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Abstract
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ABSTRACT

We propose an analytical model to estimate the synthesized view

quality in 3D video. Specifically, we estimate the depth-error

induced distortion using an approach that combines frequency

and spatial domain analysis. We also propose to decompose the

spatial-variant video signals into gradient-based representations to

capture the interaction between image gradients, depth errors and

synthesis distortion. Experiment results with video sequences and

coding/rendering tools used in MPEG 3DV activities show that our

analytical model can accurately estimate the synthesis noise power.

Index Terms— 3D Video, Synthesis Distortion Estimation,

Frequency and Spatial Analysis, Depth Error

I. INTRODUCTION

3D video (3DV) has attracted much attention recently [1]–[5]. 3D

datasets usually consist of multiple video sequences (texture data)

captured by cameras at different positions, along with the associated

depth images. The quality of the synthesized view is imperative in

3DV applications [6], [7]. The synthesis quality, however, depends

on several factors and complicated interactions between them. In

particular, texture and depth images may contain errors due to

imperfect sensing or lossy compression [8], [9], and it is not clear

how these errors interact and affect the rendering quality. Unlike

texture errors, which cause distortion in the luminance/chrominance

level, depth errors cause position errors in synthesis [10], i.e., pixels

are warped to slightly shifted positions during synthesis. The effect

of depth errors is very subtle. For instance, the impact of depth

errors would vary with the image contents, and images with less

textures tend to be more resilient to the depth errors.

An accurate analytical model to estimate the synthesis quality is

very valuable for the design of 3DV systems. Nguyen and Do [11]

analyzed the rendering quality of image-based rendering (IBR)

algorithms and used Taylor series expansion to derive the upper

bound of the mean absolute error (MAE) in the synthesis output.

Liu et al. [12] approximated errors due to depth map artifacts using

a linear model of average magnitude of mean-squared disparity

errors over an entire frame and a motion sensitivity factor computed

from the energy density. An autoregressive model was proposed by

Kim et al. [13] to estimate the synthesis distortion at the block level

and was shown to be effective for rate-distortion optimized mode

selection. A distortion model as a function of the view location

was also proposed by Velisavljevic et al. [14] for bit allocation.

Takahashi [15] proposed an optimized view interpolation scheme

based on frequency domain analysis of depth map error.

In our previous work [16], we proposed to estimate the synthesis

quality using power spectral density (PSD). This assumed that

the underlying video frame signals are spatial invariant. However,

signals along strong texture edges change much quickly than those

in the non-edge regions, i.e., autocovariance function decays much

faster in edge pixels. Different from previous approaches, we

propose in this work a model that combines frequency analysis

and spatial analysis to account for the non-stationary in the signals.

Specifically, our contributions are: 1) We propose an analytical

model combining frequency and spatial domain analysis to estimate

the synthesis view quality, given depth map errors, texture image

characteristics (smooth or textural), texture image quality and the

camera configuration as the inputs; 2) In particular, we propose

to decompose the spatial variant signals into gradient-based rep-

resentations to facilitate analysis. The analysis results show that

linear approximations of the spatial variant signals can lead to a

computationally-efficient and yet accurate estimation; 3) We verify

our model with substantial experiments using video sequences and

coding and rendering tools from the MPEG 3DV activities [17],

[18]. The rest of the paper is as follows. Sections II discusses

our analytical model. Section III presents experiment results and

Section IV concludes the paper.

II. ESTIMATE NOISE POWER DUE TO DEPTH CODING

We first discuss our view synthesis model, which consists of

frame warping followed by blending. Two reference texture frames

captured by the left and right cameras (denoted by Xl(m,n) and

Xr(m,n) respectively) along with their associated depth images

(denoted by Dl(m,n) and Dr(m,n) respectively) are used to

generate the synthesized frame U(m,n) at a certain virtual camera

position. First, in frame warping, pixels are copied from Xl to

form an intermediate frame Ul, from position (m′, n) to (m,n).
We assume the cameras are rectified and arranged linearly, and

there exists only horizontal disparity given by m−m′ determined

by the depth images, camera parameters and camera distance [16].

Likewise, pixels are copied from Xr to form the intermediate frame

Ur . Then, Ul and Ur are merged (blended) to generate U . We

assume merging by linear combination: U(m,n) = αUl(m,n) +
(1−α)Ur(m,n). Here the weight α is determined by the distances

between the virtual camera position and the left/right reference

camera positions.

In practice, the texture and depth images are lossy encoded.

We assume that when the reconstructed texture/depth images

(X̂l, X̂r, D̂l, D̂r) are fed into the synthesis pipeline, we obtain

rendering output W . Let V = U−W be the noise in the rendering

output due to coding errors in texture/depth images. In [16], we

show that under reasonable assumptions the total synthesis noise

power (E[V 2]) can be estimated by summing two components: one

is the synthesis noise power due to texture image coding (E[N2]),
the other is the synthesis noise power due to depth image coding

(E[Z2]), i.e.,

E[V 2] = E[N2] + E[Z2]. (1)

We discussed the estimation of E[N2] in [16] and the focus in this

paper is on the estimation of E[Z2].



In [16], we showed that E[Z2] can be estimated from E[Z2
l ]

and E[Z2
r ], where Zl and Zr are the synthesis noise due to depth

map coding in the left/right cameras respectively. Previously, we

used power spectral density to estimate E[Z2
l ] and E[Z2

r ]. This

frequency domain analysis assumed that the underlying image

signals are spatial invariant (i.e., wide-sense stationary), which

we found that in the current application this would cause rather

significant estimation discrepancy (In [16], we used a sequence

specific constant to compensate this discrepancy). Specifically,

across strong texture edges the video contents change much more

quickly than the non-edge regions, which does not agree with

the spatial invariant assumption. Edge pixels exhibit significantly

different correlation statistics compared with those in the non-edge

regions (autocovariance function decreases significantly faster in

edge pixels). We found that models that fail to account for these

non-stationary characteristics would incur considerable estimation

discrepancy in rendering quality estimation. In particular, at regions

where the video contents change rapidly (strong texture edges as

shown in the white part of Fig. 1(b)), pixel shifts would result in

substantial rendering errors, and these errors would bias the overall

estimate and are not negligible (even though edge regions are only

small portions in the video frames).

Consequently, in this work, we propose to partition the video

frame signals into Spatial Invariant (SI) signals and Spatial Variant

(SV) signals, and analyze these signals with frequency and spatial

techniques respectively. Specifically, we start by analyzing the

gradient map of texture image, and partition the video frame into SI

and SV regions using a gradient threshold determined automatically

using Otsu’s algorithm [19], as shown in Fig. 1. We estimate

E[Z2
l ] (and likewise E[Z2

r ]) for the pixels belonging to SI and SV

regions, which we denote as E[Z2
l,SI] and E[Z2

l,SV] respectively.

Then E[Z2
l ] = E[Z2

l,SI] + E[Z2
l,SV]. Frequency domain analysis

similar to [16] is used for E[Z2
l,SI]. In the following, we will discuss

the estimation of E[Z2
l,SV].

(a) (b)

Fig. 1. (a) Texture image of Kendo sequence (view 3); (b)

thresholding result using Otsu’s algorithm (black: spatial-invariant

regions, white: spatial-variant regions).

Gradient-based Analysis of SV Regions. To estimate the

distortion due to depth errors in the spatial-variant (SV) regions

E[Z2
l,SV], we process the frame row-by-row (likewise for E[Z2

r,SV]).
For each row, we process one by one each SV region (a SV region

consists of consecutive pixels classified as SV). Denote Yl the frame

warping result using X̂l and Dl, and Wl the frame warping result

using X̂l and D̂l. Let us denote a vector
→

SL as the pixel values of

a SV region of extent (width) L in Yl, and
→

S′
L as the one in Wl.

Note that Wl (
→

S′
L) is different from Yl (

→

SL) solely due to the fact

that reconstructed depth is used in frame warping instead of the

original depth. Note also that we consider X̂l here instead of Xl

as we decompose the overall distortion into texture-coding-induced

distortion and depth-coding-induced distortion as suggested by (1)

and here we focus on depth-coding-induced distortion.

Recall that due to the depth coding artifacts, there exists depth

error for depth map, resulting in horizontal disparity error during

texture image warping. Specifically, in SV regions, the sharp edge

would magnify the effect of horizontal disparity error on the

rendering distortion between
→

SL and
→

S′
L. To model the effect of

both gradient value and depth error (horizontal disparity error)

on the rendering result, we decompose
→

SL into L gradient-based

component-vectors, such that

→

SL =

L∑

k=1

→
sk, (2)

where k = 1, 2, · · · , L and
→
sk is the kth gradient-based component-

vector, given by
→
sk = gk~1k, (3)

where gk is the gradient value at the kth spatial location in
→

SL,

and ~1k is a vector with k − 1 zeros followed by L− k + 1 ones,

i.e., ~1k = [0, · · · , 0
︸ ︷︷ ︸

k−1

, 1, · · · , 1
︸ ︷︷ ︸

L−k+1

]. Fig. 2 depicts an example of the

decomposition with L = 4.

Fig. 2. Example of the decomposition of a SV region into gradient-

based component-vectors. The extent of the SV region, L, is 4 in

this example. Heights of the entries (arrows) in
→

S4 are the pixel

values in the SV region (figure on the left), whereas height of the

non-zero entires in
→
sk is the gradient value at the kth location in

the SV region (figure on the right).

Given (2) and (3), the squared error between
→

SL and
→

S′
L is:

||ES ||
2
2 = ||

→

SL −
→

S′
L||

2
2

=
L∑

k=1

||
→
ek||

2
2 + 2

L−1∑

k=1

L∑

l=k+1

→
ek ·

→
el.

(4)

where
→
ek =

→
sk −

→

s′k is the error vector for the kth gradient-based

component-vector. The first term of (4) is given by

||
→
ek||

2
2 =

L+d∑

i=1

(
→
sk(i)−

→

s′k(i))
2

=

{
2dg2k for k = 1, 2 · · · , L− d;
2(L− k + 1)g2k for k = L− d+ 1, · · · , L,

(5)

where d is the average position error for this spatial variant region.

The two cases that k = 1, 2 · · · , L− d and k = L− d+1, · · · , L
are illustrated in Fig. 3(a) and 3(b) respectively. With a position

error d, the supports of
→
sk and

→

s′k overlap for k = 1, 2 · · · , L− d

(Fig. 3(a)). On the other hand, the supports of
→
sk and

→

s′k are disjoint



for k = L−d+1, · · · , L (Fig. 3(b)). These lead to different ways

to calculate the error vector magnitude in (5).

(a)

(b)

Fig. 3. (a) Rendering error for the kth gradient-based component-

vector when 1 ≤ k ≤ L−d; (b) rendering error for the kth gradient-

based component-vector when L − d < k ≤ L. In (a), supports

of
→
sk and

→

s′k overlap. In (b), supports of
→
sk and

→

s′k are disjoint.

Note that the non-zero entries in
→
sk and

→

s′k are the same, since

they are the decompositions of
→

SL and
→

S′
L respectively, and

→

S′
L is

the shifted counterpart of
→

SL.
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Fig. 4. (a) Rendering error of
→
ek ·

→
el when 1 ≤ k ≤ L − d; (b)

rendering error of
→
ek ·

→
el when L− d < k ≤ L.

Similarly, the second term of (4) can be derived from (5) and

Fig. 3, as illustrated in (6) and Fig. 4 ,

→
ek ·

→
el =

{
(2d− (l − k))gkgl for k = 1, 2 · · · , L− d;
2(L+ 1− l)gkgl for k = L− d+ 1, · · · , L.

(6)

Substituting (5) and (6) into (4), and representing it in matrix

form, we have

||ES ||
2
2 = 2

∑

i,j

(D ◦G)ij = 2
∑

i,j

(D)ij(G)ij (7)

where “◦” represents the Hadamard product or the element-wise

multiplication of two matrices. D and G are given by (8) and (9)

respectively,

G = [g1, g2, · · · , gL]
T [g1, g2, · · · , gL]. (9)

The MSE of the rendering distortion in SV regions (E[Z2
SV]) is

then computed as

E[Z2
l,SV] =

1

MN

∑

S∈SV

||ES ||
2
2, (10)

where M ×N is the spatial dimension of a video frame. (10) can

be used to estimate the overall distortion caused by depth errors

(E[Z2
l ]).

Note that here we use the average position error d of a particular

SV region instead of per-pixel position errors to estimate the

distortion, in order to simplify the computation. This can be

justified by: (i) L is usually small. (ii) Variation of position errors

is usually small for consecutive pixels. In particular, change in

position-error per unit change in depth-map-error is usually small

(Table I).

Table I. Change in position-error per unit change in depth-map-

error following the MPEG 3DV 2-view test cases [17]

Video Sequence Change in Position-error

Kendo 0.094118
Balloons 0.094118
PoznanHall2 0.200000
PoznanStreet 0.154902

Low-complexity Estimation. Here we discuss how to simplify

(7) to compute ||ES ||
2
2. A SV region consists of pixels around a

sharp edge and the extent (width) of a SV region is usually small

(e.g., see Fig. 1(b)). That is, L is very small for a typical
→

SL.

Thus, it is reasonable to use linear approximation to approximate

the L pixel values in a SV region. Specifically, we approximate the

gradient values (gk, k = 1, 2, · · · , L) in the spatial variant regions

with the mean of all the gk:

g0 =
1

L

L∑

k=1

gk, (11)

and the gradient-based component-vectors
→
sk and the texture SV

region
→

SL are approximated by
→

tk = g0~1k and
→

TL =
L∑

k=1

→

tk

respectively. The corresponding rendering distortion for
→

TL, given

an average horizontal disparity error d, is simply:

||ET ||
2
2 = 2g20

∑

i,j

(D)ij

=

{

(− d3

3
+ L2d+ Ld+ d

3
)g20 for d ≤ L;

L(L+ 1)g20 otherwise.
(12)

We use (12) in lieu of (7) to estimate the rendering distortions in SV

regions. Clearly, (12) requires negligible computation complexity.

III. EXPERIMENTS

We have performed experiments to verify the accuracy of the

proposed models. Following the camera configurations in the

MPEG 3DV 2-view test cases [17], two reference views were used

to render a virtual view in-between. Both the texture and depth

videos were encoded with JMVC Encoder 8.3.1. Each group-of-

pictures consisted of an anchor frame and several hierarchically

coded B frames. Inter-view prediction was also used in encoding.
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Quantization parameters (qp) were set to be 32, 36, 40 and 44 for

both texture and depth image encoding. VSRS 3.5 [18] was used

to synthesis the virtual view.

We used PoznanHall2 (1920 × 1088), PoznanStreet (1920 ×
1088), Kendo (1024 × 768) and Balloons (1024 × 768) in our

experiment. Figure 5 compares the empirical results and the model

results for sequence PoznanHall2. The empirical results were

measured from the rendering output of VSRS. As shown in the

figure, the model can accurately estimate the rendering quality

with different encoding conditions and situations. The results also

suggest that, with lower quality texture images (e.g., color_qp = 44
in Fig. 5(d)), only small gains in the rendering output can be

obtained with improving the quality of the depth images (reducing

depth_qp). This is because with lower quality texture images the

noise due to texture coding E[N2] dominates the overall synthesis

noise power in (1), and reduction in E[Z2] has only a small impact.

On the other hand, when the texture images have good quality (e.g.,

color_qp = 32 in Fig. 5(a)), large gains in the rendering quality

can be obtained with improving the quality of the depth images

(reducing depth_qp). Results for PoznanStreet, Kendo and Balloons

are similar [20].

To further illustrate the characteristics of rendering distortion

caused by texture error (E[N2]) and depth error (E[Z2]), we

plot E[N2] and E[Z2] respectively in Fig. 6. As we expect,

the empirical and model results of E[N2] remain unchanged for

different depth image quality, as depicted in Fig. 6(a) and (c).

Another observation is that a large texture qp (color_qp = 44)

causes large texture-error induced distortion E[N2] (MSE is over

34, see Fig. 6(c)), while depth-error induced distortion E[Z2]
is relatively small (MSE is less than 6, see Fig. 6(d)). Such

large E[N2] dominates the final rendering quality, resulting in

a relatively small change in rendering quality at different depth

map quality (see Fig. 5(d)). On the other hand, for a smaller color

qp (color_qp = 32), the magnitude of the texture-error induced

distortion (MSE is around 6) is comparable to the one caused by

depth error. Therefore, the total rendering quality would be equally

affected by both texture error and depth error, and we can observe

noticeable variation in rendering quality at different depth map

quality (see Fig. 5(a)).

IV. CONCLUSIONS

We have proposed an analytical model to estimate the synthe-

sized view quality in 3D video. Our model combines frequency

and spatial analysis. Frequency analysis provides a concise and

compact representation to understand the synthesis distortions,

while spatial analysis accounts for non-stationary. We also derived

equations to estimate the synthesis distortions in spatial variant

regions along strong edges. Experiment results showed that the

model can accurately estimate the synthesis noise power.
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Fig. 5. Modeling result: PoznanHall2.
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Fig. 6. Modeling result of Kendo: (a) rendering distortion caused by texture
error (E[N2]) when color_qp = 32; (b) rendering distortion caused by
depth error (E[Z2]) when color_qp = 32; (c) rendering distortion E[N2]
when color_qp = 44; (d) rendering distortion E[Z2] when color_qp = 44.
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