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1. INTRODUCTION

Environmentally sustainable manufacturing practices, e.g.
green manufacturing, attract increasing attentions from
stakeholders to research communities for regulatory re-
quirements, product stewardship, public image and po-
tential competitive advantages (Rusinko, 2007). Strategies
to realize green manufacturing focus on making prod-
ucts with less material and energy, more use of renew-
able resources, eliminating wastes, etc. While all resources
consumed and wastes produced by manufacturing affect
the environment to certain extents, energy efficiency, or
efficient and effective utilization of energy resources, has
been identified as one of the key drivers or metrics for sus-
tainability (Duflou et al., 2012; Salonitis and Ball, 2013).

Energy efficiency in manufacturing can be gained at var-
ious levels: machine, process, and system levels in Deif
(2011) or device/process, line/cell/multi-machine system,
facility, multi-factory system, and enterprise/global supply
chain levels in Duflou et al. (2012). For instance, Diaz et al.
(2010, 2011) consider machine tool design and operation
strategies for energy efficiency; Diaz et al. (2009) redesigns
a process by introducing a kinetic energy recovery system
for energy recycling during deceleration of spindles; Saloni-
tis (2012) reduces the energy consumption of a grinding
process by optimizing process steps. Salonitis and Ball
(2013) discuss energy efficiency at the machine tool and
manufacturing system level, and identify several barriers
to effective energy reduction.

This paper considers economical manufacturing aiming to
minimize the economical cost affected by consumed energy
as well as energy price. This is different from green manu-
facturing which focuses on energy efficiency. Ignoring the
energy price information during design and operation, cur-
rent green manufacturing practices do not necessarily lead
to energy efficient and environmentally friendly operation.
This is particularly true when the energy price reflects
energy efficiency of energy suppliers and thus fluctuates.
For simplicity, we only consider electricity as the energy
resource of manufacturing processes, and pose econom-
ical manufacturing as the demand side management or
demand response problem in Gellings (1985); Albadi and
El-Saadany (2007); Samadi et al. (2010). Optimal control
problems are consequently formulated and analyzed rigor-
ously.

Manufacturing processes can be continuous or discrete
over time, and the models can be complicated. Even
at the device level, the energy consumption modeling is
challenging and relies largely on measurements (Salonitis
and Ball, 2013; Duflou et al., 2012). This work avoids
getting into the tedious modeling of a manufacturing
process and its energy consumption by considering two
simplified continuous-time models, and concentrates on
characterizing the properties of economical manufacturing
subject to electricity price fluctuations. It is worth noting
that this work is related to the recent research on power
management of hybrid electric vehicle (Lin et al., 2003)
and micro-grid (Katiraei et al., 2008).



This paper is organized as follows. Section 2 models man-
ufacturing systems and formulates the economical manu-
facturing as optimal control problems. In Section 3, char-
acteristics of optimal control problems and corresponding
optimal solutions are analyzed. Conclusion is made in
Section 4.

2. PRELIMINARIES

Manufacturing sectors, such as petroleum refining, metals
processing, chemical production, semi-conductor manufac-
turing, and paper product manufacturing, are character-
ized by semi-continuous processes (Duflou et al., 2012).
Accordingly, a manufacturing system has continuous and
discrete states, and the dynamics could be both time
and event-driven, i.e., in hybrid nature. Seeking optimal
scheduling and control of manufacturing systems resorts
to solve optimal control of hybrid systems, which is either
difficult or computationally prohibitive. Interested readers
are referred to Ramadge and Wonham (1987); Pepyne and
Cassandras (2000); Shaikh and Caines (2007); Vasudevan
et al. (2012) and references therein for details. This pa-
per presents a preliminary study on scheduling the entire
manufacturing process with consideration of energy price,
and thus considers continuous dynamics for simplicity and
ignore the discrete-event dynamics.

2.1 Modeling of a Conventional Manufacturing System

Dynamics A manufacturing system typically consists of
machines that can perform a variety of tasks on a family
of parts. Different types of machines may have distinctive
dynamics, which pose significant difficulty in analyzing
and solving the economical manufacturing problem due
to the complexity in the system and energy consump-
tion models. We assume the energy consumption of each
machine is directly related to its productivity, which is
practical in motion control systems (Wang et al., 2013).
Consider the productivity and product produced as the
state of a manufacturing process, and the electric power as
its input. We have the following simplified manufacturing
system dynamics

ẋ1 = x2

ẋ2 = α(ue)
(1)

where x1 ∈ R and x2 ∈ R denote the product and
productivity, respectively, α(ue) : R → R is continuous,
ue the power taken from the power grid, and R is the set
of real numbers. Denote the state vector by x = (x1, x2)

T .
Note that including the productivity as a state implies
that it cannot jump. Also x1 and x2 can be vectors so that
their ith components represent, respectively, the product
and productivity of the ith machine.

Remark 1. The dynamics (1) are essentially a black-box
model. We assume α(ue) can be identified by measuring
the power consumption and produced products. Typically,
in order to identify α(ue), we assume that α(ue) has linear
parameterizations as follows

α(ue) =

p
∑

k=0

θku
k
e

where θk, 0 ≤ k ≤ p is constant to be identified. For
simplicity, we take α(ue) = ue. A slight generalization to

this special case is taking α(ue) as a linear function of
x. The methodology presented in the sequel may still be
applicable provided that α(ue) is convex.

Constraints In terms of state constraints, it is clear that
0 ≤ x1, i.e., the product quantitiy cannot be negative. Sim-
ilarly, productivity should satisfy the following constraint

0 ≤ x2 ≤ vmax (2)

where vmax > 0 is constant and represents the highest
possible productivity of the process. Without loss of gener-
ality, we assume that the initial product quantity is 0. The
constraint on x1, i.e., 0 ≤ x1, is implied by constraint (2),
and thus can be omitted. The state constraint is therefore
given by (2).

Control constraints literally reflect the limitations of hard-
ware such as transformers, power electronics, and electric
motors. We assume that specifications of each hardware
can be cast into a set of constraints on ue, a union of which
constitutes the control constraints. To further simplify the
presentation, we assume that the specifications of electric
motors lead to the following constraint

a1 ≤ ue ≤ a2 (3)

where a1 and a2 are constant and represent the lower and
upper bounds of ue, respectively.

Objectives The target of a manufacturing process is to
produce a fixed product quantity within a certain period
[0, T ], and minimize the cost, typically the energy bill. The
energy cost due to operating the manufacturing process
over an interval [0, T ] may vary according to different
hardware. For instance, if the process is not equipped
with bi-directional inverters, the regenerative power due to
slowing down the manufacturing process is wasted. Thus
its corresponding cost function is written as follows

E1(x, ue) =

∫ T

0

max(0, p(t)ue(t))dt (4)

where p(t) is the electricity price. For simplicity, we assume
that p(t) is known. Readers are referred to Mohsenian-Rad
and Leon-Garcia (2010) and references therein for details
on pricing models.

Remark 2. Control engineers typically act as process plan-
ners who optimize process parameters to reduce energy
consumption. In this paper, the process parameter is the
productivity. The energy saving achieved by optimizing
the productivity however might be limited for certain
manufacturing systems. For instance, the laser source and
chiller are responsible for more than 80% of the total con-
sumed energy for a laser cutting machine tool according
to Duflou et al. (2010).

Alternatively, if bi-directional inverters are installed to
enable the recycling of regenerated electricity, the energy
cost is given by

E2(x, ue) =

∫ T

0

p(t)ue(t)dt. (5)

2.2 Modeling of A New Manufacturing System

We next present a simplified model of a new manufac-
turing system including a battery component. The bat-
tery component is used as an additional power source



to complement the power grid. Battery dynamics can be
very complicated (Fuller et al., 1994). Here we take the
following simple battery model (Wang et al., 2014)

ẋ3 = ηI

V = h(x3) +RI
(6)

where x3 represents the state of charge (SOC) of the
battery, I the charge (> 0) and discharge current (< 0),
V the terminal voltage, η the charge efficiency constant, h
is a smooth function and denotes the open circuit voltage
(OCV), and R > 0 is the internal resistance. The power
delivered by the battery component is therefore given by

ub = V I = h(x3)I +RI2.

Note that ub > 0 during charge and ub < 0 during
discharge.

With the battery as an additional power source to the
manufacturing process, we modify (1) by including ub as
another input. We have the model of the new manufactur-
ing system as follows

ẋ1 = x2

ẋ2 = ue − (h(x3)I +RI2)

ẋ3 = ηI.

(7)

Notation x = (x1, x2, x3)
T is abused to denote the state

vector of system (7).

Constraints The battery SOC is subject to constraints,
which is typically denoted by 0 ≤ x3 ≤ 1, with x3 = 0
and x3 = 1 representing the zero and full charge states,
respectively. Combining (2), we have the state constraints
of the new manufacturing system as follows

0 ≤ x2 ≤ vmax

0 ≤ x3 ≤ 1.
(8)

The battery component introduces the charge and dis-
charge current I as an extra control input. In order to
ensure a safe operation of the battery, I is subject to
the constraint |I| < Imax, where Imax > 0 is constant.
Including the battery component also changes the original
control constraint related to hardware limitations. Since
we assume that the control constraint results from lim-
itations of electric motors, the original constraint (3) is
changed accordingly to: a1 ≤ ue − (h(x3)I + RI2) ≤ a2.
We finally have control constraints as follows

|I| < Imax

a1 ≤ ue − (h(x3)I +RI2) ≤ a2.
(9)

Objectives The target of the new manufacturing system
is to produce a fixed product quantity within a certain
period [0, T ], and minimize the energy cost. The objectives
can be captured by the cost functions (4)-(5).

2.3 Problem Formulation

This work considers and evaluates the following optimal
control problems for system (1).

Problem 3. Given plant (1), initial state x(0) = x0 =
(0, 0)T , final state x(T ) = xf = (r, 0)T , and final time
T , find control u∗

e which minimizes cost function E1(x, ue)
in (4), subject to state and control constraints (2)-(3).

Problem 4. Given plant (1), initial state x(0) = x0 =
(0, 0)T , final state x(T ) = xf = (r, 0)T , and final time
T , find control u∗

e which minimizes cost function E2(x, ue)
in (5), subject to state and control constraints (2)-(3).

This work considers and evaluates the following optimal
control problems for system (7).

Problem 5. Given plant (7), initial state x(0) = x0 =
(0, 0, 1)T , final state x(T ) = xf = (r, 0, 1)T , and final
time T , find control (u∗

e, I
∗) which minimizes cost function

E1(x, ue) in (4), subject to state and control constraints
(8)-(9).

Problem 6. Given plant (7), initial state x(0) = x0 =
(0, 0, 1)T , final state x(T ) = xf = (r, 0, 1)T , and final time
T , find control (u∗

e, I
∗) which minimizes the cost function

E2(x, ue) in (5), subject to state and control constraints
(8)-(9).

In Problems 5-6, the initial and final SOCs of the battery
are assumed the same and at the full charge state. This
assumption is made to simplify the problem. From appli-
cation point of view, it is reasonable to assume the initial
and final SOCs of the battery are the same. However,
assuming the battery starts at the full charge state may
not be optimal because it eliminates the freedom to store
energy at the beginning of production.

3. MAIN RESULTS

For simplicity, we assume that Problems 3 - 6 have feasible
solutions. Existence of optimal solutions for Problems 3-6
can be established by verifying results in Cesari (1965),
and thus its detailed discussion is omitted here.

3.1 Case 1: p(t) is Constant

Without loss of generality, we take p(t) = 1.

Optimal Solutions of Problem 3: Assume that Problem 3
admits optimal controls which are piecewisely continuous
over time. This allows us to reformulate the cost function
and yields

E1(x, ue) =

m∑

k=1

∫ tk+1

tk

ue(t)dt

=

m∑

k=1

[x2(tk+1)− x2(tk)]

(10)

where ue(t) > 0, ∀t ∈ [tk, tk+1] and t1 = 0, and tk, 1 ≤
k ≤ m is the time instant when control is discontinuous.
Without loss of generality, we assume x2(t) achieves its
maximum at tm. From ue(t) > 0, ∀t ∈ [tk, tk+1], we know

x2(tk) ≤ x2(tk+1), 1 ≤ k ≤ m− 1.

On the other hand, we have

x2(tk) ≥ x2(tk+1), 2 ≤ k ≤ m− 2.

With this fact, (10) can be further reduced to

E1 = x2(t1) + x2(tm) +

m−1∑

k=1

[x2(tk)− x2(tk+1)]

≥ x2(tm) = max
t∈[0,T ]

x2(t)

which implies that the minimum of the cost function
should not be less than the maximum of x2(t). Next we



show the existence of a feasible solution giving E1 =
maxt∈[0,T ] x2(t), and thus Problem 3 is equivalent to
minue

maxt∈[0,T ] x2(t), which can be solved analytically.

To further analyze the properties of optimal solutions to
Problem 3, we assume a feasible solution that has the
maximum productivity x̄2(t) at t = t̄, and consider the
following problem.

Problem 7. Given plant (1) and t̄, initial state x(0) = x0 =
(0, 0)T , final state x(t̄) = (r̄, x̄2)

T , with fixed r̄ and x̄2, find
control u∗

e which minimizes cost function E1(x, ue) over
[0, t̄], subject to state and control constraints (2)-(3).

We have the following result about Problem 7.

Proposition 8. A feasible solution to Problem 7 implies the
existence of another feasible solution where control ue is
non-negative over [0, t̄].

Proof. Assume that Problem 7 has a feasible solution
where control u1

e(t) is negative during a certain interval
[t1, t2] and the corresponding state at t2 is denoted x(t2) =
(x1(t2), x2(t2))

T , i.e.,

x2(t) =

∫ t

0

u1
e(t)dt, x1(t2) =

∫ t2

0

x2(t)dt.

It is clear that one can always find another ûe defined by

ûe =

{
u1
e(t) + δue(t), t ∈ [0, t1]

0, t ∈ [t1, t2]

such that

x̂2(t) =

∫ t

0

ûe(t)dt

with x̂2(t2) = x2(t2) and

x̂1(t2) =

∫ t2

0

x̂2(t)dt = x1(t2).

Hence another feasible solution to Problem 7 can be
constructed as

u2
e(t) =

{
ûe(t), t ∈ [0, t2]

u1
e(t), t ∈ [t2, t̄]

which is non-negative.

Remark 9. The proof of Proposition 8 is based on assump-
tion that the feasible solution has only one time interval
with negative control. This is without loss of generality.

Given Proposition 8, we have the following conclusion
about the optimal solution of Problem 7.

Proposition 10. The optimal solution of Problem 7 is not
unique and satisfies the following properties

(1) the optimal control u∗

e ≥ 0 for all t ∈ [0, t̄]
(2) the optimal value is E∗

1 = x̄2.

Remark 11. Proposition 10 means the optimal solution
of Problem 3 keeps accelerating until reaching the max
productivity, and the peak productivity is equal to the
cost value. This allows us to compute the optimal solution
of Problem 3 analytically.

Optimal Solutions of Problem 4: For Problem 4, we have

E2(x, ue) = 0

for any feasible solution, and thus any feasible solution is
optimal. This is because the cost function does not pe-
nalize losses during manufacturing, and all electric energy
flowing into manufacturing system is recycled.

Optimal Solutions of Problem 6: We rearrange cost
function (5) as follows

E4 =

∫ T

0

ue(t)dt

=

∫ T

0

(ue − (h(x3)I +RI2))dt

︸ ︷︷ ︸

E41

+

∫ T

0

(h(x3)I +RI2)dt

︸ ︷︷ ︸

E42

(11)

where E41 is the energy cost due to manufacturing, and
E42 the cost due to losses in the course of charging and
discharging the battery. Notice that

E42 =

∫ T

0

h(x3)
1

η
ẋ3(t)dt+

∫ T

0

RI2dt

=
1

η

∫ T

0

h(x3)dx3(t) +

∫ T

0

RI2dt

=

∫ T

0

RI2dt

If the hysteresis effect is considered in the battery oper-

ation, the term
∫ T

0 h(x3)dx3(t) is non-zero, and in fact,
positive.

Since the definition of the cost function implies that it
incurs loss/cost to use the battery, and is free to use
the energy from the power grid, the optimal solution of
Problem 5 should reduce to that of Problem 3.

Optimal Solutions of Problem 5: Similar to Problem 6,
optimal solutions of Problem 5 can be established by
solving Problem 3.

3.2 Case 2: p(t) is Time-Varying

In this case, the energy price is assumed to be independent
of the instantaneous power consumption of the manufac-
turing system itself. Instead, energy suppliers might set the
price to ensure the safe operation of the power grid and
influence the consumers’ behavior. We also assume that
p(t) for t ∈ [0, T ] is priori before planning the manufactur-
ing process, and leave the case where p(t) is unknown for
future study.

When p(t) is a pre-determined non-constant positive map-
ping: R+ → R

+, optimal solutions of Problems 3-6 are
difficult to characterize and solve in a closed-form. This
is because the optimal solution is p(t)−dependent. Direct
optimal control approach, transcription (by discretization)
of continuous-time optimal control problems to numerical
optimization problems, has been widely adopted to solve
optimal or sub-optimal solutions.

We first show that Problems 3-4 are convex, and thus
direct optimal control approach can be used to solve
for global optimal solutions. Then, as an example of
applying direct optimal control approach, Problem 3 is
transcribed to a numerical optimal control problem by
discretization over time. The transcription results in a
convex optimization problem but with a non-smooth cost
function, which is further reformulated as a smooth convex
optimization problem.



Problems 3-4 have linear constraints. For the cost func-
tion (4), its convexity can be readily established by consid-
ering results in (Boyd and Vandenberghe, 2004, Sec. 3.2).
For completeness, the verification procedure is sketched as
follows: assuming two feasible control u1

e(t), u
2
e(t) defined

over [0, T ], and denoting the corresponding costs

E(u1
e) =

∫ T

0

p(t)max(0, u1
e(t))dt

E(u2
e) =

∫ T

0

p(t)max(0, u2
e(t))dt

we have, for 0 ≤ θ ≤ 1,

E(θu1
e + (1− θ)u2

e)

=

∫ T

0

p(t)max(0, θu1
e(t) + (1 − θ)u2

e(t))dt

≤

∫ T

0

p(t)[max(0, θu1
e(t)) + max(0, (1− θ)u2

e(t))]dt

= θE(u1
e) + (1− θ)E(u2

e).

Since both constraints and cost functions are convex in
x and u, Problems 3-4 are convex. Optimal solutions
however might not be unique, because both of the cost
functions (4)-(5) are not strictly convex.

We discretize both cost function (4) and system dynamics
(1) on a mesh in the time domain using the Euler inte-
gration rule. For simplicity, the time grid is uniform and
denoted by {ti}

N
i=0 ∈ [0, T ], with the step size ∆ = T/(N+

1), t0 = 0 and tN = T . The state and control variables
are discretized on the mesh {ti}

N
i=0 as follows: Xi = x(ti)

for i = 0, . . . , N , and Ui = ue(ti), for i = 1, . . . , N .
For notational convenience, let X = [X0, . . . , XN ]T and
U = [U1, . . . , UN ]T .

The cost function (4) is discretized as follows

Ed
1 (U) =

N∑

i=1

∆p(ti)max(0, Ui) (12)

The system dynamics (1) are similarly discretized, via the
Euler integration rule, into the following linear equations

Xi −Xi−1 −∆BUi = 0, 1 ≤ i ≤ N (13)

where Be = [0, 1]T . The discretization of state and control
constraints gives, for 1 ≤ i ≤ N ,

0 ≤ Xi,2 ≤ vmax

umin ≤ Ui ≤ umax
(14)

whereXi,2 represents the 2nd component ofXi. The initial
and final conditions are also denoted by linear constraints
as follows

X0 = 0, XN = xf . (15)

Abbreviating constraints (13)-(15) as G(X,U) ≤ 0, we
have the non-smooth convex optimization problem:

min
X,U

Ed
1 (U)

subject to G(X,U) ≤ 0.
(16)

We have the following result about (16).

Proposition 12. Problem (16) is equivalent to the follow-
ing smooth convex optimization problem

min
X,U,ζ

Ed,ζ
1 (ζ)

subject to G(X,U) ≤ 0

ζ ≥ 0

ζ ≥ U

(17)

where ζ = (ζ1, · · · , ζN )T , Ed,ζ
1 =

∑N

i=1 ∆p(ti)ζi.

Proof. We know max(0, Ui) is equivalent to

min ζi subject to ζi ≥ 0, ζi ≥ Ui.

In the feasible set G(X,U) ≤ 0, we have

min
X,U

Ed
1 (U)

= ∆min
X,U

N∑

i=1

p(ti)max(0, Ui)

= ∆min
X,U

N∑

i=1

p(ti){min
ζi

ζi, subject to ζi ≥ 0, ζi ≥ Ui}

= ∆min
X,U

N∑

i=1

{min
ζi

p(ti)ζi, subject to ζi ≥ 0, ζi ≥ Ui}

= ∆ min
X,U,ζ

N∑

i=1

p(ti)ζi, subject to ζi ≥ 0, ζi ≥ Ui

where the last equality is obtained by considering that
∑

min ak subject to ak ≥ 0, ak ∈ Ak

is equivalent to

min
∑

ak subject to ak ≥ 0, ak ∈ Ak.

This completes the proof.

Remark 13. Smooth optimization problem is preferred in
practice for the abundance and efficiency of solvers. Propo-
sition 12 facilitates the application of direct optimal con-
trol approach to Problem 3.

Different from Problems 3-4, because of non-convexity in
the x2−dynamics, transcription of Problems 5-6 leads to
non-convex optimization problems.

3.3 Case 3: p(t) is Determined by ue

In this case, the energy price is uniquely determined by
the power consumption of the manufacturing system itself,
i.e., the energy suppliers set the price according to local
power consumption. Depending on the price profile p(ue),
Problems 3-6 have different characteristics.

For instance, if the price profile is given as follows

p(ue) = kue

with k > 0, then both cost function E1 =
∫ T

0 ku2
e(t)dt

and E2 =
∫ T

0 kmax(0, u2
e(t))dt are convex. Problems 3-4

can be readily solved by direct optimal control approach.
Hamiltonian approach in Wang et al. (2013) might also be
applicable to characterize and further solve the optimal
solutions for better accuracy. Taking k > 0 means the
regenerative energy flowing back to the power grid is
also penalized, which is unrealistic. A more realistic price
profile is

p(ue) =

{
kue, ue ≥ 0

−kue, otherwise
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which yields an integrated function of (5) similar to the
solid line in Fig. 1. The solid line shows that the integrated
function is a non-convex function of ue. Consistently, the
discretization of system dynamics, cost functions, and
constraints leads to an optimization problem, which has
a non-convex cost function.

An alternative profile of the price might be taken in the
form of piecewise constant, for instance

p(ue) =

{
k1, ue ≤ u

k2, otherwise.
(18)

Without loss of generality, we consider the cost func-
tion (5). The integrated function in (5), with the price
profile given by (18) and k1 = 1, k2 = 2, is illustrated by
the dash dot line in Fig. 1. We verify that the integrated
function is not convex. Given u1

e, u
2
e, and ue = θu1

e + (1−
θ)u2

e < ue, we have

p(ue)ue =

{
k1ue, if ue < ue

k2ue, otherwise.

For u1
e < ue, u

2
e > ue, we can always take a θ ∈ [0, 1] such

that ue = θu1
e + (1 − θ)u2

e > ue, and have

p(ue)ue = k2ue > θk1u
1
e + (1− θ)k2u

2
e.

Meanwhile, we can always take another θ ∈ [0, 1] such that
ue = θu1

e + (1− θ)u2
e < ue, and have

p(ue)ue = k1ue < θk1u
1
e + (1− θ)k2u

2
e.

Since the integrated function is non-convex in ue, cost
function (5) and its disretization over time is also non-
convex in ue. Hence, the direct transcription of Problems
3-6 leads to non-convex optimization problems. Specifi-
cally, Problem 4 can be reduced to a mixed integer linear
programming problem by introducing a binary variable
µ(i) at each discretization time step i

µ(i) =

{
1, ue(i) < ue

0, otherwise

The binary variable µ(i) allows us to reparameterize the
integrated function at time step i as follows

µ(i)k1ue(i) + (1− µ(i))k2ue(i).

The mixed linear programming problem requires addi-
tional constraints

µ(i) = {0, 1}.

Fig. 1 shows another power profile in the dash line, which
corresponds to the following price profile

p(ue(t)) =







k1, ue < ue

k2 −
ue(k2 − k1)

ue

, otherwise
(19)

with k2 > k1. The integrated function of cost functions
(4)-(5) corresponding to the dash line is convex, Problems
3-4 are therefore convex and the global optimal solutions
can be solved numerically.

We remark that the direct transcription of Problems 5-
6 always renders non-convex optimization problems no
matter what price profile is chosen. This is because such
non-convexity comes from the dynamics.

4. CONCLUSION

This work conducts a preliminary study of economical
manufacturing where the energy cost is optimized instead
of the consumed energy. Economical manufacturing ad-
dresses the energy price fluctuation. With the productiv-
ity of the manufacturing process selected as the process
parameter to capture the energy consumption and the
system model, economical manufacturing is investigated
in the optimal control framework. Future work includes
investigation of economical manufacturing with a more re-
alistic system and energy consumption models and pricing
mechanisms.

5. ACKNOWLEDGEMENTS

The work of J. Wu and C. Long is supported in part by
the National Natural Science Foundation of China grants
61104091,61172064, 61473184.

REFERENCES

Albadi, M.H. and El-Saadany, E.F. (2007). Demand
response in electricity markets: an overview. In the
Proc. of the IEEE Power Engineering Society General
Meeting, 1–5.

Boyd, S.P. and Vandenberghe, L. (2004). Convex Opti-
mization. Cambridge University Press.

Cesari, L. (1965). Existence theorems for optimal solutions
in Pontryagin and Lagrange problems. SIAM J. Control
Optim., 3(3), 475–498.

Deif, A.M. (2011). A system model for green manufac-
turing. Advances in Production Engineering & Manage-
ment, 6(1), 27–36.

Diaz, N., Choi, S., Helu, M., Chen, Y., Jayanathan, S.,
Yasui, Y., Kong, D., Pavanaskar, S., and Dornfeld, D.
(2010). Machine tool design and operation strategies
for green manufacturing. In Proc. of the 4th CIRP Int.
Conf. on High Performance Cutting.

Diaz, N., Redelsheimer, E., and Dornfeld, D. (2011). En-
ergy consumption characterization and reduction strate-
gies for milling machine tool use. In Proc. of the 18th
CIRP Int. Conf. on Life Cycle Engineering, 263–267.

Diaz, N., Helu, M., Jarvis, A., Tönissen, S., Dornfeld,
D., and Schlosser, R. (2009). Strategies for minimum
energy operation for precision machining. In the Proc.
of MTTRF 2009 Annual Meeting.



Duflou, J.R., Kellens, K., Devoldere, T., Deprez, W.,
and Dewulf, W. (2010). Energy related environmental
impact reduction opportunities in machine design: case
study of a laser cutting machins. International Journal
of Sustainable Manufacturing, 2, 80–98.

Duflou, J.R., Sutherland, J.W., Dornfeld, D., Herrmann,
C., Jeswiet, J., Kara, S., Hauschild, M., and Kellens,
K. (2012). Towards energy and resource efficient man-
ufacturing: A processes and systems approach. CIRP
Annals-Manufacturing Technology, 61, 587–609.

Fuller, T.F., Doyle, M., and Newman, J. (1994). Simula-
tion and optimization of the dual lithium ion insertion
cell. J. Electrochem. Soc., 141(1), 1–10.

Gellings, C. (1985). The concept of demand-side manage-
ment for electric utilities. Proc. IEEE, 73, 1468–1470.

Katiraei, F., Iravani, R., Hatziargyriou, N., and Dimeas, A.
(2008). Microgrids management. IEEE Power Energy
Mag., 6, 54–65.

Lin, C.C., Peng, H., Grizzle, J.W., and Kang, J.M. (2003).
Power management strategy for a parallel hybrid electric
truck. IEEE Trans. Contr. Syst. Technol., 11, 839–849.

Mohsenian-Rad, A.H. and Leon-Garcia, A. (2010). Op-
timal residential load control with price prediction in
real-time electricity pricing environments. IEEE Trans.
Smart Grid, 1, 120–133.

Pepyne, D.L. and Cassandras, C.G. (2000). Optimal
control of hybrid systems in manufacturing. Proc. IEEE,
88, 1108–1123.

Ramadge, P.J. and Wonham, W.M. (1987). Supervisory
control of a class of discrete event process. SIAM J.
Control Optim., 25(1), 206–230.

Rusinko, C.A. (2007). Green manufacturing: an evaluation
of environmentally sustainable manufacturing practices
and their impact on competitive outcomes. IEEE Trans.
Eng. Manag., 54(3), 445–454.

Salonitis, K. (2012). Efficient grinding processes: an energy
efficiency point of view. In the Proc. of the 10th Int.
Conf. on Manufacturing Research, 541–546.

Salonitis, K. and Ball, P. (2013). Energy efficient manu-
facturing from machine tools to manufacturing systems.
In the Proc. of the 46th CIRP Conf. on Manufacturing
Systems.

Samadi, P., Mohsenian-Rad, A.H., Schober, R., Wong,
V.W., and Jatskevich, J. (2010). Optimal real-time
pricing algorithm based on utility maximization for
smart grid. In the Proc. of the 1st IEEE Int. Conf.
on Smart Grid Communications, 415–420.

Shaikh, M.S. and Caines, P.E. (2007). On the hybrid
optimal control problem theory and algorithms. IEEE
Trans. Automat. Control, 52(9), 1587–1602.

Vasudevan, R., Gonzalez, H., Bajcsy, R., and Sas-
try, S.S. (2012). Consistent approximations for
the optimal control of constrained switched systems.
Http://arxiv.org/abs/1208.0062.

Wang, Y., Ueda, K., and Bortoff, S.A. (2013). A Hamilto-
nian approach to compute an energy efficient trajectory
for a servomotor system. Automatica, 49(12), 3550–
3561.

Wang, Y., Fang, H., Sahinoglu, Z., Wada, T., and Hara,
S. (2014). Adaptive estimation of the state of charge
for lithium-ion batteries: nonlinear geometric observer
approach. IEEE Trans. Contr. Syst. Technol., PP(99),
1.


	Title Page
	page 2

	/projects/www/html/publications/docs/TR2015-054.pdf
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7


