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Alternating Direction Method of Multipliers for Strictly Convex Quadratic
Programs: Optimal Parameter Selection

Arvind U. Raghunathan and Stefano Di Cairano

Abstract— We consider an approach for solving strictly con-
vex quadratic programs (QPs) with general linear inequalities
by the alternating direction method of multipliers (ADMM). In
particular, we focus on the application of ADMM to the QPs of
constrained Model Predictive Control (MPC). After introducing
our ADMM iteration, we provide a proof of convergence closely
related to the theory of maximal monotone operators. The proof
relies on a general measure to monitor the rate of convergence
and hence to characterize the optimal step size for the iterations.
We show that the identified measure converges at a Q-linear
rate while the iterates converge at a 2-step Q-linear rate. This
result allows us to relax some of the existing assumptions in
optimal step size selection, that currently limit the applicability
to the QPs of MPC. The results are validated through a large
public benchmark set of QPs of MPC for controlling a four
tank process.

I. INTRODUCTION

The Alternating Direction Method of Multipliers (ADMM)
algorithm was first proposed by Gabay and Mercier [1]
for the solution of variational inequalities that arise in the
solution of partial differential equations and was developed
in the 1970’s in the context of optimization. In recent years,
ADMM has emerged as a popular optimization algorithm for
the solution of structured convex programs arising in several
fields, see, e.g., the excellent introduction provided by [2].

The broad range of applications have also motivated the
study of the convergence properties of ADMM. ADMM
can be shown, under mild assumptions, to converge for all
choices of the step-size [2]. Linear convergence of ADMM
for strictly convex inequality constrained QPs was proved
in [3], and relaxations were provided in [4], [5]. A first result
on optimal ADMM step-size selection for strictly convex
QPs with general inequality constraints was derived by [6].
The results of [6] require full row rank of the constraint
matrix, making it inapplicable in several cases, for instance
when some variables have upper and lower bounds.

Our interest in ADMM is especially motivated by its
potential application to Model Predictive Control (MPC)
algorithms. Model predictive control is a control algorithm
for (constrained) dynamical systems that repeatedly solves a
finite horizon optimal control formulated from the system
dynamics, constraints, and a user specified cost function.
For linear systems subject to linear constraints and with
a quadratic cost function, the MPC finite horizon optimal
control problem can be formulated as a QP [7]. Since in
recent years MPC has been increasingly applied to systems

A.U. Raghunathan and S. Di Cairano are with Mitsubishi
Electric Research Laboratories, Cambridge, MA 02139.
raghunathan,dicairano@merl.com

with fast dynamics and low computing power embedded
processors [8], [9], [10] low complexity fast optimization
algorithms have been investigated in the MPC context, see
e.g., [11], [12], [13] and the references therein.

ADMM has been previously explored in the context of
MPC in [14], [15], in particular for solving the QP via dif-
ferent decompositions. As mentioned earlier, the assumptions
required by [6] for optimal ADMM step size selection do
not hold in general for the QPs of MPC. The authors of [6]
proposed a strategy remarking that it is heuristic.

In this paper we aim at solving by ADMM strictly convex
QPs with general inequalities, which include those that are
generated by constrained MPC. For this class of QPs, we aim
at establishing the optimal step size for ADMM algorithms,
noting that the optimal step size derived in the work of [6]
is not applicable because the assumptions of [6] do not hold.
Following [2], [14] we split the QP into two blocks, an un-
constrained QP and a projection onto the general inequalities,
and we provide a proof of 2-step Q-linear convergence that
is based on a different method from from [2], [3], [6], and
that is closely related to the theory of maximal monotone
operators introduced in [16]. In particular, we exploit the
structure of the class of strictly convex QPs to provide short,
self-contained proofs of convergence that identify the optimal
step size.

The rest of the paper is organized as follows. Section II
introduces the QP formulation and describes the ADMM
algorithm. Convergence analysis of the algorithm is provided
and the optimal selection for the step-size of ADMM is
derived in Section III. Numerical performance on a simple
QP is presented in Section IV, and in Section V we present
some simulations results on MPC problems. Conclusions and
future work are discussed in Section VI.

Notation: We will denote by R the set of reals, by Z the set
of integers and by Sn the set of symmetric n× n matrices.
All vectors will be assumed to be column vectors. For a
vector x ∈ Rn, xT will denote its transpose and for two
vectors x, y the notation (x, y) will denote the stacking of
the individual vectors. For a matrix A ∈ Rn×n, ρ(A) denotes
the spectral radius of A, λi(A) denotes the eigenvalues of
A and λmin(A), λmax(A) denote the minimum and maximum
eigenvalues of the matrix A. For a matrix A ∈ Sn, A(�) � 0
will denote that matrix A is positive (semi-)definite. For a set
Y , int(Y) will denote the strict interior of Y . For a convex
set Y ⊂ Rn, PY(x) will denote the orthogonal projection
of v onto the set. For a matrix M ∈ Rn×n, MPY(x) will
denote the the product of matrix M and the vector resulting
from the projection operation. We denote by I the identity



matrix and (I−PY)(x) will denote x−PY(x). The notation
λ ⊥ x ∈ Y will denote the satisfaction of the following
inequality λT (x′ − x) ≥ 0 ∀ x′ ∈ Y . This is also called
as the variational inequality. We use ‖ · ‖ to denote the 2-
norm for vectors and matrices and ‖x‖2M = xTMx for some
M � 0. A sequence {xk} ⊂ Rn converging to x∗ is said to
converge at a Q-linear rate if ‖xk+1 − x∗‖ ≤ α‖xk − x∗‖
where 0 < r < 1.

II. ADMM ALGORITHM FOR QUADRATIC PROGRAMS

Consider the QP:

min
y

1

2
yTQy + qTy

s.t. y ∈ Y
(1)

where y, q ∈ Rn, Q ∈ Sn � 0 and Y is a nonempty,
polyhedron1 Y = {y|Ay ≤ B}. For example, Y defines
bounds on the components of y and general inequalities
formulated on y. We make the following assumptions.

Assumption 1: The QP (1) is strictly feasible i.e. ∃y such
that y ∈ int(Y) and the optimal value is finite.

The following result holds from strong duality [17].
Lemma 1: Suppose Assumption 1 holds. Then, there ex-

ists an optimal solution y∗ to (1) and multipliers λ∗ satisfy-
ing,

Qy∗ − λ∗ + q = 0

λ∗ ⊥ y∗ ∈ Y .
(2)

The last constraint in (2) is a variational inequality. In the
case that Y = [ymin,ymax] the variational inequality signifies
that λ∗i ≥ 0 if y∗i = ymin

i , λ∗i ≤ 0 if y∗i = ymax
i and λ∗i =

0 otherwise. In the case of one-sided inequalities such as
Y = [ymin,∞) the variational inequality reduces to the linear
complementarity constraint λ∗ ≥ 0 ⊥ y∗ ≥ ymin .

Consider the following reformulation of the QP in (1) first
proposed in [2] and also used in [14],

min
y,w

1

2
yTQy + qTy

s.t. w ∈ Y
y = w

(3)

The advantage of (3) is that the inequalities are placed on
different variables which are still coupled through y =
w. The ADMM algorithm dualizes the constraints in the
objective using multipliers λ and augments the objective with
a penalty on the squared norm of the violation of the equality
constraints. This can be represented as:

min
y,w

L(y,w,λ) :=
1

2
yTQy + qTy +

β

2
‖y −w − λ

β
‖2

s.t. w ∈ Y
(4)

for β > 0. This results in a problem where the coupling
now occurs only in the objective function. The steps of the

1The analysis in this paper holds for general closed and convex sets Y .

ADMM algorithm can be summarized as:

yk+1 = argmin
y

L(y,wk,λk)

=M(wk + λ̃
k
− q̃)

wk+1 = argmin
w

L(yk+1,w,λk) s.t. w ∈ Y

= PY(y
k+1 − λ̃

k
)

λ̃
k+1

= λ̃
k
+wk+1 − yk+1

(5)

where M := (Q/β + I)−1 and λ̃ = λ/β, q̃ = q/β.
Substituting for yk+1 in (5) and simplifying we obtain,

wk+1 = PY(Mwk + (M − I)λ̃
k
−Mq̃)

λ̃
k+1

= (PY − I)(Mwk + (M − I)λ̃
k
−Mq̃)

(6)

Lemma 2 shows that the variational inequality in (2) holds
between wk+1 and λ̃

k+1
. The algorithm (5) can be viewed

as attaining primal and dual feasibility in the limit.
Lemma 2: At every iteration of the ADMM algorithm the

updates wk+1, λ̃
k+1

in (5) satisfy the variational inequality,
i.e. λ̃

k+1
⊥ wk+1 ∈ Y .

Proof: From the definition of projection operator,
PY(v) := argminθ∈Y

1
2‖θ − v‖

2. From the convexity of Y
we have that at the solution any feasible direction is non-
decreasing one for the objective. In other words,

(PY(v)− v)T (v′ − PY(v)) ≥ 0 ∀ v′ ∈ Y
=⇒ (PY − I)(v) ⊥ PY(v) ∈ Y .

(7)

Thus, the variational inequality is satisfied by the operators
PY(v) and (PY − I)(v) for any vector v. Observe that the
updates steps for wk+1, λ̃

k+1
in (6) are precisely of this

form and the claim holds.
The following result shows the equivalence between the

fixed points of the iteration (5) and minimizer of (1).
Theorem 1: Suppose Assumption 1 holds. Then, if

(y,w, λ̃) is a fixed point of (5), then y is a minimizer of
(1) with multipliers βλ̃ for the inequality constraints. Con-
versely, if (x∗,λ∗) is a minimizer of (1) then (x∗,x∗,λ∗/β)
is a fixed point of (5).

Proof: Suppose that (y,w, λ̃) is a fixed point of (5).
From the update for λ̃ we obtain,

λ̃ = λ̃+w − y =⇒ 0 = w − y =⇒ y ∈ Y

where the second implication follows from the update equa-
tion for w, since wk+1 ∈ Y . From Lemma 2, w, λ̃ satisfy
the variational inequality in (2). Since y = w and β > 0,
we have that, βλ̃ ⊥ y ∈ Y . Also, from the update step for
y in (5) we have that,

(Q+ βI)y = βw + βλ̃− q = βy + βλ̃− q
=⇒ Qy − βλ̃+ q = 0

which are the first order optimality conditions in (2). We
have that (x, βλ̃) satisfy stationary conditions (2) which are
also the sufficient conditions for a minimizer of (1). Thus,
the first claim holds.



Next, suppose that (x∗,λ∗) solves (1). Hence, from (2)

Qy∗ − λ∗ + q = 0 =⇒ (Q+ βI)y∗ = βy∗ + λ∗ − q

which is the fixed point of the update step for y in (5) with
yk+1 = wk = y∗, λ̃

k
= λ∗/β. Further since from (2),

λ∗ ⊥ y∗ ∈ Y and β > 0 we have that λ∗/β ⊥ y∗ ∈ Y
which by definition implies,

(λ∗/β)T (v′ − y∗) ≥ 0 ∀ v′ ∈ Y
=⇒ (y∗ − y∗ + λ∗/β)T (v′ − y∗) ≥ 0 ∀ v′ ∈ Y .

Hence, y∗ = PY(y
∗−λ∗/β) since y∗ satisfies the first order

optimality conditions for the convex orthogonal projection
problem in (7). Thus, y∗,λ∗/β are fixed points of the update
step for w in (5). The fixed point of the update equation in
λ̃ holds trivially and the second claim also holds.

A. ADMM Approach of [6]

The authors in [6] proposed an ADMM algorithm for the
class of QPs in (1), which is reformulated as

min
y,z

1

2
yTQy + qTy

s.t. Ay + z = b, z ≥ 0
(8)

The formulation of (8) for applying ADMM is,

min
y,z

L̂(y, z,ν) :=
1

2
yTQy + qTy +

β

2
‖Ay + z − b− ν

β
‖2

s.t. z ≥ 0
(9)

and the ADMM algorithm proposed in [6] performs the
following operations,

yk+1 = argmin
y

L̂(y, zk,νk)

= M̂AT (−zk + b+ νk

β
− q̃)

zk+1 = argmin
z

L̂(yk+1, z, λ̃
k
) s.t. z ≥ 0

= max(0,−Ayk+1 + b+
νk

β
)

νk+1

β
=
νk

β
− (Ayk+1 + zk+1 − b)

(10)

where M̂ = (Q/β +AAT )−1. The main advantage of the
approach in [6] is that the subproblem for update of z is
simple. On the other hand, the subproblem for w update in
(5) can be quite complicated depending on the structure of
Y . The theoretical results on optimal step size derived in
[6] are only valid when A is invertible or full row rank. We
show in Section III that for the approach proposed in this
paper the theoretically optimal value of the step size can be
derived, regardless of the row rank of A.

III. CONVERGENCE OF ALGORITHM

In this section we show that the ADMM algorithm con-
verges to a solution of (1) for any choice of the parameter
β > 0 and also characterize the optimal β that maximizes

the rate of convergence. First, we introduce some results on
the projection operator.

Lemma 3: For any v, v′ ∈ Rn:

(i) (PY(v)−PY(v
′))T ((I−PY)(v)−(In−PY)(v

′)) ≥ 0

(ii) ‖(PY(v), (I − PY)(v)) − (PY(v
′), (I − PY)(v

′))‖ ≤
‖v − v′‖

(iii) ‖(2PY − I)(v)− (2PY − I)(v′)‖ ≤ ‖v − v′‖
Proof: The result follows by noting that PY(v) :=

argmin
θ

IY(θ)+ 1
2‖θ−v‖

2 where IY(θ) is the set membership
indicator function being 0 when θ ∈ Y and ∞ otherwise.
Thus, PY = (I + ∂IY)−1 where ∂IY is the subgradient of
the extended real-valued convex function, IY(·) and hence,
PY(·) is a maximal monotone operator [16]. The claims
follow from Proposition 1 of [16].

The next step in the proof is to show that the iterates
generated by (6) are bounded. Prior to that we state a result
on the spectral radius of M .

Lemma 4: Suppose Q � 0. Then, the spectral radius of
M satisfies ρ(M) < 1 and M � 0.

Proof: By definition, M = (Q/β + I)−1. Thus, the
eigenvalues of M are β/(β + λ(Q)) which lie in (0, 1) for
all β > 0, λ(Q) > 0. The claim holds.

To characterize the convergence rate, consider the se-
quence {vk}, where

vk+1 =Mwk+1 + (M − I)λ̃
k+1
−Mq̃

v∗ =Mw∗ + (M − I)λ̃
∗
−Mq̃

(11)

where λ̃
∗

= λ∗/β. An obvious reason for using vk to
measure convergence of the iteration in (6) is vk appears
in the update equations for both w and λ̃ in (6). More
importantly, the choice of vk is motivated by Lemma 3(ii)
from which we have that,

‖(wk+1, λ̃
k+1

)− (w∗, λ̃
∗
)‖

= ‖(PY(v
k), (PY − I)(vk))− (PY(v

∗), (PY − I)(v∗))‖
≤ ‖vk − v∗‖.

(12)
Consequently, convergence of {vk} ensures convergence to
a fixed point of (6) since wk, λ̃

k
are uniquely determined

from vk.
Simplifying the operators in (11) we obtain,

vk+1 =MPY(v
k) + (M − I)(PY − I)(vk)−Mq̃

=((2M − I)PY + I −M) (vk)−Mq̃

=

(
(2M − I)PY −

2M − I
2

+
I

2

)
(vk)−Mq̃

=

(
2M − I

2
(2PY − I) +

I

2

)
(vk)−Mq̃.

Lemma 5: Suppose Assumption 1 holds. Then,

‖vk − v∗‖ ≤ ‖(wk, λ̃
k
)− (w∗, λ̃

∗
)‖. (13)



Proof: Squaring the left hand side of (13),

‖vk − v∗‖2 = ‖M(wk −w∗) + (I −M)(λ̃
k
− λ̃

∗
)‖2

= ‖wk −w∗‖2M2 + ‖λ̃
k
− λ̃

∗
‖2(I−M)2

+ 2(wk −w∗)TM(I −M)(λ̃
k
− λ̃

∗
)

≤ ‖wk −w∗‖2M2 + ‖λ̃
k
− λ̃

∗
‖2(I−M)2

+ ‖wk −w∗‖2M(I−M) + ‖λ̃
k
− λ̃

∗
‖2M(I−M)

≤ ‖wk −w∗‖2M + ‖λ̃
k
− λ̃

∗
‖2(I−M)

≤ ‖wk −w∗‖2 + ‖λ̃
k
− λ̃

∗
‖2

(14)
where the equality is from (11), the second equality is a
simple expansion of the terms, the first inequality follows
from

M(I −M) � 0

=⇒ ‖wk −w∗ − (λ̃
k
− λ̃

∗
)‖2M(I−M) ≥ 0

=⇒ ‖wk −w∗‖2M(I−M) + ‖λ̃
k
− λ̃

∗
‖2M(I−M)

≥ 2(wk −w∗)TM(I −M)(λ̃
k
− λ̃

∗
).

The second inequality in (14) follows by collecting terms
and the final inequality holds since ρ(M) < 1, M � 0
(Lemma 4). Hence, the claim holds.

We can now state the linear convergence result.
Theorem 2: Suppose Assumption 1 holds. Then, the se-

quence {vk} is Q-linearly convergent and the sequence
{(wk, λ̃

k
)} is 2-step Q-linearly convergent.

Proof: The convergence rate of the iteration can be
deduced from,

‖vk+1 − v∗‖ =
∥∥∥∥(2M − I

2
(2PY − I) +

I

2

)
(vk)

−
(
2M − I

2
(2PY − I) +

I

2

)
(v∗)

∥∥∥∥
≤
(
‖2M − I‖

2
+

1

2

)
‖vk − v∗‖

where the inequality above follows from Lemma 3(iii). Since
M � 0 and ρ(M) < 1 (Lemma 4) we have that ‖2M−I‖2 +
1
2 < 1 and hence, {vk} converges Q-linearly. Consider,

‖(wk+2, λ̃
k+2

)− (w∗ − λ̃
∗
)‖ ≤ ‖vk+1 − v∗‖

≤ α‖vk − v∗‖ ≤ α‖(wk, λ̃
k
)− (w∗ − λ̃

∗
)‖

where the first inequality follows from (12), second from
linear convergence for {vk} for some α ∈ (0, 1) and the last
inequality from (13). This proves the claim.

The optimal β∗ should be chosen to minimize ‖2M−I‖2 + 1
2

where the eigenvalues of M satisfy λ(M) = β/(β+λ(Q)).
Thus, the optimal choice for the step size is given by,

β∗ = argmin
β>0

max
i

(∣∣∣∣ β

β + λi(Q)
− 1

2

∣∣∣∣+ 1

2

)
.

We can easily rearrange the right hand side to obtain,

β∗ = argmin
β>0

max
i

(∣∣∣∣ β/λi(Q)

β/λi(Q) + 1
− 1

2

∣∣∣∣+ 1

2

)
. (15)

The eq. (15) is identical in form to that obtained in eq. (36)
of [6], which is given by,

β∗,[6] = argmin
β>0

max
i

(∣∣∣∣∣ βλi(AQ
−1AT )

βλi(AQ
−1AT ) + 1

− 1

2

∣∣∣∣∣+ 1

2

)
.

In essence, the optimal step-size in our approach depends on
λ(Q−1) while the approach in [6] depends on λ(AQ−1AT ).
Thus, the functional expression for the optimal step-size can
be readily seen to be identical to the one in [6], whereQ−1 is
substituted for AQ−1AT . Hence, the analysis used to obtain
the optimal step-size in [6] holds with such a substitution.

Theorem 3: Suppose Assumption 1 holds and Q � 0.
Then, the optimal step-size for the class of strictly convex
QPs in (1) is

β∗ =
√
λmin(Q)λmax(Q) (16)

and the corresponding convergence rate is,

1/λmin(Q)

1/λmin(Q) + 1/
(√

λmin(Q)λmax(Q)
) . (17)

Proof: The proof is similar to that of Theorem 4 in [6],
with Q−1 substituted for AQ−1AT , and hence not repeated.

IV. SIMPLE QP

In order to verify the performance of the proposed optimal
step-size selection on the class of strictly convex QPs (1) we
consider first a simple strictly convex QP, that was proposed
in [6], where

Q =

(
40.513 0.069
0.069 40.389

)
, q = 0,

A =

 −1 0
0 −1

0.1151 0.9934

 , b =

 6
6

−0.3422

 .

In [6] the authors exploit this QP to demonstrate the inap-
plicability of their optimal step-size selection β∗,[6], since
A is not full row rank. The authors in [6] propose to
use the smallest non-zero eigenvalue of AQ−1AT instead
of the actual smallest eigenvalue λmin(AQ

−1AT ), which
is 0. For the considered QP problem, the eigenvalues of
AQ−1AT are (0, 0.0247, 0.0495). The heuristic step-size
value is βheur,[6] = 1/

√
0.0247× 0.0495 = 28.6.

On the other hand the approach proposed in this paper can
be applied to the considered QP to find the optimal value
of step-size, resulting in β∗ = 40.4509. Figure 1 reports
the iterations required to attain convergence for different
values of the step-size parameter β for our ADMM algorithm
(in red) and the one proposed in [6] (in blue). The initial
guess for the ADMM iterations in (10) was set to: z0 =
max(0, b − A(−Q−1q)),ν0 = 0 while for our approach
(5) the initial guess was set to w0 = −Q−1q, λ0 = 0. The
algorithm proposed in this paper terminates when the 2-norm
of the primal and dual infeasibility, defined respectively as
‖λ̃

k+1
− λ̃

k
‖ and ‖β(wk+1 −wk)‖, are both below 10−6.

The iterations in (10) terminate when β‖zk+1 − zk‖ and



Fig. 1. Plot of number of iterations for convergence against the step-size
β for the ADMM algorithm in [6] in blue and our approach in red. The
dotted blue line indicates the heuristic value proposed in [6] while the red
dotted line indicates the β∗ from (16).

Fig. 2. Plot of norm of the primal and dual infeasibility against the
iteration index and graph of the linear function defining the convergence
rate according to (17).

‖νk+1 − νk‖/β are both below 10−6. In our numerical
simulations the lowest iteration count of 20 was achieved
for β = 25.0 for the ADMM algorithm in [6] while for
the heuristic value of βheur,[6] = 28.6 the algorithm required
24 iterations to attain convergence. The ADMM algorithm
proposed in this paper attains the lowest iteration count of 16
for all values of β ∈ [38.0, 43.4] which includes the optimal
step-size chosen according to the approach described in this
paper, β∗ = 40.4509. According to (17) the optimal rate
of convergence is 0.501. Figure 2 reports the 2-norm of the
primal and dual infeasibility respectively, versus the iteration
index. Also Figure 2 reports the graph of the function
y = 0.5x. Hence, we can clearly see that the primal and
dual infeasibility decrease at the rate predicted by (17), thus
validating the theory.

V. MODEL PREDICTIVE CONTROL

In this section we apply the results developed in this paper
to the QP of Model Predictive Control (MPC). Consider the

discrete-time linear system,

x(k + 1) = Ax(k) +Bu(k) + Fr(k) (18)

where x ∈ Rnx is the state vector, u ∈ Rnu is the
control input vector, r ∈ Rnr is the reference vector,
A ∈ Rnx×nx , B ∈ Rnx×nu , F ∈ Rnx×nr are the system,
control and reference transfer matrices, respectively. At every
discrete time step k ∈ Z, k ≥ 0, given the future sequence
of references {r(k + i)}N−1i=0 the MPC algorithm solves the
optimization problem

min
{xt}Nt=0,{ut}N−1

t=0

1

2

N−1∑
t=0

(
xTt Qxxt + uTt Rut

)
+

1

2
xTNPxN

s.t. xt+1 = Axt +But + Frt

(xt+1, ut) ∈ X × U
rt = r(k + t)

x0 = x(k)
(19)

where x(k) is the state of the system at current time instant,
Qx, P ∈ Rnx×nx are stage and terminal matrices on the
state, respectively, R ∈ Rnu×nu is the cost matrix for the
controls and X ,U are polyhedral sets defining feasible region
for the states and controls. Typically, Qx � 0, P � 0
and R � 0. The MPC algorithm solves problem (19) to
find the optimal input sequence {u∗t }N−1t=0 , and then applies
to the system the control input u(k) = u∗0. In (19), the
state variables can be eliminated by exploiting the equations
of the system dynamics, thus obtaining a strictly convex
QP (1), where the optimization vector contains only the input
sequence y = [uT0 . . . u

T
N−1]

T . If the MPC problems has only
lower and upper bounds, similarly to [11], on the inputs, the
update for w entails a simple projection, while in the other
cases, a projection on general polyhedra is required.

To verify the performance of the proposed optimal step
size selection we consider the MPC problems for the
quadruple-tank process [18] which has nx = 4 states and
nu = 2 controls. The authors of [6] have made publicly
available [19] the data of 170 QPs corresponding to such
MPC problems for different initial conditions. The problems
have a horizon of N = 5, which leads to QP where y ∈ R10

once the states are eliminated from the MPC problem. The
constraint matrix A ∈ R40×10 specifies lower and upper
bounds on the controls and on some states.

As in the case of the simple QP in Section IV, the
MPC problem results in the constraint matrix A which
does not have full row rank. Consequently, the optimal
step-size analysis of [6] does not hold, and the heuristic
approach previously descried has to be applied. For the
given data [19], the heuristic step-size from [6] recommends
βheur,[6] = 24.35. For the ADMM algorithm presented in
this paper the optimal step-size can be applied and it results
in β∗ = 50.03. Figure 3 reports the iterations to attain
convergence for different values of the step size parameter
β for the ADMM algorithm described here (in red) and the
iterations of the algorithm proposed in [6] (in blue) for the
first problem instance among the MPC problems provided



Fig. 3. Plot of number of iterations for convergence against the step size
β for the ADMM algorithm in [6] in blue and our approach in red for the
first instance of MPC problem in [19]. The dotted blue line indicates the
heuristic value proposed in [6] while the red dotted line indicates the β∗

from (16).

Fig. 4. Plot of minimum and maximum number of iterations to attain
convergence over the set of 170 QPs for different values of the step size β
for the algorithm proposed in this paper.

in [19]. The initial guess and termination criterion were
identical to that used in Section IV. The lowest iteration
count of 27 is attained for the ADMM algorithm in [6]
for β ∈ [26.0, 26.6] and the choice of β = 24.35 takes
29 iterations for convergence. For the algorithm proposed
in this paper, the lowest iteration count of 22 is achieved
for β = [42.2, 47.3] and the choice of β = 50.03 takes 23
iterations for convergence.

Figure 4 reports the minimum and maximum number of
iterations over the 170 QP instances for each value of the step
size β. The optimal step size β∗ selected by the approach
proposed in this paper coincides with the value of the step
size that minimizes the maximum number of iterations.

VI. CONCLUSION

We have presented an alternating direction method of
multipliers for strictly convex QPs with particular focus on

the QPs arising from MPC. We proposed a convergence proof
and a method of analysis that allowed us to select the optimal
step-size. We have validated our approach for choosing the
by a publicly available benchmark set of problems. A draw-
back of our approach is that, the subproblem for updating
w may not be simple to solve, depending on the constraints.
In the future we will extend our analytical framework to an
algorithm that always solve simple subproblems.
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