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Abstract

We present a robust dual control MPC (RDC-MPC) policy with guaranteed constraint satisfac-
tion for simultaneous closed-loop identification and regulation of state and input-constrained
linear systems subject to parametric and additive uncertainty. The uncertain system is modeled
as a polytopic Linear Difference Inclusion (pLDI) for which a maximal robust control invariant
(RCI) set is calculated. Selecting a control from the associated robust admissible input (RAI)
set guarantees constraint satisfaction for all pLDI realizations, and thus guarantees constraint
satisfaction during the identification transient when the MPC prediction model is uncertain. The
MPC problem is then cast as selecting a control from the RAI set that optimizes the dual ob-
jective of identifying the unknown system parameters and regulating the true system, where the
tradeoff between the two objectives is adjusted based on the prediction error of the identified
system. Numerical examples illustrate the proposed scheme’s effectiveness and performance
increase, while guaranteeing robust constraint satisfaction.
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Robust Dual Control MPC with Guaranteed Constraint Satisfaction

Avishai Weiss1 and Stefano Di Cairano2

Abstract— We present a robust dual control MPC (RDC-
MPC) policy with guaranteed constraint satisfaction for si-
multaneous closed-loop identification and regulation of state
and input-constrained linear systems subject to parametric and
additive uncertainty. The uncertain system is modeled as a poly-
topic Linear Difference Inclusion (pLDI) for which a maximal
robust control invariant (RCI) set is calculated. Selecting a
control from the associated robust admissible input (RAI) set
guarantees constraint satisfaction for all pLDI realizations, and
thus guarantees constraint satisfaction during the identification
transient when the MPC prediction model is uncertain. The
MPC problem is then cast as selecting a control from the RAI
set that optimizes the dual objective of identifying the unknown
system parameters and regulating the actual system, where the
tradeoff between the two objectives is adjusted based on the
prediction error of the identified system. Numerical examples
illustrate the proposed scheme’s effectiveness and performance
increase, while guaranteeing robust constraint satisfaction.

I. INTRODUCTION

This paper develops a dual control MPC policy with guar-

anteed constraint satisfaction for simultaneous identification

and control of uncertain systems. While regulation and iden-

tification are seemingly conflicting objectives, by identifying

(or re-identifying) the system dynamics online, and updating

the MPC prediction model, closed-loop performance may

be enhanced relative to a standard MPC scheme that uses

an inaccurate (or outdated) model. The optimal solution to

this trade-off between identification and control is given by

a dynamic program [1], which, for many applications, is

computationally intractable. As a result, many suboptimal

techniques and heuristics have been developed in recent years

– often in a receding horizon framework such as model

predictive control (MPC) [2].

In [3], an approximation of the dynamic program is

developed for a linear input-output map with no dynamics.

Approaches for more complex systems avoid dynamic pro-

graming altogether and, instead, sub-optimally trade between

inputs that excite the system and inputs that regulate the state.

Excitation signals are often designed to satisfy persistency

of excitation conditions. For example, a dithering signal

may be added on top of the nominal control [4], although

difficulties arise in determining the amplitude of the signal,

and the dither indiscriminately adds noise to the process.

More sophisticated schemes employ optimal input design,

generally in the frequency domain, where maximizing the

Fisher information matrix can be cast as a semidefinite pro-

gram [5]. However, design in the frequency domain leads to

difficulties with constraints that are more naturally addressed
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in the time domain, e.g., input magnitude constraints. While

the problem formulation in the time domain is highly non-

convex, developing such techniques is desirable, and thus

the focus of recent work [6]–[10]. In [3] and [11], convex

relaxations of the input design problem in the time domain

are presented.

Still, most adaptive or learning-based (dual control) MPC

strategies that incorporate closed-loop identification have

difficulties with state constraints. They either do not include

state constraints [6], or they may violate state constraints

during the learning transient due to a certainty equivalence

assumption, that is, using parameter estimates as if they

were the true values [7]. Approaches that are able to enforce

constraints may be computationally intensive due to solving

min-max problems [8], or conservative due to enforcement

of open-loop robustness in a receding horizon framework,

uncertainty compensation using a fixed feedback law, or only

handling additive uncertainty [8]–[10]. Thus, the main goal

of this work is to develop a learning MPC policy that robustly

guarantees state constraint satisfaction in the presence of both

parametric and additive uncertainty.

In our approach, a robust control invariant (RCI) set is

calculated for an uncertain linear system modeled by a

polytopic Linear Difference Inclusion (pLDI). The set that

we compute is the maximal RCI set for the pLDI, that is, the

largest set of states for which there exists an input such that,

under all possible realizations of the pLDI, state and input

constraints can be robustly enforced using any nonlinear

static feedback law. For any state in the maximal RCI set,

the maximal robust admissible input (RAI) set is the set of

inputs that can be applied to the system with the guarantee

that the resulting state remains in the RCI set.

We formulate a robust dual control MPC (RDC-MPC)

policy for simultaneous identification and control that may

only cull inputs from the RAI set, thus, guaranteeing that

the state will evolve in the RCI set and satisfy constraints

at all times. For identification, we excite the system by

optimizing for inputs that minimize a functional of the

predicted error covariance of the estimated combination of

pLDI vertices. We weight the identification functional based

on the output prediction error [12]. Thus, when the prediction

error is small, the identification functional disappears and the

system is regulated to the origin. As in [10], this approach

decouples safety and performance, that is, so long as inputs

are drawn from the RAI set, we can incorporate any number

of closed-loop identification schemes and guarantee that state

constraints will not be violated.

The paper is organized as follows. In Section II we intro-

duce the pLDI model and provide a review of RCI sets. In



Section III we develop the RDC-MPC policy. In Section IV,

we introduce a control Lyapunov function (CLF) constraint

in the RDC-MPC policy to guarantee stability. Section V

highlights the proposed strategy on numerical examples.

Finally, we provide concluding remarks and discuss future

research directions in Section VI.

II. PRELIMINARIES

In this section we introduce the notation and the main

concepts for pLDI systems and RCI sets that are used in the

subsequent development of the RDC-MPC policy.

A. Notation

R, R0+, R+ are the sets of real, nonnegative real, positive

real numbers, and Z, Z0+, Z+ are the sets of integer, non-

negative integer, positive integer numbers. Unless otherwise

specified, ‖·‖ indicates either the 1 or ∞-norm. For a discrete

time signal x ∈ R
n with sampling period Ts, x(t) is the

state at sampling instant t, i.e., at time Tst. The notation

xk denotes the predicted value of x at sample k. By [x]i
we denote the i-th component of x. By I and 0 we denote

the identity and the “all-zero” matrices of appropriate size.

By co{xi}
ns

i=1 we denote the convex hull of {xi}
ns

i=1. Given

P ⊆ R
np , x ∈ R

nx , and np ≥ nx, the shorthand notation

projx(P) denotes the projection of P onto x. By P ⊕ Q
we denote the Minkowski sum of P and Q, and Q ≡ P
indicates that the sets are equal. A function α : R → R0+

is class K∞ if it is monotonically increasing, α(0) = 0, and

limk→∞ α(k) = ∞.

B. Polytopic Linear Difference Inclusions

Consider ℓ discrete time linear systems

x(t+ 1) = Aix(t) +Biu(t), i = 1, . . . , ℓ.

The polytopic Linear Difference Inclusion (pLDI) based on

these (vertex) systems is defined as

x(t+ 1) ∈ co{Aix(t) +Biu(t)}
ℓ
i=1, (1)

and models the family of systems

x(t+ 1) =

ℓ
∑

i=1

[θ]i(Aix(t) +Biu(t)),

parameterized by θ ∈ R
ℓ, where θ is unknown, 0 ≤ [θ]i ≤ 1,

and
∑

i[θ]i = 1.

Consider, now, the case where a fixed unknown additive

disturbance w ∈ W is present. Let W be a polytope, e.g,

W = co{w1, . . . , wp}. The disturbed pLDI (dpLDI) is

defined as

x(t+ 1) ∈ co{Aix(t) +Biu(t)}
ℓ
i=1 ⊕ co{Bwwi}

ℓ
i=1,

(2)

and models the family of systems

x(t+ 1) =

ℓ
∑

i=1

[θ]i(Aix(t) +Biu(t)) +

p
∑

i=1

[η]iBwwi, (3)

parameterized by unknown θ ∈ R
ℓ, η ∈ R

p, where 0 ≤
[θ]i ≤ 1, 0 ≤ [η]i ≤ 1, and

∑

i[θ]i =
∑

i[η]i = 1.

Finally, consider an uncertain linear system

x(t+ 1) = A(ξ)x(t) +B(ξ)u(t) +Bww(t), (4)

where ξ ∈ Ξ. Define ξ̃i ∈ Ξ̃, i = 1, . . . , ℓ, such that

[A(ξ) B(ξ)] ∈ co{[A(ξ̃i) B(ξ̃i)]}
ℓ
i=1, ∀ξ ∈ Ξ,

and let

[Ai Bi] = [A(ξ̃i) B(ξ̃i)]. (5)

Thus, the dpLDI (2) based on the matrices in (5) is said

to include the uncertain linear system (4). Note that Ξ̃ may

differ from Ξ.

C. Robust Control Invariant Sets

We recall some basic definitions and results on robust

control invariant (RCI) sets for constrained systems. Details

can be found, e.g., in [13].

Consider the system

x(t + 1) = f(x(t), u(t), w(t)), (6)

where x ∈ R
n, u ∈ R

m, and w ∈ R
p are the state, input, and

disturbance vectors, respectively, subject to the constraints

x(t) ∈ X , u(t) ∈ U , ∀t ∈ Z0+. (7)

An RCI set is a set of states for which there exists a

control law such that (6) never violates (7) for any admissible

disturbances sequence.

Definition 1 (Robust control invariant set). A set C ⊆ X is

said to be a robust control invariant (RCI) set for (6)-(7) if

x(t) ∈ C ⇒ ∃u(t) ∈ U :

f(x(t), u(t), w(t)) ⊆ C, ∀w(t) ∈ W , ∀t ∈ Z0+.

The set C∞ ⊆ X is the maximal RCI set if it is an RCI set

and contains all the other RCI sets in X . �

Definition 2 (Robust admissible input set for x ∈ C). Given

an RCI set C for (6)-(7), the robust admissible input (RAI)

set for state x ∈ C is

Cu(x) = {u ∈ U : f(x, u, w) ∈ C, ∀w ∈ W}.

The set C∞

u (x) is the maximal RAI set for x ∈ C∞. �

RCI and RAI sets for the dpLDI system (2) can be

computed, for instance, as in Algorithms 1 and 2 of [14].

III. ROBUST DUAL CONTROL MPC

We now develop the RDC-MPC policy. We first present

a robust MPC policy with guaranteed recursive feasibility

and constraint satisfaction, and then we modify it for online

closed-loop identification.

A. Feasibility and Constraint Satisfaction

Consider the dpLDI (2) subject to the constraints (7), for

which the maximal RCI set C∞ and the associated maximal

RAI set C∞

u (x) have been computed. We formulate an MPC



policy that may only cull inputs from the RAI set, thereby

guaranteeing that the state will evolve in the RCI set and

satisfy constraints for all time. Moreover, because the state

evolves in the RCI set, there always exists an admissible

input, and thus the MPC policy is recursively feasible. This

result is formalized in Theorem 1.

Theorem 1. Let [Â B̂] ∈ co{[Ai Bi]}
ℓ
i=1, ŵ =

∑p

i η̂iwi ∈ W , and Bw be known. Let x(t) be governed by

the dpLDI (2) and subject to the constraints (7). Consider

the MPC policy that at any t ∈ Z0+ solves

min
U

Ft(xN ) +

N
∑

k=1

Lt(xk, uk),

s.t. xk+1 = Âxk + B̂uk +Bwŵ,

x0 = x(t),
uk ∈ C∞

u (xk),

(8)

where U = [u0, . . . , uN−1], N is the prediction horizon, and

Ft, Lt are arbitrary functions of their arguments, and applies

u(t) = u∗0, where [u∗0, . . . , u
∗

N−1] is the optimal solution of

(8). Then, (8) is feasible at time t̄ if and only if x(t̄) ∈ C∞.

Also, for every t ≥ t̄, x(t) ∈ X , u(t) ∈ U for any [A B] ∈
co{[Ai Bi]}

ℓ
i=1 and w(t) ∈ W .

Proof (sketch): Let (8) be feasible at time t, then, by

the definition of the RAI set, x(t) ∈ C∞. Let x(t) ∈ C∞,

then by the RAI set properties (8) is feasible. Furthermore,

u(t) = u0 for any u0 ∈ C∞

u (x0) ⊆ U ensures that, for

any [A B] ∈ co{[Ai Bi]}
ℓ
i=1 and w(t) ∈ W , Ax(t) +

Bu(t) + Bww(t) ∈ C∞ ⊆ X . Since x(t + 1) ∈ C∞, the

procedure can be iterated. Thus, x(τ) ∈ X , u(τ) ∈ U , for

all τ ≥ t. �

B. Online Closed-Loop Identification

We now modify the MPC policy (8) so that the true

system is learned, that is, we let the estimated system

matrices and estimated disturbance vector be functions of

time, Â = Â(t), B̂ = B̂(t), ŵ = ŵ(t), and update them so

that [Â(t) B̂(t)] → [A B] and ŵ(t) → w as t → ∞.

Note that for clarity and to keep the subsequent expressions

simple, the additive disturbance vector w is now assumed to

be constant.

Consider the dpLDI (2) which models the family of sys-

tems (3). Our goal is to estimate (or identify) in real time the

parameters θ and η, which can be used to reconstruct A,B,

and w. To do so, we assume that full state measurements are

available and form a linear regression model for the joint

parameter vector λ = [θT ηT]T given by

y(t+ 1) = x(t+ 1) + ǫ,

=

ℓ
∑

i=1

[θ]i (Aix(t) +Biu(t)) +

p
∑

i=1

[η]iBwwi + ǫ,

= Γ (x(t), u(t)) θ +Υη + ǫ,

=MT (x(t), u(t)) λ+ ǫ, (9)

where ǫ represents measurement noise, Γ(x, u) =
[A1x+B1u, . . . , Alx+Blu], Υ = [Bww1, . . . , Bwwp], and

MT(x, u) = [Γ(x, u) Υ]. We use Recursive Least Squares

(RLS) for online parameter estimation, where the parameter

estimate is given by

λ̂(t+1) = λ̂(t)+K(t+1)
(

y(t+ 1)−MT(x(t), u(t))λ̂(t)
)

,

where

K(t+ 1) = P (t+ 1)M(x(t), u(t)), (10)

P (t+ 1) =
(

I −K(t+ 1)MT(x(t), u(t))
)

P (t). (11)

Remark 1. If dim(λ) > dim(x), then λ cannot be uniquely

recovered, that is, λ may be shifted by any vector v ∈
ker(MT) and still yield the same y. Thus, λ̂ may not

necessarily converge to λ. Nevertheless, it is still possible

for [Â(t) B̂(t)] → [A B] and ŵ(t) → w even if λ̂ 6→ λ

since multiple parameter vectors λ may correspond to the

same system matrices.

The task now becomes to select proper inputs such that the

true system is learned. We modify the optimization problem

(8) to minimize a functional of the predicted parameter error

covariance in order to enhance persistency of excitation. The

optimization problem is thus given by

min
U

Ft(xN ) +
N
∑

k=1

Lt(xk, uk, Pk),

s.t. xk+1 =MT(xk, uk)projλ(λ̂(t)),
x0 = x(t),
P0 = P (t),
uk ∈ C∞

u (xk),

(12)

where the projection ensures that θ̂, η̂ are appropriate convex

combination vectors, and Lt forms a dual objective, trading

regulation and learning. For example,

Lt(xk, uk, Pk) = xTkQxk + uTkRuk (13)

+ γ
(

y(t)−MT(x(t − 1), u(t− 1))λ̂(t− 1)
)

ψ(Pk),

where γ is a function of the prediction error, ψ is an informa-

tion functional of the predicted parameter error covariance

Pk, and Pk is predicted over the optimization horizon using

(10)-(11). The learning objective is only weighted when

the prediction model is poor and, once the error is small,

the learning objective vanishes and we recover the original

non-learning robust MPC policy (8). Examples of the func-

tional ψ include Tr(Pk), logdet(Pk), and the maximum

eigenvalue λmax(Pk), where, borrowing the convention from

experiment design literature, they correspond to A-optimal,

D-optimal, and E-optimal measures, respectively.

Note that (12)-(13) is not a convex problem in the decision

variables, i.e. the control inputs. In the simulation section V,

we solve the non-convex problem (12)-(13) using Matlab’s

fmincon routine with an interior-point solver. Of course,

there is no guarantee of convergence, which is not practical

for real world implementation. A more robust algorithm may

take the form of a 2-step procedure where, first, the non-



convex closed-loop identification problem

min
Ud

N
∑

k=1

ψ(Pk),

s.t. xk+1 =MT(xk, ud,k)projλ(λ̂(t)),
x0 = x(t),
P0 = P (t),
ud,k ∈ C∞

u (xk),

(14)

is solved, generating a desired input sequence Ud(t) for

learning the true system. Then, deviations from the desired

signal are penalized in (12) by letting Lt take the form

Lt(xk, uk, ud,k) = xTkQxk + uTkRuk (15)

+ γ
(

y(t)−MT(x(t − 1), u(t− 1))λ̂(t− 1)
)

‖uk − ud,k‖
2

2
.

The advantage of splitting the algorithm into 2 steps lies

in the fact that if (14) fails, (12),(15) still generates an

admissible input due to the constraint uk ∈ C∞

u (xk), with

ud,k set to ud,k−1. The method of autocorrelation described

in [15] may also be relied upon as a desired input Ud(t).
Alternatively, the non-convex problem (12)-(13) may be

relaxed. In [3], the covariance matrix Pk is linearized in

U thereby transforming the problem into a convex second

order cone program (SOCP). In [11], a convex relaxation of

the input design problem is presented that yields an input

sequence that is within a tight bound of the global optimum.

We leave the convex relaxation of (12), (13) to future work.

Remark 2. If the prediction model in (12) is updated based

on λ̂, but no effort is made to select inputs that increase

the information about the system (and thereby decrease the

parameter error covariance), e.g., Lt(xk, uk) = xTkQxk +
uTkRuk, then we deem the policy passive with respect to

learning. The passive learning policy can be seen as an

example of an indirect adaptive control scheme. Since the

control is unlikely to produce persistently exciting signals

on its own, such a policy may experience instability in

the parameter estimates – otherwise known as the bursting

phenomenon [16].

Remark 3. Note that a major feature of the RDC-MPC policy

is that inputs are culled from the RAI set uk ∈ C∞

u (xk)
in order to guarantee constraint satisfaction. Any online

supervised learning scheme that is amenable to selecting

inputs in this restricted domain may be substituted in place

of RLS and still retain the properties of this approach.

Moreover, while not pursued in the present paper, some

control problems may not require a dual control approach.

An alternative policy might employ 2 separate phases: an

identification phase and a control phase, each satisfying

uk ∈ C∞

u (xk), where the switch between the phases is based

on the prediction error. A switch from the control phase to

the identification phase would take place if the prediction

error grows beyond a specified threshold.

IV. ROBUST STABILIZATION WITH RDC-MPC

For the uncertain system (2), Theorem 1 guarantees that

if at time t̄ ∈ Z0+, x(t̄) ∈ C∞, then, the MPC policy

(12) ensures that x(t) ∈ C∞ ⊆ X for all t ≥ t̄. If X
is bounded, the closed-loop system is ultimately bounded.

Furthermore, if the cost function in (12) is properly designed

(especially the terminal cost, or the horizon length [2]), once

the parameter estimates converge to their true values, then

the controller will not only guarantee ultimate boundedness,

but will also be asymptotically stabilizing. While we leave

for future work the stability analysis of such a policy, we

now develop a method that guarantees robust asymptotic

stability, regardless of the convergence of the estimated

system parameters. We use an approach based on control

Lyapunov functions (CLFs) [17], where a CLF is introduced

in (12) as an additional constraint [18], [19], see also the

references therein.

Given a system x(t+1) = f(x(t), u(t)), x ∈ R
n, u ∈ R

m,

if there exists a set X̄ , and a function V : Rn → R0+ such

that for α1, α2 ∈ K∞, ρ ∈ [0, 1), and for all x ∈ X̄ ,

α1(x) ≤ V(x) ≤ α2(x) (16a)

∃u ∈ U : f(x, u) ∈ X̄
V(f(x, u)) ≤ ρV(x),

(16b)

the system admits a control law that makes the closed-loop

asymptotically stable in X̄ by enforcing (16b).

Consider the pLDI system (1) (i.e., W = {0}), and let

ρ ∈ [0, 1) and V(x) = ‖Px‖q, where q ∈ {1,∞}, and

Pnp×n is full column rank, be given. Then, V(f(x, u)) ≤
ρV(x) can be rewritten as

∑ℓ

i=1
[λ]i‖P (Aix + Biu)‖q ≤

ρ
∑ℓ

i=1
[λ]i‖Px‖q. Thus, for the pLDI (1), if

‖P (Aix+Biu)‖q ≤ ρ‖Px‖q, ∀i = 1, . . . , ℓ, (17)

then V(f(x, u)) ≤ ρV(x). Condition (17) can be imple-

mented by linear inequalities via auxiliary variables εi ∈
R0+, i = 1, . . . , na, where na = 1, for q = ∞, and na = np,

for q = 1.

Combining constraint (17) with the constraint of maintain-

ing the state in the RCI set, we obtain the feasible set

F = {x ∈ R
n : ∃u ∈ C∞

u (x), ‖P (Aix+Biu)‖q ≤

ρ‖Px‖q, ∀i = 1, . . . , ℓ}, (18)

where, since u ∈ C∞

u (x), F ⊆ C∞. In general, F is not

guaranteed to be RCI for (1). Conditions certifying that F
is RCI, and hence that V(x) = ‖Px‖q is a valid CLF in F ,

may be verified. These amount to checking that F ≡ C∞,

which, for q = 1,∞, can be done by solving linear problems

and convex set operations, and are not discussed here due to

space limitations. If F is verified to be RCI, then the MPC

policy (12) with the additional constraint (17) is recursively

feasible and asymptotically stabilizing, as formally proved

next.

Theorem 2. Let P ∈ R
np×n, ρ ∈ [0, 1) be such that (17) is

a valid CLF for (1) in C∞ ≡ F . Consider the MPC policy

that any t ∈ Z0+ solves



min
U

Ft(xN ) +

N
∑

k=1

Lt(xk, uk, Pk)

s.t. xk+1 =MT(xk, uk)λ̂(t),
x0 = x(t),
P0 = P (t),
uk ∈ C∞

u (xk),
‖PMT(x0, u0)ei‖∞ ≤ ρ‖Px0‖∞, ∀i = 1, . . . , ℓ
x0 = x(t)

(19)

and applies u(t) = u∗0, where ei is the ith standard basis

vector of Rℓ (i.e., [ei]i = 1, [ei]j = 0, for all j 6= i), and

possibly λ(t) 6= λ̂(t). Then, (19) is feasible at time t̄ if and

only if x(t̄) ∈ C∞. Also, (1) in closed-loop with the MPC

policy (19) is such that for every t ≥ t̄, x(t) ∈ X , u(t) ∈ U ,

and the system is asymptotically stable.

Proof (sketch:) The proof is very similar to that of The-

orem 1, and repeated satisfaction of (17) guarantees that

the closed-loop system is (robustly) asymptotically stable,

as in [18]. �

Even if F ≡ C∞, constraint (17) generally reduces

the degree of freedom for optimizing control and learning

performance in (19) relative to (12), because not all the inputs

in C∞

u (x) satisfy (17).

If w ∈ W , W 6= {0}, the previous result provides input-

to-state stability of the closed-loop system with respect to

w ∈ W . By computing C∞ for the dpLDI system (2), and

enforcing (17), where the disturbance is ignored and which

is verified to be a CLF for (1), (i.e., for (2) with W =
{0}), if x(t) ∈ C∞, then ‖Px(t + 1)‖∞ ≤ ρ‖Px(t)‖∞ +
‖PBww(t)‖∞, and since u(t) ∈ C∞

u (x(t)), then x(t+ 1) ∈
C∞

u (x). Also, (17) can be relaxed by adding a constant

nonnegative term to the right hand side to achieve ultimate

boundedness in the presence of additive disturbances.

V. NUMERICAL EXAMPLES

We simulate RDC-MPC on a pLDI based on the discretiza-

tion of the mass-spring-damper system given by

mẍ+ cẋ+ kx = u, (20)

where m is the mass, k is the spring constant, and c is the

damping coefficient, and with a sampling period Ts = 1. We

note that the results developed in this paper only apply to

the discretized equations and not the continuous model (20).

We consider the case without additive disturbance W = {0},

and without enforcing the CLF as in (19) in order to better

highlight the learning performance.

We first show that the RDC-MPC policy (12)-(13) effec-

tively learns the system, whereas the non-learning robust

policy (8) does not. Let k = 1, c = 1, and m ∈ [1, 5]
represent the uncertainty in the model, and let the state and

input constraints be given by |x| ≤ 1, |ẋ| ≤ 0.1, and |u| ≤ 1.

x

ẋ
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(a) Phase plane trajectories. The allowable states x ∈ C∞ are shaded
green.
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(b) State and control time histories.
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(c) Estimated parameter time histories. The green lines are the true
values of λ.
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Fig. 1: Mass-Spring-Damper system with uncertain mass. In blue: trajectories and time histories under closed-loop control using the
robust policy without learning (8). In red: trajectories and time histories under closed-loop control using RDC-MPC (12)-(13).



We form the pLDI (1) based on the vertices of m and

compute the corresponding RCI and RAI sets. We let N = 5,

ψ(Pk) = Tr(Pk), Q = I , R = 0.1I , P (0) = 105I , and

x(0) = [0.008 0.1]T. We apply both the RDC-MPC policy

(12)-(13) and the robust policy (8), where the corresponding

optimization problems are solved using Matlab’s fmincon

routine with an interior-point solver. The results are presented

in Figure 1. In Figure 1a we see the phase plane trajectories

for both policies and notice that, as a result of the learning

objective (13), RDC-MPC takes a more circuitous path to the

origin. Neither policy violates the RCI set constraints shown

by the shaded region in green. In Figure 1b we see the state

and control time histories. The control input u remains well

within the input constraints. Figure 1c shows that RDC-MPC

has learned the model (i.e., λ̂ → λ), whereas by applying

RLS to the signals obtained under the non-learning robust

policy, the parameters are not properly estimated due to lack

of excitation. Finally, in Figure 1d we see that RDC-MPC

only minimizes Tr(P ) when the prediction error is large,

smoothly changing to the regulation objective once the model

is learned.

We now show that RDC-MPC can provide enhanced

performance relative to a non-learning policy. Consider the

same mass-spring-damper system (20) as before, but with

the additional spring constant uncertainty k ∈ [0.1, 3]. We

let c = 0.01 and R = 0.001I . The rest of the parameters

are as given previously. The initial condition x(0) is set

to a random combination of the vertices of the maximal

RCI set C∞. Every 10 seconds the state is reset to another

random combination (during which the learning objective is

temporarily frozen so as to not introduce an artificial distur-

bance in the prediction error). We apply both the RDC-MPC

policy (12)-(13) and the robust policy (8). In Figure 2 we see
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Fig. 2: Mass-Spring-Damper system with uncertain mass and
spring constant. Top: Instantaneous stage cost. Bottom: Cumulative

cost, J =

∑
x
T
Qx+ u

T
Ru. In blue: time history under closed-

loop control using the robust policy without learning (8). In red:
time history under closed-loop control using RDC-MPC (12)-(13).

both the instantaneous performance xTQx+uTRu (top) and

cumulative performance (bottom). The non-learning policy

outperforms RDC-MPC initially, due to the initial learning

transient, but over time, as RDC-MPC learns the true system,

it recovers and outperforms the non-learning policy. Note

that because dim(λ) > dim(x), λ̂ does not converge to λ.

Nevertheless, [Â(t) B̂(t)] → [A B] after 3 seconds.

VI. CONCLUSION

We have presented a robust dual control MPC policy for

simultaneous identification and control of uncertain linear

systems. Input and state constraint satisfaction is guaran-

teed even when the MPC prediction model is inaccurate.

Asymptotic stability can be enforced by a control Lyapunov

function. Future work will investigate less conservative sta-

bilization techniques such as proving that the MPC value

function is a Lyapunov function, and the exploitation of other

supervised learning strategies, as well as convex relaxations

of the input design problem. Finally, future work will address

online adaptation of the RCI set, where the acquired knowl-

edge of the system parameters may be exploited to enlarge

the RAI set.

REFERENCES

[1] A. Feldbaum, “Dual control theory,” Automation and Remote Control,
vol. 21, no. 9, pp. 874–1039, 1960.

[2] J. Maciejowski, Predictive control with constraints. Englewood Cliffs,
NJ: Prentice Hall., 2002.

[3] M. S. Lobo and S. Boyd, “Policies for simultaneous estimation and
optimization,” in Proc. American Contr. Conf., 1999, pp. 958–964.

[4] O. A. Sotomayor, D. Odloak, and L. F. Moro, “Closed-loop model
re-identification of processes under MPC with zone control,” Control

Engineering Practice, vol. 17, no. 5, pp. 551 – 563, 2009.
[5] H. Jansson and H. Hjalmarsson, “Input design via LMIs admitting

frequency-wise model specifications in confidence regions,” IEEE

Trans. Automatic Control, vol. 50, no. 10, pp. 1534–1549, 2005.
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