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Abstract

In this paper, we fundamentally re-examine 3D SAR imaging and propose a CS-based approach
aiming to reduce the data collection cost and increase the elevation resolution. In particular, our
approach significantly reduces the number of baselines required to acquire the scene of interest,
as well as the pulsing rate in each baseline. The baselines are collected using multiple passes
of a single or multiple SAR platforms such that their elevations are randomly distributed in the
available elevation space. Each baseline uses a fixed pulse repetition frequency (PRF) which
can be different from the PRFs used in other baselines. Using the collected multi-baseline data
in its entirety we generate a high resolution 3D reflectivity map, using a CS-based iterative
imaging algorithm. Our simulation results demonstrate that the proposed method can improve
elevation resolution significantly by fusing data from multiple platforms due to the very large
virtual elevation aperture even with a small number of baselines.
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ABSTRACT

In this paper, we fundamentally re-examine 3D SAR imaging and
propose a CS-based approach aiming to reduce the data collection
cost and increase the elevation resolution. In particular, our approach
significantly reduces the number of baselines required to acquire the
scene of interest, as well as the pulsing rate in each baseline. The
baselines are collected using multiple passes of a single or multiple
SAR platforms such that their elevations are randomly distributed in
the available elevation space. Each baseline uses a fixed pulse repe-
tition frequency (PRF) which can be different from the PRFs used in
other baselines. Using the collected multi-baseline data in its entirety
we generate a high resolution 3D reflectivity map, using a CS-based
iterative imaging algorithm. Our simulation results demonstrate that
the proposed method can improve elevation resolution significantly
by fusing data from multiple platforms due to the very large virtual
elevation aperture even with a small number of baselines.

Index Terms— SAR imaging, 3D imaging, compressive sens-
ing, high resolution

1. INTRODUCTION

Synthetic Aperture Radar (SAR) systems are high-resolution radar
imaging systems that exploit the trajectory of a moving platform
over the scene of interest to synthesize a large virtual aperture. Us-
ing a single pass of the moving platform, SAR systems are capable
of imaging the 2-dimensional (2D) range-azimuth reflectivity of an
area of interest without any elevation resolution. However, the 3-
dimensional (3D) structure of the illuminated area, such as terrain
features, is not preserved. The 2D image is essentially a projection
of the 3D reflectivity into the 2D range-azimuth imaging plane.

This projection may cause several artifacts. For example, lay-
over artifacts are caused when several terrain patches with different
elevation angles are mapped in the same range-azimuth resolution
cell [1]. In addition, certain areas might not be visible to the SAR
system because a tall structure is in the illumination path, causing
shadowing artifacts. In general, these artifacts can not be resolved
by a single pass even using interferometric SAR techniques [2].

In recent years, 3D imaging has been realized with the launch of
the TerraSAR-X [3] and the COSMO-Skymed satellites [4]. These
systems exploit stacks of complex-valued SAR images from multi-
ple passes, collected at different baselines and at different time, to
form 3D images that capture the 3D location and motion of scat-
tering objects [5]. The addition of the third (elevation) dimension
enables the separation of multiple scatterers along elevation even if
they are present in the same range-azimuth cell.

However, the state of the art in 3D imagery exhibits several
trade-offs. First, in order to acquire multiple baselines, the platform
needs to perform several passes over the area of interest. This makes
data collection time consuming and very expensive. Second, the lim-
ited number of passes possible in practice with modern SAR sensors

produce a small elevation aperture, also known as a tight orbital tube.
Thus, the resulting elevation resolution is much lower compared to
that of range and azimuth. Although the elevation resolution can be
improved using compressive sensing (CS) based approaches [6], it
is still not comparable to the range and azimuth resolution.

In this paper, we fundamentally re-examine 3D SAR imaging
and propose a CS-based imaging approach aiming to reduce the to-
tal amount of raw data and increasing the elevation resolution. The
multiple baselines are not restricted to the collection of a single plat-
form, but multiple platforms. In particular, we assume we have
multi-baseline SAR data obtained from an area of interest. Each
baseline uses a fixed pulse repetition frequency (PRF) which could
be different from the PRFs used in other baselines. The elevation
of each baseline is randomly distributed in the available elevation
space. Therefore, these baselines provide flexibility for data collec-
tion. For example, they can be multiple passes of a single SAR plat-
form or from different SAR platforms. Assuming all the baselines
are parallel and aligned to each other, we consider the multi-baseline
data in its entirety to generate a high resolution 3D reflectivity map,
using a CS-based iterative imaging algorithm. This work extends our
earlier advances on 2D SAR imaging [7–10] to the third dimension.

Compared to earlier work on 3D tomographic SAR imaging and
CS-based SAR imaging [5, 6, 11], our approach includes new con-
tributions that provide several advantages. In particular, using our
CS-based method, we are able to generate 3D reflectivity using only
a very small number of baselines, thus reducing the time and cost
of data collection. Moreover, by jointly processing data with dif-
ferent PRFs, we are able to fuse data not only from multiple passes
of a single SAR platform, but also from multiple radar platforms.
Although the platform flexibility may introduce alignment issues,
making the SAR imaging algorithm more complicated, it provides a
much larger virtual elevation aperture which significantly improves
elevation resolution. Thus, we propose a novel CS-based iterative
imaging method to handle multi-baseline multi-PRF data and gener-
ate high resolution 3D images even with a small number of baselines.
Finally, we provide an accurate near-field range migration algorithm
that generalizes far-field based 3D SAR imaging [11]. Our method,
which is similar to the development in [12] for MIMO radar, is ap-
plicable for general 3D imaging using multi-pass observations, in-
cluding airborne and spaceborne SAR systems.

The near-field ω–k imaging algorithm is described in the next
section. Section 3 demonstrates how this algorithm can be used in
conjunction with CS-based reconstruction to perform 3D imaging
with limited observations. Section 4 presents experimental results
that validate our approach and Sec. 5 concludes.

2. THREE-DIMENSIONAL ω–k IMAGING

A multi-baseline SAR system images a 3D ground reflectivity us-
ing a 2D planar monostatic virtual array comprised of multiple SAR
platform trajectories, also referred to as baselines, shown in Fig. 1(a).



We assume that all SAR platforms operate in spotlight mode, illu-
minating the same area of interest. For simplicity—although not
a critical assumption—we further assume that all platforms use
the same pulse shape for illumination, denoted using p(t) with
frequency spectrum denoted using P (ω), and equal to

P (ω) =

∫
p(t)e−jωtdt, (1)

where ω = 2πf represents the angular frequency.
For a monostatic virtual array, the received echo reflected by the

ground due to pulse p(t) emitted at location (u, v, w) is

s(t, u, v, w) =

∫
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z
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)
dxdydz,

(2)

where f(x, y, z) is the ground reflectivity at (x, y, z) and

r =
√

(x− u)2 + (y − v)2 + (z − w)2. (3)

The 4D (1D temporal plus 3D spatial) Fourier transform of the
received echo can be expressed in the ω–k space as

S(ω, ku, kv, kw) =∫
t

∫
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∫
w

s(t, u, v, w)e−jωt−jkuu−jkvv−jkwwdtdudvdw. (4)

Using the method of stationary phase [13], (4) evaluates to
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where

ky = kv, kz = kw, kx =
√

4k2 − k2v − k2w, k = ω/c, (6)

c is the speed of light, and F3D denotes the 3D Fourier transform.
The forward acquisition process, described in (5), models the

data acquisition as a function of the ground reflectivity in the ω–k
space. Using (5) and the ground reflectivity, the radar echo can be
efficiently computed using the fast Fourier transform computations.
It is also clear from (5) that the reflectivity map f(x, y, z) can be
expressed as the inverse Fourier transform of the collected SAR raw
data. The corresponding inverse process, i.e., the reconstruction of
the 3-D reflectivity, can be approximated by

f(x, y, z)

= x

∫
dkx

∫
dky

∫
dkz

−j4kS(ω, ku, kv, kw)P ∗(ω)

ejkxx+jkyy+jkzzdkxdkydkz

= xF−1
3D (−j4kS(ω, ku, kv, kw)P ∗(ω)) . (7)

Thus, the 3D image of the ground reflectivity can be efficiently
recovered using the 3D inverse Fourier transform in the ω–k space.
Note that to use (7) for reconstruction, the data acquired over
(ω, ku, kv, kw) first need to be weighted and rearranged into a 3D
data format over (kx, ky, kz) according to the dispersion relation
defined in (6) using a 3D Stolt mapping, as described, e.g., in [12].
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Fig. 1. (a) Schematic of 3D SAR imaging using 2D virtual array, (b)
Schematic of multi-baseline multi-PRF 3D SAR imaging

3. CS-BASED 3D IMAGING

In general, when reconstructing the image using the baseline con-
figuration of Fig. 1(a) and the reconstruction in (7), obtaining high
elevation resolution requires a large vertical aperture and a corre-
sponding large number of baselines to be collected at a sufficiently
high PRF. Thus, high elevation resolution is often too expensive;
practical systems typically have much lower elevation resolution.

Instead, our approach, described in Fig. 1(b) is to randomly se-
lect a subset of the baselines and to obtain data only from those se-
lected ones, possibly using a different PRF on each. This approach
significantly reduces the data acquisition burden. Since the result-
ing system is underdetermined, this approach requires a CS-based
algorithm to recover the scene.

To better describe our CS-based 3D imaging algorithm, we com-
pactly denote the forward process in (5) as a linear transformation

s = Φf , (8)

where s is the vector of the received signal (echo), Φ represents the
forward process and f is the vector of the 3D ground reflectivity.

The echoes acquired from the proposed system are essentially
sub-sampled from the whole 2D virtual aperture observations ac-
cording to the baseline elevations and PRFs. We denote the subsam-
pling operator using M. Thus, the acquired echoes are equal to

u = Ms = MΦf = Ψf . (9)

To reconstruct 3D reflectivity map f we use an algorithm similar
to [9], which decomposes f into a sparse component fs and a dense
residual fr . The sparse component fs is estimated using standard
CS-based methods:

f̂s = argmin
f
‖u−Ψf‖22 s.t. ‖f‖0 < T. (10)

The residual due to the dense component can be computed using the
sparse estimate, i.e., ûr = u −Ψf̂s. The dense component can be
estimated using least squares:

f̂r = Ψ†(u−Ψf̂s). (11)

The final image is the sum of the two estimates, (10) and (11).
The algorithm shown in Fig. 2 provides an efficient implemen-

tation of this approach. First a residual vector is initialized from
the measurements, u

(0)
r = u, with f̂

(0)
s = 0. Each iteration, k,

uses the residual u
(k−1)
r to estimate the so-far unexplained signal

f̃ (k). A threshold τ (k) separating the large reflectors is computed as



1. Initialize 0 < α < 1, f̂
(0)
s = 0, u

(0)
r = u,

2. FOR k = 1 : K

f̃ (k) = Ψ†u(k−1)
r

τ (k) = max(|̃f (k)|) · α · sign(K − k)
d(k) = Hτ(k)(f̃

(k))

ũ(k) = Ψd(k)

β(k) =
< ũ(k),u

(k−1)
r >

< ũ(k), ũ(k) >

u(k)
r = u(k−1)

r − β(k)ũ(k)

f̂ (k)s = f̂ (k−1)
s + β(k)d(k)

END

3. Output
Image: f̂ = f̂ (K)

s

Fig. 2. Reconstruction algorithm

a fraction of the largest in magnitude component. After hard thresh-
olding, Hτ(k)

(
f̃ (k)
)

, i.e., setting all components less than τ (k) in

magnitude to zero, the strongest reflectors are kept in d(k). This es-
timate is scaled, using β(k), to capture most of the residual energy
in u

(k−1)
r , and added to the overall signal estimate from the previ-

ous iteration f̂
(k−1)
s to produce the current signal estimate f̂

(k)
s . The

residual u
(k−1)
r is updated and the algorithm iterates. At the Kth it-

eration, with the threshold τK being set to zero, the remaining resid-
ual is used to estimate the dense part of the final image using the
least squares method. The final image f̂ combines the sparse part of
previous (K − 1) iterations and the dense part of the Kth iteration.

This algorithm is inspired by STOMP [14], but differs in esti-
mating the sparse signal in each iteration. Specifically, we do not
compute the psudo-inverse of a subset of Ψ. Instead, similarly to
the matching pursuit (MP) [15], we use the signal value after thresh-
olding, scaled by β(k), as an estimate of the sparse signal. Although
we dot not provide a theoretical analysis with reconstruction guar-
antees, we found that this heuristic choice provides a good trade-off
between speed and accuracy compared to classical CS algorithms.
We also found that a good choice for the thresholding parameter α
in our algorithm is α > 0.5.

4. EXPERIMENTS

To verify our approach, we simulated the SAR acquisition using (5)
followed by reconstruction using both conventional imaging meth-
ods and the proposed approach. For simplicity, we consider a 2D
virtual array located in the azimuth-elevation plane, i.e. u = 0.

Our first experiment images point scatterers placed in a 3D
space. We collect a total of 70 baselines, randomly distributed along
the elevation direction. These baselines are selected from 281 pos-
sible baselines, uniformly spaced along the elevation, as shown in
Fig. 1(b). Raw SAR data are collected from each baseline with a
fixed PRF. However, for each baseline, the corresponding PRF is
randomly selected. Specifically, starting from a reference PRF, all
baselines have PRFs downsampled by a random integer amount. In
other words, each PRF is a fraction of the reference PRF, with the
downsampling rate randomly selected from the set {2,3,4,5}. We
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Fig. 3. (a) Reconstruction using data from 281 baselines at high PRF,
(b) Conventional reconstruction with 70 baselines each with differ-
ent, reduced PRF, and (c) CS-based reconstruction using the same
limited data as (b). (d)-(f) are 3D surface plots of (a)-(c), respec-
tively, that clearly show the height of the recovered scatterers.

assume the data are perfectly aligned.
We compare three different approaches: (a) full data collection

from all 281 possible baselines using the reference PRF for all base-
lines and conventional reconstruction, (b) reduced data collection
using 70 baselines, each with different PRF, and conventional recon-
struction, and (c) reduced data collection, as in (b), and our CS-based
reconstruction approach. For conventional 3D imaging with reduced
data collection, we use the ω–k imaging algorithm in (7) by upsam-
pling the data and filling the missing data with zeros. This algorithm
produces a fast beamforming reconstruction from the acquired data,
implementing the inverse of the acquisition operator. For CS-based
imaging, we use the iterative algorithm in Fig. 2 that exploits the
sparsity of the scene to fill-in the missing data, and then perform fast
ω–k imaging.

The results are shown in Fig. 3. In the left column, from top to
bottom, we plot the reconstructed reflectivities, as follows: (a) as-
suming a full data collection, (b) using limited data collection and
conventional imaging methods, and (c) using limited data collection
and CS-based reconstruction. The color intensity represents the in-
tensity of the recovered reflectivity. In the right column, plots (d)-(f)
show the same results as (a)-(c) respectively using surface plots to
more clearly demonstrate the height of the recovered scatterers.

As evident in the figure, imaging using the full data collection
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Fig. 4. (a) Reconstruction using data from 281 baselines at high PRF, (b) Conventional reconstruction with 28 baselines each with different,
reduced PRF, and (c) CS-based reconstruction using the same limited data as (b).

clearly retrieves point scatterers in the 3D space. The reconstruction
does, in fact, correspond to the ground truth. However, with lim-
ited the data collection, conventional algorithms produce degraded
images that exhibit low resolution in both azimuth and elevation.
Our CS-based approach significantly improves the reconstruction,
despite the limited available data. CS recovery is very close to con-
ventional imaging using the full data cube, i.e., the ground truth.

Our second experiment images a more complicated object using
even fewer baselines. In particular, we use a total of 28 baselines,
each with a down-sampled PRF, similar to the first experiment, out
of a total of 281 parallel baselines sampled at the reference PRF that
comprise the full data cube.

We plot the imaging results in Fig. 4, where (a) assumes a full
data collection, (b) uses limited data collection and conventional re-
construction, and (c) uses 28 baseline data collection and CS-based
reconstruction. The color intensity represents the recovered reflec-
tivity strength. As evident in the figure, CS-based reconstruction
significantly improves imaging quality and retrieves the objects in
the 3D space. Our reconstruction takes about 4 minutes per iteration
on a 200×200×200 3D map using Matlab on a 3.6GHz Intel Xeon
CPU, and requires less than 50 iterations to converge.

5. CONCLUSION

We propose a 3D SAR imaging method by fusing multi-baseline
multi-PRF SAR data from multiple radar platforms using compres-
sive sensing technique. Imaging results on point scatters and arti-
ficial objects with simulated data demonstrate that our method can
recover the 3D structure of the area of interest using a small number
of baselines at different PRFs. Our method provides high elevation
resolution with significantly reduced data collection cost.
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