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Abstract
This paper addresses privacy concerns in voice biometrics. Conventional remote speaker
verification systems rely on the system to have access to the user’s recordings, or features
derived from them, and also a model of the user’s voice. In the proposed approach, the
system has access to none of them. The supervectors extracted from the user’s recordings are
transformed to bit strings in a way that allows the computation of approximate distances,
instead of exact ones. The key to the transformation uses a hashing scheme known as Secure
Binary Embeddings. An SVM classifier with a modified kernel operates on the hashes. This
allows speaker verification to be performed without exposing speaker data. Experiments
showed that the secure system yielded similar results as its non-private counterpart. The
approach may be extended to other types of biometric authentication.
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ABSTRACT

This paper addresses privacy concerns in voice biometrics.
Conventional remote speaker verification systems rely on the
system to have access to the user’s recordings, or features de-
rived from them, and also a model of the user’s voice. In the
proposed approach, the system has access to none of them.
The supervectors extracted from the user’s recordings are
transformed to bit strings in a way that allows the computa-
tion of approximate distances, instead of exact ones. The key
to the transformation uses a hashing scheme known as Secure
Binary Embeddings. An SVM classifier with a modified ker-
nel operates on the hashes. This allows speaker verification
to be performed without exposing speaker data. Experiments
showed that the secure system yielded similar results as its
non-private counterpart. The approach may be extended to
other types of biometric authentication.

Index Terms— Speaker verification, privacy, security

1. INTRODUCTION

Voice-based authentication systems, also often called speaker
verification systems, have significant privacy concerns. Cur-
rent systems require access to recordings of a user’s voice.
A malicious system, or a hacker who has compromised the
system, could edit the recordings to impersonate the speaker.
Even if the user only transmits features extracted from the
voice, such that a recording cannot be synthesized from them,
other risks remain. Information about the speaker’s identity,
gender, nationality, etc., could be deduced even from param-
eterized signals, and potentially abused. Also, there is scope
for direct privacy violation. In order to authenticate a user, the
system must retain a “model” for the user, which it can com-
pare to incoming recordings. These models may now be used
to uncover other recordings by the user, such as on services
like YouTube, where the user may have assumed anonymity.

Our objective in this paper is to enable speaker verifica-
tion in a manner that avoids risk to a user’s privacy. To guar-
antee the privacy of the user, we require that the system should
neither have access to the user’s recordings, nor possess a
model of the user’s speech. These almost-paradoxical sound-
ing requirements for a voice-based biometric system are not,

in fact, unreasonable, and are assumed for other forms of se-
cure biometrics as well [1]. The above requirements address
our goals for the system; in addition we also desire that the
system in turn must not be vulnerable to imposters who may
gain access to a client device such as a smartphone that the
user employs to connect to it. We will assume that all com-
munication between the user and the system is over an appro-
priately secured channel, and that we need not to specifically
consider either the man-in-the-middle or replay attacks.

Privacy concerns in voice biometric systems have been
largely ignored until recently, and literature on the topic re-
mains minimal. Pathak and Raj [2] treated the problem as
one of secure function evaluation, employing homomorphic
encryption methods to ensure that the system only sees en-
crypted data from the user, and only stores encrypted mod-
els that it cannot decrypt by itself, thereby satisfying privacy
requirements. However, the computational overhead of re-
peated encryption and decryption makes this solution imprac-
tical. Moreover, the approach retains vulnerabilities to cer-
tain types of imposters. In [3] an alternate scheme based
on Locality-Sensitive Hashing (LSH) was proposed, which
converts voice recordings to password-like strings. Authen-
tication is performed by matching the strings to stored tem-
plates. The method is fast and secure, satisfying both require-
ments mentioned above; however it compromises accuracy
by requiring an exact match between hashes derived from the
user’s speech and those in the models stored by the system.

In this paper we propose a new privacy-preserving tech-
nique for speaker verification based on the recently proposed
Secure Binary Embeddings (SBE) [4]. SBE is an LSH-like
technique that converts vector data to bit strings, through a
combination of random projections followed by banded quan-
tization. This has specific properties that make it particularly
useful in secure speaker verification. First, it has information
theoretic guarantees of security, while having only the com-
putational overhead of LSH. At the same time, it also permits
us to compute Euclidean distances between vectors that are
close enough by looking at the Hamming distance between
the corresponding bit strings. This is an important character-
istic of SBE hashes, as this way the perfect-match restriction
of their LSH counterparts no longer applies. This means that
classification tasks that rely on them are much less dependent



on the specific projections considered, therefore improving
the overall performance.

The following section briefly presents the speaker verifi-
cation algorithms we will secure. Subsequently, we describe
secure binary embeddings and their guarantees in Section 3.
Their application to privacy-preserving speaker verification
is described in Section 4, together with some experiments
demonstrating the efficacy of the proposed method. We fol-
low it up with a discussion of actual usage scenarios and pri-
vacy issues in Section 5, and then present our conclusions.

2. SPEAKER VERIFICATION

In a conventional speaker verification system, the user pro-
vides the system with voice samples during an enrollment
phase. The system employs these samples to build a “model”
for the user. Later, incoming speech signals are compared to
this model to verify the user.

State-of-art speaker verification techniques commonly
employ a likelihood ratio test to perform verification. All
speech signals are first parameterized into a sequence of
feature vectors, typically mel-frequency cepstral coefficient
(MFCC) vectors. As a first step, a large collection of record-
ings of non-target speakers is used to train a “Universal Back-
ground Model” (UBM). The UBM is a Gaussian mixture
model (GMM) representing the distribution of speech from
all potential imposters for the speaker. Subsequently, the
UBM is adapted through maximum a posteriori adaptation[5]
to the user’s enrollment data to learn a GMM for the user.
In addition to reducing enrollment data requirements, MAP
adaptation also ensures a one-to-one correspondence be-
tween the Gaussians in the UBM and those in model for the
speaker. Given a new recording purported to be from a tar-
get speaker, the log likelihood assigned to it by the GMM
for the target speaker is compared to that obtained from the
UBM to determine if the speaker must be accepted or not [5].
Many variations on this scheme have been proposed, primar-
ily aimed at dealing with limited amounts of enrollment data,
and mismatch between recording conditions in the enrollment
and test data. These variants typically employ various flavors
of factor analysis [6][7] to assign a priori probabilities to the
parameters of the GMM for the speaker, and highly accurate
authentication is reported under a variety of conditions.

An alternate equally-successful approach to likelihood ra-
tio tests obtains a separate GMM for each of multiple enroll-
ment recordings by the speaker, through MAP adaptation of
the UBM to the recording. The parameters of the resulting
GMM are concatenated into a “supervector” representing the
recording. Supervectors are similarly obtained for recordings
by putative imposters. A support vector machine (SVM) is
then trained to distinguish between the two [8]. To verify
that a given test recording was indeed spoken by the speaker,
the supervector derived from the recording is classified by the
SVM. Once again, a priori distributions may be assigned to

the parameters through factor analysis – in this case the factor
vectors may themselves be used to represent the recordings,
and classification may be performed directly with them.

In this paper we employ the latter SVM-based approach
to speaker verification. We use as a baseline classifier a con-
ventional RBF kernel based SVM, where the kernel is given
by k(xi,xj) = e−γ·d

2(xi,xj). Here d(xi,xj) refers to the Eu-
clidean distance between xi and xj , and γ is a scaling factor.
The RBF kernel has been observed to result in good classifi-
cation accuracies for the speaker verification task [9]. More-
over, it is easily adapted to our privacy-preserving schemes.

3. SECURE BINARY EMBEDDINGS (SBE)

A secure binary embedding (SBE) is a scheme for convert-
ing real-valued vectors to bit sequences using band-quantized
random projections. These bit sequences, which we will re-
fer to as hashes, possess an interesting property: if the Eu-
clidean distance between two vectors is lower than a thresh-
old, then the Hamming distance between their hashes is pro-
portional to the Euclidean distance between the vectors; if it
is higher, then the hashes provide no information about the
true distance between the two vectors. This scheme relies
on the concept of Universal Quantization [10], which rede-
fines scalar quantization by forcing the quantization function
to have non-contiguous quantization regions.

Given an L-dimensional vector x ∈ RL, the universal
quantization process converts it to an M -bit binary sequence,
where the m-th bit is given by

qm(x) = Q

(
〈x,am〉+ wm

∆

)
(1)

Here 〈, 〉 represents a dot product. am ∈ RL is a projec-
tion vector comprising L i.i.d. samples drawn from N (µ =
0, σ2), ∆ is a precision parameter, and wm is a random dither
drawn from a uniform distribution over [0,∆]. Q(·) is a quan-
tization function given by Q(x) = bx mod 2c. We can repre-
sent the complete quantization into M bits compactly in vec-
tor form:

q(x) = Q
(
∆−1(Ax + w)

)
(2)

where q(x) is an M -bit binary vector, which we will refer to
as the hash of x. A ∈ RM×L is a matrix composed of the
row vectors am, ∆ is a diagonal matrix with entries ∆, and
w ∈ RM is a vector composed from the dither values wm.

The universal 1-bit quantizer of Equation 1 maps the real
line onto 1/0 in a banded manner, where each band is ∆m

wide. Figure 1 compares conventional scalar 1-bit quantiza-
tion (left panel) with the equivalent universal 1-bit quantiza-
tion (right panel).

The binary hash generated by the Universal Quantizer of
Equation 2 has the following properties [4]: the probability
that the ith bits, qi(x) and qi(x′) respectively, of hashes of



Fig. 1. 1-bit quantization functions.

Fig. 2. SBE behavior as a function of ∆, for two values ofM .

two vectors x and x′ are identical depends only on the Eu-
clidean distance d = ‖x − x′‖ between the vectors and not
on their actual values. As a consequence, the following re-
lationship can be shown [4]: given any two vectors x and x′

with a Euclidean distance d, with probability at most e−2t
2M

the normalized (per-bit) Hamming distance dH(q(x),q(x′))
between the hashes of x and x′ is bounded by:

1

2
−1

2
e
−
(
πσd√

2∆

)2

−t ≤ dH(q(x),q(x′)) ≤ 1

2
− 4

π2
e
−
(
πσd√

2∆

)2

+t

where t is the control factor. The above bound means that the
Hamming distance dH(q(x),q(x′)) is correlated to the Eu-
clidean distance d between the two vectors, if d is lower than
a threshold (which depends on ∆). Specifically, for small d,
E[dH(q(x),q(x′))], the expected Hamming distance, can be
shown to be bounded from above by

√
2π−1σ∆−1d, which

is linear in d. However, if the distance between x and x′ is
higher than this threshold, dH(q(x),q(x′)) is bounded by
0.5− 4π−2exp

(
−0.5π2σ2∆−2d2

)
, which rapidly converges

to 0.5 and effectively gives us no information whatsoever
about the true distance between x and x′.

In order to illustrate how this scheme works, we ran-
domly generated pairs of vectors in a high-dimensional space
(L = 1024) and plotted the normalized Hamming distance
between their hashes against the Euclidean distance between
them (Figure 2). The number of bits in the hash is also shown
in the figures. In all cases, once the normalized distance
exceeds ∆, the Hamming distance between the hashes of
two vectors ceases to provide any information about the true
distance between the vectors. Changing the value of the pre-
cision parameter ∆ allows us to adjust the distance threshold
until which the Hamming distance is informative. Increasing
the number of bits M leads to a reduction of the variance of
the Hamming distance. A converse property of the embed-
dings is that for all x′ except those that lie within a small

radius of any x, dH(q(x),q(x′)) provides little information
about how close x′ is to x. It can be shown that the em-
bedding provides information theoretic security beyond this
radius, if the embedding parameters A and w are unknown
to the potential eavesdropper. Any algorithm attempting to
recover a signal x from its embedding q(x) or to infer any-
thing about the relationship between two signals sufficiently
far apart using only their embeddings will fail to do so.

4. SPEAKER VERIFICATION WITH SBE

The application of the SBE to speaker verification sys-
tems is direct: if the classifier could be made to operate
on SBE hashes of supervectors rather on supervectors them-
selves, speaker verification may be performed without ex-
posing speaker data. The RBF kernel must be modified
to work with Hamming distances between SBE hashes:
k(x,x′) = e−γ·d

2
H(q(x),q(x′)). Note that for a given A

and w, the modified kernel closely approximates the conven-
tional RBF for small d(x,x′), but varies significantly from it
at larger d(x,x′). While it does not satisfy Mercer’s condi-
tions and cannot be considered a true kernel, in practice it is
effective as we shall see in the experiments below.

The implementation of a privacy-preserving speaker ver-
ification system is now as follows: the user communicates
with the server through a smartphone or computation-capable
device. In the enrollment phase, the supervectors for both
the enrollment recordings and imposter recordings are com-
puted by the user. Imposter recordings may be obtained from
any public resource. The user computes SBE hashes from
the supervectors and transmits them to the server. He retains
the parameters A and w employed by the SBE as his pri-
vate keys. The system trains an SVM with the obtained SBE
hashes. During verification, the user computes the SBE hash
for the supervector obtained from the test recording and trans-
mits it to the system, which classifies it.

The system never sees the actual speech from the user. Its
model for the user can only be used with the SBE hashes com-
puted using the private hash key from that specific user, and
is not usable without the user’s participation. Moreover, an
attacker wishing to pose as a specific user must not only man-
age to steal the embedding parameters from the user’s client
device but also gain access to voice recordings from the same
user, as either of these alone are insufficient to gain unautho-
rized acces to the server. Therefore, our privacy requirements
are satisfied.

4.1. Experiments using feature supervectors

As a proof of concept, we ran experiments on the YOHO
Speaker Verification corpus [11], consisting of short utter-
ances by 138 speakers. Each utterance contains a set of three
two-digit numbers. The corpus is divided into two sets: en-
rollment and verification. The enrollment set (used for train-



#Gaussians 4 8 16 32 64 128
EER 3.55 1.52 0.60 0.25 0.22 0.21

Table 1. Speaker verification EER (%age), supervectors.

∆ 13.5 14.0 14.5 15.0 15.5
bpc=4 2.27 1.79 1.52 1.40 1.25
bpc=8 1.32 1.00 0.84 0.89 0.80
bpc=16 0.76 0.69 0.65 0.60 0.51

Table 2. Speaker verification EER (%age), SBE.

ing) contains 96 utterances from each speaker, totaling 14.54
hours of audio. The verification set (used for testing) con-
tains 40 utterances from each speaker, totaling 6.24 hours of
audio. We did not explicitly record imposters - instead for
each of the 138 speakers in the corpus, the remaining 137
were used as imposters. The use of this corpus enables us to
compare results with previous work on secure speaker verifi-
cation [3]. The experiments used Gaussian mean supervectors
based on MFCC features extracted in frames of 25ms, at the
rate of 100 frames per second. For each frame we extracted
12 MFCC coefficients and the log-energy, augmenting them
with the temporal differences and double-differences to result
in a total of 39 features. A UBM was trained from the data
for all the speakers. The UBM was adapted to each record-
ing to obtain a single Gaussian supervector. The length of
the supervectors depends on the number of Gaussians in the
UBM: a UBM with N Gaussians results in supervectors with
L = 39N dimensions. In our baseline experiments, without
SBE, we evaluated UBMs of different sizes, with the number
of Gaussian components ranging from 4 to 128 Gaussians, to
find the optimal settings. All experiments were performed us-
ing the LIBSVM toolkit [12]. Table 1 shows the results, aver-
aging all the speakers, in terms of equal error rate (EER). The
performance improves as the number of Gaussians increases.
We do not present results with larger amounts (values up to
2048 Gaussians are common in the literature) because, for
this particular corpus, they do not provide improvements. In
fact, the results obtained with mixtures of 32 Gaussians are
already very close to the ones obtained with 128. Hence, the
experiments with SBE hashes will involve only 32 Gaussians.

4.2. Experiments using SBE hashes

The secure binary embeddings have two parameters that can
be varied: the quantization step size ∆ and the number of
bits M . The value of M by itself is not a useful number, as
different values of L (dimensionality of the supervector) re-
quire different values of M ; hence we report our results as
a function of bits per coefficient (bpc), computed as M/L.
The bpc allows us to govern the variance of the universal
quantizer. The results are presented in Table 2. As expected,
both increasing ∆ and bpc improves the classification perfor-
mance. At bpc=16, the performance stabilizes rather quickly

and thereafter is largely independent of ∆. Notice that we not
only greatly improve on the 11.86% EER reported in [3], but
also we produce an almost negligible increase in the classifi-
cation error when compared with the non-secure version.

5. PRIVACY AND OTHER PRACTICAL ISSUES

Secure Binary Embeddings provide a basic but strong form of
security: a vector x cannot be recovered, even in part, from
its SBE q(x), if the projection matrix A and dither vector w
are unknown. The primary benefit of using SBEs is that it
now becomes possible for the system to perform classifica-
tion using the SBEs q(x) without being able to recover the
actual data x from it. Nevertheless, alternative factors that
may provide information about the speaker must be consid-
ered. One of them is speaker leakage, which we define as the
fraction of recordings from any speakers whose SBE hashes
have a normalized Hamming distance below the threshold at
which Hamming distance dH is predictive of Euclidean dis-
tance d (which we empirically found to be 0.475 bits) with
respect to any recording from another speaker. The left panel
of Figure 3 shows how this varies with ∆. Not surprisingly,
as ∆ increases, this value increases; however at useful values
of ∆ this is very small. If the leaked vectors for any speaker
show a bias towards specific other speakers, this would allow
us to form speaker clusters. Ideally, the leaked vectors should
be distributed uniformly across all other speakers, i.e., the en-
tropy of the distribution of the leaked vectors over imposters
must be high. The right panel shows the normalized entropy
of the distribution over imposters of the leaked vectors for
each of the speakers in our test set, at a setting of ∆ that re-
sults in 50% speaker leakage. The values obtained for the
normalized entropy of each speaker are very high, with aver-
age values of 0.884, 0.862 and 0.851 for bpc values of 4, 8 and
16, respectively (1 represents completely random behavior; 0
indicates neighborhood to a single speaker). In other words,
for the operational values of M and ∆, the identifiable bias
of any speaker towards any other speaker is very low. Thus
even if the system has registration data from a speaker, it must
retrieve a very large number of putative recordings from a tar-
get speaker to make any inferences about other speakers in its
database. However, this does not provide a strong guarantee
of privacy against the motivated adversary.

6. CONCLUSIONS AND FUTURE WORK

The paper described a secure speaker verification approach
which yields similar results to the non-secure counterpart and
are a great improvement over previous results on the same
task. The computational overhead is a very small price to pay
for privacy. In order to extend the scheme to more sophisti-
cated classifiers and to other forms of biometric authentica-
tion, several issues must be investigated. The nature of the



Fig. 3. Left: Speaker leakage as a function of ∆, for bpc = 4,
8 and 16. Right: Normalized entropy of the speaker leakage.

embedding restricts the form of classifiers that may be em-
ployed to those that utilize `2 distances. We are currently
not only evaluating ways to extend the proposed work to use
other forms of embeddings, but also analyzing mechanisms
for more secure embeddings, as well as formally proving the
non-invertibility of SBEs. Additionally, we also plan to fur-
ther extend our work to use i-vectors [13] instead of super-
vectors, as well as considering other corpora [14] [15].
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