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Abstract
Deep neural networks (DNNs) are constructed by considering highly complicated configu-
rations including network structure and several tuning parameters (number of hidden states
and learning rate in each layer), which greatly affect the performance of speech processing ap-
plications. To reach optimal performance in such systems, deep understanding and expertise
in DNNs is necessary, which limits the development of DNN systems to skilled experts. To
overcome the problem, this paper proposes an efficient optimization strategy for DNN struc-
ture and parameters using evolutionary algorithms. The proposed approach parametrizes
the DNN structure by a directed acyclic graph, and the DNN structure is represented by a
simple binary vector. Genetic algorithm and covariance matrix adaptation evolution strategy
efficiently optimize the performance jointly with respect to the above binary vector and the
other tuning parameters. Experiments on phoneme recognition and spoken digit detection
tasks show the effectiveness of the proposed approach by discovering the appropriate DNN
structure automatically.
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ABSTRACT

Deep neural networks (DNNs) are constructed by considering highly
complicated configurations including network structure and several
tuning parameters (number of hidden states and learning rate in each
layer), which greatly affect the performance of speech processing
applications. To reach optimal performance in such systems, deep
understanding and expertise in DNNs is necessary, which limits the
development of DNN systems to skilled experts. To overcome the
problem, this paper proposes an efficient optimization strategy for
DNN structure and parameters using evolutionary algorithms. The
proposed approach parametrizes the DNN structure by a directed
acyclic graph, and the DNN structure is represented by a simple
binary vector. Genetic algorithm and covariance matrix adaptation
evolution strategy efficiently optimize the performance jointly with
respect to the above binary vector and the other tuning parameters.
Experiments on phoneme recognition and spoken digit detection
tasks show the effectiveness of the proposed approach by discover-
ing the appropriate DNN structure automatically.

Index Terms— Deep neural network, structure optimization,
evolutionary algorithm, genetic algorithm, CMA-ES

1. INTRODUCTION

Recently, deep neural networks (DNNs) have become standard
techniques in various speech and language applications including
speech recognition and spoken term detection [1,2], and well-trained
DNNs make it possible to build high-performance systems for such
tasks. However, DNNs have very complicated configurations in-
cluding network topologies and several tuning parameters (number
of hidden states and learning rate in each layer) that greatly affect
the performance of speech processing applications. Therefore, to
optimize performance in such systems, deep understanding and
expertise in DNNs is necessary, thus limiting the development of
DNN systems to skilled experts. This paper aims to overcome this
problem by automatically optimizing DNNs used in acoustic mod-
els in speech processing without human expert elaboration based on
evolutionary algorithms.

Applications of evolutionary algorithms to acoustic modeling in
speech processing have been studied by various researchers [3–7].
However, these approaches have mainly focused on model param-
eter optimization or several tuning parameters. DNN has another
important configuration tuned by human experts that deals with the
topologies of DNNs. In fact, the progress in neural network speech
processing arises from the discovery of appropriate DNN topologies,
e.g., deep layers, deep stacking networks, and tandem concatenation
of original inputs with neural network (bottleneck layer) outputs for

GMM features [8–11]. We call this problem the structure optimiza-
tion of DNNs. There are several studies of structure optimization of
Gaussian based models [12–16]; however, these studies do not ad-
dress the optimization of DNNs. With this background, this paper
proposes efficient structure and tuning parameter optimization algo-
rithms based on evolutionary algorithms for DNNs used in speech
processing.

Evolutionary algorithms are a generic term for nonlinear/non-
convex optimization algorithms inspired by several biological evolu-
tion mechanisms, including genetic algorithms and evolution strate-
gies, and are widely used in various applications. This paper uses
a popular genetic algorithm [17] and covariance matrix adaptation
evolution strategy (CMA-ES) [18, 19] as an evolutionary algorithm.
They have the common functions of 1) generating various vectors
encoding system configurations to be tested and 2) scoring multiple
DNN systems with these prepared configurations. These steps are
iteratively performed to search the optimal tuning parameters. The
first generation step provides the multiple hypotheses created by a
process of simulated biological gene generation in a genetic algo-
rithm and by probabilistic random number sampling in CMA-ES.
The second scoring step includes training and evaluation of DNNs
to obtain their scores, which usually takes very long time, but this
step can be parallelized for each configuration. Although both ap-
proaches must represent a DNN structure configuration using a vec-
torized form (gene), this paper also proposes to formulate the DNN
structure configuration with a binary vector based on directed acyclic
graph (DAG) representation, where each connection between neuron
modules is represented by a binary value.

We conducted experiments on a massively parallel computing
platform TSUBAME supercomputer developed at Tokyo Institute of
Technology1. Although each evaluation of DNN is fairly simple
(single-speaker phone recognition and spoken digit detection), the
experiments were ran using 62-GPGPUs in parallel for both evolu-
tionary algorithms to address DNN structure discovery problems.

2. EVOLUTIONARY ALGORITHM

Let us first denote the nth DNN configuration as Cn. Cn is com-
posed of DNN specifications of tuning parameters and network
topologies, which is enough information to specify the DNN train-
ing. The D-dimensional vector xn is a code to generate the con-
figuration Cn and can be regarded as a gene in the evolutionary
algorithm. This problem is formulated to find the optimal configu-
ration Cn∗ :

Cn∗ = argmax
∀n

f(Cn). (1)

1http://www.gsic.titech.ac.jp/en



Algorithm 1 Evolutionary algorithm
1: Initialize x
2: for n = 1, · · · , N0 do
3: Sample xn

4: end for
5: while not convergence do
6: for n = 1, · · · , N (N0 for the 1st iteration) do
7: Decode gene vector xn to configuration Cn

8: Evaluate configuration Cn to get score f(Cn)
9: end for

10: Generate child gene vectors {xn}Nn=1 from current (parent)
gene vectors {xn}Nn=1 and their scores {f(Cn)}Nn=1

11: end while

where function f provides the performance of the DNN (i.e., the
accuracy and size of DNN). As speech processing systems are ex-
tremely complicated, there is no analytical form for f , and it is dif-
ficult to include specific knowledge in f . Such situations are best
handled using an evolutionary algorithm, which is described in Al-
gorithm 1.

The algorithm starts to provide initial gene vectors {xn}Nn=1.
Then, the gene vectors are decoded to the corresponding config-
urations {Cn}Nn=1, and scored by function evaluations. Based on
the scores, new gene vectors are generated. Genetic algorithms and
CMA-ES have different strategies in this generation step, and the
following section describes the gene generation step of each method
in greater detail.

2.1. Genetic algorithm

The genetic algorithm is a search heuristic motivated by the natural
evolution process. It is based on 1) the selection of genes accord-
ing to their scores pruning inferior gene vectors for the next iteration
(generation), 2) mating pairs of gene vectors to make child gene vec-
tors that mix the properties of the parents, and 3) mutation of a part
of a gene vector to produce new gene vectors.

In the selection process, this paper uses a tournament method,
which first extracts a subset of M(< N) genes ({xn′}Mn′=1) from a
total of N genes randomly and then selects the best gene by the score
(xn∗ = argmaxn′ f(Cn′)). The random subset extraction step can
provide variations of genes, while the best selection step in a subset
guarantees the exclusion of inferior genes.

For the mating process, the one-point crossover method is
adopted, which first finds a pair of (parent) genes from the selected
genes (xp

n1 and xp
n2) and then swaps the d + 1 to D elements of

these two vectors to obtain a new (child) gene vector pair (xc
n1 and

xc
n2).

xc
n1 =

ˆ

xp
n1,1 · · · xp

n1,d xp
n2,d+1 · · ·xp

n2,D

˜ᵀ

xc
n2 =

ˆ

xp
n2,1 · · · xp

n2,d xp
n1,d+1 · · ·xp

n1,D

˜ᵀ (2)

where ᵀ is the matrix transpose. The position d is randomly sampled.
As the iteration increases, these processes provide appropriate gene
vectors that encode optimal DNN configurations.

2.2. Covariance matrix adaptation evolution strategy

CMA-ES assumes that a gene vector x is generated from a multivari-
ate Gaussian distribution N (x|µ,Σ), where µ and Σ are the mean
vector and covariance matrix, respectively. After the function evalu-
ation in each epoch, CMA-ES updates µ and Σ using the following

equation:
(

µ ← µ + εµ

PN
n=1 w(f(Cn))(xn − µ)

Σ ← Σ + εΣ

PN
n=1 w(f(Cn)) ((xn − µ)(xn − µ)ᵀ −Σ) ,

(3)
where εµ and εΣ are step sizes, and w() is a weighting function for
a score f(Cn). This procedure is based on a well-known method
of parameter update based on a gradient. These parameters are ex-
plained in detail in [20]. Once the parameter is updated, new gene
vectors are sampled from the Gaussian distribution, i.e., {xn}Nn=1 ∼
N (x|µ,Σ)

Compared with the genetic algorithm, CMA-ES assumes the
continuous gene vector and provides a simple (well-known) gene
generation algorithm. However, the actual DNN configuration is
represented by binary and discrete values in addition to continuous
values, and the genetic algorithm is more flexible for directly con-
sidering these variables.

3. STRUCTURE OPTIMIZATION

3.1. Representation of structured DNN

When applying structure optimization to DNN, one issue is how to
maintain the computational efficiency of the DNN while allowing
flexible configurations. For a DNN formed by a simple cascade of
multiple layers, the computation required for training and evaluation
is based on layer-wise coarse grain matrix operation. Therefore, it is
efficiently computed on GPGPU, which is a very important property
for practical speech applications. However, if arbitrary connections
are allowed between neurons, the computation is small grained, and
efficient computation becomes difficult. To overcome this problem
as well as to make compact gene expression possible, we consider
DNNs formed as a directed acyclic graph (DAG) of neuron modules.
It is an extension of the standard multi layer-structured DNNs by al-
lowing arbitrary connections between layers with a constraint that it
does not have directed cycles. By analogy to neuroanatomy, we re-
fer to the neuron module as the nucleus. Right hand side of Figure 1
shows an example. In the figure, it is referred to as a “phenotype” in
contrast to the “genotype” that is explained in the next subsection.

Arbitrary feed-forward structures are represented without limi-
tation if we choose the nucleus to be equal to a single neuron. How-
ever, if there are a large number of small nuclei, it is difficult to ef-
ficiently perform computations on GPGPU. Therefore, we consider
nuclei with a moderate number of neurons. A DAG of nucleus al-
lows efficient application of RBM-based pre-training. That is, nuclei
are pre-trained simply one by one from the input side to the output
side of the DAG structure. If a nucleus has multiple inputs, they are
concatenated to form a single input vector. The transformations to
obtain the inputs are always already computed because there is no
directed cycle. Fine tuning by back-propagation is also easily ap-
plied.

3.2. Genetic representation

To efficiently represent arbitrary DAG structures as genes, we utilize
the fact that the nodes of a DAG can be numbered so that all the
directed connections face the same direction from a lower numbered
node to a higher numbered node. This property is easily confirmed
by considering the lemmas that there exists at least one node that
does not have a parent, and a graph obtained by removing such a
node is also a DAG.

Once all the nodes of a DAG are numbered, then the connections
can be represented by a lower triangular binary matrix C where an



element ci,j is one if nucleus i receives a connection from nucleus
j and zero otherwise. A gene representation of the graph structure
is obtained by arranging the elements of C into a vector in a pre-
defined order. If a real number is used as a gene element, as in
CMA-ES, binary values are obtained, for example, by first rounding
the number to an integer and then obtaining a residue divided by two.
We assumed the maximum number of nuclei to be pre-determined.
However, genes are allowed to have defunct nuclei that lack input
and/or output connection and the effective number of nuclei can
change during the optimization process. The matrix in Figure 1 is
the genotype of the DNN structure shown in the same figure.

Without loss of generality, it can be assumed that there is only
one input nucleus that directly connects to the input, which makes
implementation a bit easier. For this purpose, we introduced a spe-
cial “input nucleus” that simply outputs the same vector as the input.
Additionally, we introduced an “extraction nucleus” that extracts a
part of an input vector to allow separate treatment of sub-dimensions.
In the example in Figure 1, the DNN consists of one input nucleus
(nucleus id = 0), seven extraction nuclei (id = 1,2,..,7), four sigmoid
nuclei (id = 8,9,10,11), and one output softmax nucleus (id = 12).
The input to the network is a concatenation of seven frames of speech
features, and the output of the seven extraction nuclei corresponds to
each of the original frames.

4. EXPERIMENTS

We performed two types of experiments. The first is a preliminary
experiment based on frame-wise phone recognition. An in-house
phone corpus was used where utterances were given by a single male
speaker. The second is the main experiment, where continuous DP
matching based spoken digit detections was performed using DNN-
based features. The AURORA2 [21] corpus was used for this task.

For the training and evaluation of DNNs utilizing GPGPU, we
implemented software using the Theano python library [22]. Exper-
iments were performed using the TSUBAME2.5 supercomputer. In
the following experiments, 62 NVIDIA K20X GPGPUs were used
in parallel through the message passing interface (MPI).

4.1. Preliminary experiment using single-speaker phone recog-
nition
4.1.1. Experimental setup

The training and development sets were speech utterances given by
a male speaker that totaled 12 minutes and 3.5 minutes, respectively.
The speech features were 12 MFCC, energy, and their deltas. Seg-
ment features were used as an input to DNNs having 130 (=26x5)
dimensions in total concatenating five frames. The genes specified
a DNN structure with at most four plastic nuclei that were subject
to the optimization in terms of sizes, learning rates, and connec-
tions. Extraction nuclei were used to represent the subvectors of
a composite feature vector. The input and extraction nuclei were
fixed, and their connections were not changed during the optimiza-
tion. Five (= N0) initial genes were manually prepared. The DNNs
were trained to predict 19 subsets of Japanese phonemes, and frame
accuracy was evaluated. Both CMA-ES and GA used real num-
ber sequences as genes in this experiment. The mapping from the
real value to the nucleus sizes was given by Equation (4), and the
mapping to the learning rates was given by Equation (5). For the
mutation process of GA, Gaussian noise with zero mean and 0.05
standard deviation was uniformly added to the gene.

Size = ceil (10x) , (4)
learnrate = ceil

`

105x/100000
´

. (5)

Fig. 2. Preliminary experimental results.

CMA-ES used the frame accuracy of the development set as the fit-
ness function. GA used a weighted sum of frame accuracy and net-
work size, normalized in each generation so that a gene with 95%
normalized accuracy performance was evaluated as equal to the top
one if it had a 50% normalized network size. The network size was
the sum of the sizes of affine transformation matrices in a DNN. The
population size N was set to 62 for both algorithms. The tournament
size M was four for the gene selection in GA.

4.1.2. Results

Figure 2 shows the best frame accuracy among each generation ob-
tained during the optimizations. The horizontal axis is the number
of generations, and the vertical axis is the frame accuracy. In the
early generations, CMA-ES gave better accuracy than GA showing
its efficiency in the search. After approximately 10 iterations, both
of them gave similar performance, showing good improvement from
the initial generation. Thus, the experiment verified the effectiveness
of both evolutionary algorithms for the structure optimization.

4.2. Spoken digit detection

4.2.1. Experimental setup

Spoken digit detection was performed based on continuous DP
matching using DNN extracted digit posterior features. The digit
posterior features had 13 dimensions to represent 0 to 9, oh, and two
types of silences. The evaluation was based on frame-wise mean
average precision (MAP) [23]. In DP hypotheses, the same frame
may be included in multiple candidate segments starting and ending
at different time frames with different distance scores. For the MAP
evaluation, the minimum of the matching distance is adopted at each
frame.

DNN structure optimizations by evolutionary algorithms were
performed using the training set of the AURORA2 corpus. Among
the training set, utterances from five male and five female speakers
were used to provide keywords to detect. Another five male and five
female speakers were used to provide target utterances within which
to search for the keywords and were used to evaluate the MAP score
during the optimizations, where 50 keywords and 100 utterances per
keyword were randomly selected to evaluate the MAP score. The
rest of the training data from 90 speakers were used to pretrain and
fine-tune the DNN parameters. The speech features were 13 MFCCs
and an energy. Seven frames were concatenated to form a composite
feature vector with 98 dimensions in total.

The genes specified a DNN structure with at most five plastic
nuclei. GA used binary values to represent network connections,
which was more convenient to directly specify the mutation flip rate
than using real numbers. CMA-ES requires the use of real numbers.
However, because the variance is automatically adjusted in the op-
timization process, it does not require manually setting the flipping



Fig. 1. Example of DAG of nucleus DNN and a part of a gene corresponding to the structure. This structure was obtained by genetic algorithm
at the 30th generation using the GA(MAP, Size, Sim) strategy described in Section 4.2.2. Compared to one of the most similar initial DNNs,
connections from nuclei 2 to 9 and 5 to 8 were added.

Fig. 3. Spoken digit detection results using AURORA2 corpus.
Clean condition training was used.

probability. The population size was set to 62. As the fitness func-
tion, CMA-ES used the MAP score. For GA-based optimization, the
following three strategies were explored.

GA(MAP) Uses MAP score to compare two genes.

GA(MAP,Size) Uses MAP score. However, gene a wins over gene
b that has a higher MAP score if the difference of the scores
is less than 0.02 and the network size of gene a is less than
90% of gene b.

GA(MAP,Size, Sim) In addition to strategy 2, structure similarity
is considered when mating two genes by selecting the best
partner among 5 candidates.

This flexibility of selecting candidates with the above advanced cri-
teria is an advantage of GA on CMA-ES. Training and evaluating a
DNN took around 30 to 60 minutes depending on individuals.

4.2.2. Results
Figure 3 shows the best MAP score among a generation using
the clean training condition, and Figure 4 shows the sizes of the
DNNs corresponding to Figure 3. As in the preliminary experiment,
CMA-ES gave better results than the GA-based optimizations in
the early generations. After approximately 15 iterations, the differ-
ence between CMA-ES and GA(MAP) was small, and both of them
gave improvements from the initial generation, although the scores
by CMA-ES looked more stable. When the three GA strategies
were compared, generally GA(MAP) gave the best MAP score and
GA(MAP, Size) the worst. However, the differences were not large.
There were, in contrast, large differences in their network sizes.
GA(MAP, Size, Sim) and GA(MAP, Size), which consider network
size in the selection process, gave much smaller network sizes than
GA(MAP) and CMA-ES. GA(MAP, Size, Sim) and GA(MAP, Size)
are advantageous when running spoken digit detection on resource-
limited hardware. The structure shown in Figure 1 is the 30th
generation DNN with the best MAP score obtained by GA(MAP,
Size, Sim).

Fig. 4. Network sizes of DNNs that gave the best MAP score in each
generation.

Table 1. MAP scores on test sets. Optimizations were performed
using the multicondition training set. DNN(ini) is the result of the
first generation, DNN(GA) is the result of GA at the 30th generation.
DNN(expt) is the result of tuning by a human expert.

Features setA(clean) setA(SNR15) setB(SNR15)
MFCC 0.38 0.22 0.21
DNN(ini) 0.44 0.36 0.33
DNN(GA) 0.81 0.75 0.74
DNN(expt) 0.80 0.73 0.73

Table1 shows the test set MAP scores of DNNs optimized/trained
using the multicondition training set of the AURORA2 corpus. For
the structure optimization, GA(MAP, SCORE, SIM) was used. Test
set A was noise closed, and test set B was open. As can be seen,
DNN-based digit posterior features were already better than MFCC
in the first generation, and further gains were obtained by GA. The
MAP scores given by DNN at the 30th generation were 0.81 for the
clean test data and 0.75 and 0.74 for the noisy test data of set A and
B, respectively, which were comparable or slightly better than tuned
results by a human expert.

5. SUMMARY
A DAG of nucleus DNNs has been proposed that is suited for
GPGPU computation and for compact gene expression. Joint struc-
ture and parameter optimizations have been explored based on
evolutionary algorithms. The experimental results showed that both
CMA-ES and GA gave large improvements from the initial gener-
ation without tuning by human experts. Future work will include
applying the framework to large vocabulary speech recognition.
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