.0220 0.2065
Simulation Time (s) 0.1474 0.9070 0.0061 2.0795
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Figure 5: Comparison of true and estimated impedance, SOC, and maximum capacity of the battery model from
the proposed condition monitoring algorithm and the DEKF: (a) input current profile; (b) cell voltage; (c)Rs and its
estimates; (d)Rc and its estimates; (e)Cd and its estimates; (f) SOC and its estimates; and (g)Cmax and its estimates.23
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Figure 6: Comparison of true and estimated internal resistance and maximum capacity of the aged battery model from
the proposed condition monitoring algorithm and the DEKF:(a) input current profile; (b) cell voltage; (c)Rs and its
estimates; and (d)Cmax and its estimates.
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Figure 7: Estimated impedance, SOC, and maximum capacity from the proposed condition monitoring algorithm and
a DEKF on the experimental data:(a) input current profile; (b) battery cell voltage response;(c)Rs estimates; (d)Rc

estimates; (e)Cd estimates; (f) SOC and its estimates; and (g)Cmax and its estimates.
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