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Abstract We propose a constant modulus 4D format as an alternative to DP-8QAM. It has 0.4dB lower

SNR at BER = 10−2, and 1 dB higher span loss budget in nonlinear regime.

Introduction

Various modulation formats have been studied

for coherent optical communications1. 8-ary-

quadrature amplitude modulation (8QAM) plays

an important role by filling the gap between qua-

ternary phase shift keying (QPSK) and 16QAM

in terms of bit rates and reach2,3. It has also

been proposed that 8QAM-16QAM or QPSK-

8QAM are used in time-domain hybrid4. In

order to achieve similar bit rate with improved

sensitivity, quaternary code or sphere-cut lattice

eight-dimensional codes5, and 4D honeycomb

lattice codes6 have been proposed. However, for

these 6bits/symbol codes, simultaneously achiev-

ing high sensitivity, Gray coding, and constant

modulus has not been realized. In this work,

we start with DP-8PSK which has the proper-

ties of constant modulus and Gray coding. Then

on the Poincare sphere, we move the constella-

tion points to increase Euclidean distance among

the nearest neighbor words, while maintaining

constant modulus. Transmission simulation re-

sults show that our proposed code, 4-dimensional

2-ary amplitude 8-ary phase shift keying (4D-

2A8PSK), has at least 1dB better nonlinear per-

formance than DP-8QAM.

Constellation Design

We start with the constellations projected onto the

Stokes space. Figure 1(a) shows the dual po-

larization (DP)-8QAM constellation points in the

Stokes space, where radius of each point rep-

resent the signal power. Since it is not con-

stant modulus, the radius of each point differs

significantly, and that affects the nonlinear perfor-

mance. Figure 1(b) shows the dual polarization-

8-ary phase shift keying (DP-8PSK), where each

projected points represents 8 words of 6 bits

which are actually separated well in 4D space.

The nearest words in the 4D space correspond

to the nearest points in Fig. 1(b), so DP-8PSK

has poor noise sensitivity. In order to increase

the nearest points in the Stokes space, we came

up with the constellation configuration in Fig. 1(c),

where the 8 constellation points are staggered

and separated into two groups. Our proposed 4D-

2A8PSK code can be expressed as

x(k, l) = a(l) ejφk , y(k, l) = b(l) ejφl

φk = π/4× (k − 1), φl = π/4× (l − 1)

k = 1..8, l = 1..8

where

a(l) = r1, b(l) = r2 (k + l = even)

a(l) = r2, b(l) = r1 (k + l = odd)

r1 = sin(θ + π/2)/
√
2, r2 = cos(θ + π/2)/

√
2

The ratio of the two radii r2/r1 is equal to

tan−1(θ + π/2). Note that r2/r1 = 1 for the DP-

8PSK case. The constellation for DP-8PSK and

4D-2A8PSK are shown in Fig. 2. As θ deviates

from 0, two rings in DP-8PSK and 4D-2A8PSK

become separated. The main difference is that,

if the amplitude in the x-polarization is larger,

then that in the y-polarization is smaller, in order

to keep constant modulus. The labeling of 4D-

2A8PSK follows that of DP-8PSK.

In order to understand the behavior of near-

est neighbors, we plot a histogram of 4D Eu-

clidean distances of all the constellation points

as a function of r2/r1, as shown Fig. 3. Start-

ing with r2/r1 = 1 (DP-8PSK), the count for the

shortest distance combination remains the same

until r2/r1 reaches 0.5858, and this means that

Gray coding is maintained for r2/r1 between 1

and close to 0.5858.

Note that 4D-2A8PSK constellation in x- or y-

polarization alone looks similar to the 16 ampli-

tude/phase shift keying (16APSK) used in wire-

less communications7, but 16APSK have not

been used in the context of 4D codes.
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Fig. 1: Constellations in Stokes space: (a) DP-8QAM, (b) DP-8PSK, (c) 4D-2A8PSK
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(c) 4D-2A8PSK-x
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Fig. 2: Constellation of DP-8QAM and 4D-2A8PSK, where (0 1 0) etc. represent the half of the bits of the code word, and red
numbers 1, 2, 3, ... represent the constellation points corresponding in x- and y-polarizations. Red and greed circles in (c) and (d)

indicate corresponding points in x- and y-polarizations
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(d) r1/r2 = 0.5858

Fig. 3: Histogram of 4D Euclidean distaces of 4D-2A8PSK,
for (a) r1/r2 = 1, (b) 0.8, (c) 0.6, and (d) 0.5858. The red

arrows show the smallest distances
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Fig. 4: Eb/N0 vs. r2/r1 for the 4D-2A8PSK code

Noise sensitivity

We first evaluate additive white Gaussian

noise (AWGN) channel performances of high-

dimensional modulation formats for signal-to-

noise ratio (SNR) regime concerning uncoded

BER thresholds of modern forward error correc-

tion (FEC) codes9. SNR is defined as Eb/N0

where Eb is the energy per bit and N0 is the uni-

lateral power spectral density of the noise per

dimension. BER vs. SNR curves obtained by

Monte-Carlo simulations.

We numerically calculated Eb/N0 which satis-

fies BER = 10−2, while changing r2/r1. As shown

in Fig. 4, r2/r1 = 0.6 - 0.61 gives the lowest BER

under the nonlinear condition. We use r2/r1 = 0.6

for the remainder of this paper.
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Fig. 5: BER vs Eb/N0 for DP-8QAM, 4D-2A8PSK, and
12b-8D codes.

Figure 5 shows the BER vs SNR for multiple

codes. In addition to 4D-2A8PSK and DP-8QAM,



we plotted quaternary 12 bit - 8 dimension code

(Quat. 12b-8D)5, which is known to be the best

high (> 4) dimensional code to our knowledge.

This shows that 4D-2A8PSK has the best sensi-

tivity among the 3 codes for a BER greater than

8 × 10−3, while Quat. 12b-8D code offers supe-

rior performance at BERs below 8×10−3. At BER

=1 × 10−2, 4D-2A8PSK and Quat. 12b-8D codes

have 0.39 dB and 0.57 dB gain, respectively, over

DP-8QAM.

Optical transmission performance

We simulated transmission performance over a

6000 km standard single-mode fiber (SSMF) or

non-zero dispersion shifted fiber (NZDSF) link at

a rate of 125 Gb/s per wavelength. Modulated

symbols are mapped to the four dimensions (4D-

2A8PSK), eight dimensions (Quat. 12b-8D), and

two-dimensions (DP-8QAM)5. At the transmit-

ter, DP-I/Q modulators were driven by rectan-

gular pulses, filtered by a 5th order Bessel fil-

ter with -3 dB bandwidth of 0.7 times the sym-

bol rate. 5 wavelength channels with the same

code were simulated with 50 GHz spacing and

no optical filtering. The link comprises 75 spans

of 80 km SSMF or NZDSF with loss compen-

sated by Erbium doped fiber amplifiers with 5.0

dB noise figure. In order to quantify performance

over a single link for multiple modulation formats,

span loss budget was used as a performance

metric8. SSMF parameters were as follows:

γ = 1.2 /W/km; D = 17 ps/nm/km; α = 0.2 dB/km.

NZDSF parameters were, γ = 1.6 /W/km; D = 3.9

ps/nm/km; α = 0.2 dB/km. Other fiber effects such

as dispersion slope and polarization mode disper-

sion were not simulated. An ideal homodyne co-

herent receiver was used, with a transfer function

described by a 5th order Bessel filter with -3 dB

bandwidth 0.7 times the symbol rate, followed by

sampling at twice the symbol rate. Following this,

ideal chromatic dispersion equalization and data-

aided least mean square equalization were em-

ployed. We assumed a BER threshold of 1×10−2

for a 20% FEC9. The plots for span loss bud-

get vs. launch power for the three modulation

formats are given in Fig. 6 for SSMF, and Fig. 7

for NZDSF. In the low launch power regime (-8

dBm) where linear propagation effects are domi-

nant, 4D-2A8PSK code gives 0.45 dB higher mar-

gin compared to DP-8QAM. The AWGN channel

results predicted 0.4 dB improvement, and 0.05

dB discrepancy can be explained by the nonlinear

effect in the case of SSMF. For higher launch pow-

ers where nonlinearity is dominant, performance

improvements become more significant, and the

peak margin difference is above 1dB. The dif-

ference becomes more apparent in the case of

NZDSF case. 4D-2A8PSK also performed better

than the best 8D code with 3 bits/s/Hz/pol spectral

efficiency.
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Fig. 6: Span loss budget vs launch power for 4D-2A8PSK,
Quaternary 12b-8D, and DP-8QAM codes for 75 spans of

80km SSMF at a target BER = 10
−2.
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Fig. 7: Span loss budget vs launch power for 4D-2A8PSK,
Quaternary 12b-8D, and DP-8QAM codes for 75spans of

80km NZDSF at a target BER = 10
−2.

Conclusions

We propose a constant modulus 4D-2A8PSK

code. Compared to the DP-8QAM, this has 0.4

dB better sensitivity in linear region, while it has

greater than 1 dB higher sensitivity in nonlinear

region both for SSMF and NZDSF transmissions.
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