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Abstract
We present an object tracking framework that employs Dirichlet Process Mixture Models
(DPMMs) in a multiple hypothesis tracker. DPMMs enable joint detection and tracking of
an unknown and variable number of objects in a fully automatic fashion without any initial
labeling. At each frame, we extract foreground super pixels and cluster them into objects by
propagating clusters across consecutive frames. Since no constraint on the number of clusters
is required, we can track multiple cluster hypotheses at the same time. By incorporating
super pixels and an efficient pruning scheme, we keep the total number of hypotheses low and
tractable. We refine object boundaries with Markov random fields and connectivity analysis
of the tracked clusters. Finally, we group tracked hypotheses to combine possible parts of an
object as one.
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Abstract. We present an object tracking framework that employs Dirichlet Pro-
cess Mixture Models (DPMMs) in a multiple hypothesis tracker. DPMMs en-
able joint detection and tracking of an unknown and variable number of objects
in a fully automatic fashion without any initial labeling. At each frame, we ex-
tract foreground superpixels and cluster them into objects by propagating clus-
ters across consecutive frames. Since no constraint on the number of clusters is
required, we can track multiple cluster hypotheses at the same time. By incorpo-
rating superpixels and an efficient pruning scheme, we keep the total number of
hypotheses low and tractable. We refine object boundaries with Markov random
fields and connectivity analysis of the tracked clusters. Finally, we group tracked
hypotheses to combine possible parts of an object as one.

1 Introduction

Conventional object tracking methods often use multiple hypothesis tracking, which
can establish correspondence between many hypotheses in parallel [1], or joint proba-
bilistic data association, which can utilize weighted contributions of each observation
to update target states [2]. These hypotheses are usually sampled in a particle filter-
ing framework [3] that results in a probabilistic update of the object states. Recently,
Dirichlet Process Mixture Models (DPMMs) received increasing attention for tracking
applications. For example, DPMMs are adopted for tracking of acoustic energy around
a particular frequency in the speech wave for speech recognition [4] and employed a
Sequential Monte Carlo (SMC) inference and Gibbs sampler in visual tracking [5].

In this work, we propose a nonparametric model based multiple object tracker for
unknown number of targets. Instead of applying batch inference by a Gibbs sampler
as in [5], we explore a full-association space inspired by [4] and aim to track all feasi-
ble associations. In addition, we select observations using a Gaussian Mixture Model
(GMM) based change detection algorithm as opposed to arbitrarily use all image pix-
els. To reduce the number of tracked association hypotheses, we employ superpixels
as atomic observations. After obtaining tracking hypotheses for unknown number of
targets, we refine pixel-level boundaries using Markov random fields (MRF) that in-
corporates the clusters obtained during the previous tracking stages into the refinement
process. Finally, we carry out a temporal grouping of clusters to combine different parts
of a tracked object into one.
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Within the scope of this paper we refer observations for any atomic observation
to be associated to a target, targets for clusters (used interchangeably) of observations
obtained by DPMM tracking, objects for tracked objects that are formed by one or
more targets, and hypotheses for a tracking hypothesis that defines target states and
observation to target associations.

In the next section we give a brief review of DPMMs. In Section 3 we present our
object tracking framework using DPMMs followed by the refinement of target bound-
aries in Section 4 and the grouping of targets in Section 5.

2 Dirichlet Process Mixture Models

DPMMs provide a way to model data as a mixture model having unknown number of
mixture components or clusters [6]. Let Xn;n = 1..N be the observed data that is to
be modeled as a mixture of distributions having the form F (θ). If θk denotes parame-
ters of the kth mixture component, then Xn ∼ F (θk) if Xn ∈ k. Let cn be the latent
indicator variable such that cn = k indicates Xn ∈ k. The discrete probability distribu-
tion p(cn = k) has Dirichlet distribution as conjugate prior and taking the number of
mixture components to infinity results in the Dirichlet process.

As opposed to the GMM and hidden Markov model (HMM) that require the num-
ber of habitats to be specified prior to training, DPMM has the appealing property that
the number of mixtures or clusters does not need to be known a priori. It assumes that
there are infinite number of mixture components k = 1..∞ yet only a finite number of
these components have observations assigned to them. Modeling the data with DPMMs
consists of finding the parameters of those finite and unknown number of mixture com-
ponents, i.e. clusters. A detailed review of Markov chain sampling methods (like Gibbs
sampling) to estimate the cluster parameters can be found in [7]. These methods iterate
over all observations and for each observation calculate probabilities of belonging to an
existing or a new cluster controlled by an aggregation parameter α. For higher values of
α more clusters are generated during the clustering. The probability that an observation
belongs to a mixture component is given as

p(cn;α) =


Nk

N+α−1 p(Xn|θk) existing k,

α
N+α−1

∫
θ

p(Xn|θ) dθ new cluster,
(1)

where Nk is the number of assignments to cluster k and N is the number of all obser-
vations. The graphical model for the DPMMs is depicted in Fig. 1.

Fig. 1: Graphical model for the DPMMs: The observation (Xn) depends on one of the
infinite number of cluster parameters (θk), assignment (cn) of which is controlled by α
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(a) (b) (c) (d)

Fig. 2: A sample frame (a), superpixel borders for the bottom-left part of the frame (b),
the foreground probability map for each pixel (c) and centers of superpixels that contain
foreground pixels (d).

3 Object Tracking with DPMMs

3.1 Extracting Observations for Tracking

To reduce the number of observations and decrease the DPMM association time, we
incorporate superpixels that segment an image into small, compact and almost-regular
regions while keeping color variation within regions low. With a small computational
overload, a rough superpixel extraction [8] significantly decreases the number of obser-
vations by around 95%, an example of which can be seen in Fig. 2.

We extract foreground regions on the frame using GMM based background repre-
sentation [9] that models the previous color changes of each pixel using a mixture of
Gaussians by applying an expectation maximization update. Here, we select superpixels
that contain pixels whose foreground probability is high. For the sample frame shown
in Fig. 2, the number of observations decrease from ∼160,000 to ∼4,500 foreground
pixels and then finally to around 200 foreground superpixels.

3.2 Observation and Target Models

We model each observation using the spatial center of the superpixel (i.e. x and y pixel
coordinates) and the mean value of the a and b pixel color components in the Lab color
space. Similarly, we model each cluster/target using the mean and variance of the same
components along with the spatial covariance.

For computational ease, we do not model Gaussian models with full covariance ma-
trices for targets. Instead, we analyze the covariance between spatial components since
it is strongly related to the appearance of the target on the image by approximating the
target appearance with a rotated ellipse (for human tracking). Thus, each observation is
defined with four parameters; X : (µx, µy, µa, µb) and each target with six parameters;
θ : (µxy, Σxy, µa, σa, µb, σb). Under this model, the likelihood that an observation Xn

is generated by a target k with parameters θk is

p(Xn|θk) = N (Xxy|µkxy, Σk
xy) N (Xa|µka, σka) N (Xb|µkb , σkb ) (2)

where the parameters of the Gaussians in Eq. 2 are estimated from the observations
that are assigned to the targets. Here, µxy models the spatial center and µa and µb the
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average color values for the targets. The spatial covariance Σxy models the size and
orientation of the target in the image. The larger the covariance the more spread in that
direction the target becomes.

Eq. 1 and Eq. 2 together define the assignment probability of an observation to an
existing or a new target. For a new cluster, the integral in Eq. 1 is calculated over the
whole prior distribution. The prior for Gaussian distribution is Normal-Inverse Wishart
distribution and integrating over it gives a t-distribution [10]. However, [10] shows that
this can be approximated by a Gaussian with properly chosen parameters. We choose it
as a Gaussian that is centered on the frame and having a variance that covers the whole
frame. The color components have a similar coverage.

3.3 Target Assignment and Tracking with DPMM Clustering

In [5] two inference methods for tracking are defined; one depends on Markov Chain
Monte Carlo (MCMC) to perform batch inference and the other uses SMC in a particle
filtering framework. At each frame, iterative Gibbs sampling is performed and assign-
ments are selected for each observation. Then, parameters of each cluster are again
sampled from the current and past assignments. In [4], at each time and for each ob-
servation, a whole exploration of the assignment space is done in a Rao-Blackwellized
[11] fashion and new hypotheses are generated for each assignment instead of Gibbs
sampling.

We follow a similar approach. After initially estimating the positions of the targets
using past motion dynamics (i.e. Rao-Blackwellization), we evaluate the observations
one by one and calculate association probabilities of observations to an existing or a
new target with Eq. 1. Each association represents a new hypothesis with a calculated
weight.

For each frame f , the DPMM clustering inherits Kf−1 number of clusters from the
previous frame and performs clustering of the new observations to those existing (or
new) clusters. Note that, some of the inherited clusters may be kept with new obser-
vation assignments, some of them may be dropped if no observations are assigned to
them, and some new clusters may be generated. Altogether, they form Kf number of
clusters as the tracking result for frame f . These clusters are projected to the next frame
f + 1 later.

We prune association hypotheses with very low weights after evaluating each ob-
servation, which prevents the number of the hypotheses to grow. In our experiments we
have observed that much less than 10 hypotheses are kept between frames.

Our association scheme differs from [5] in the sense that the whole assignment
space is explored and cluster parameters are updated deterministically instead of ran-
dom sampling of the assignments and cluster parameters.

A difference between [4] and our method is the weight update rule of the hypothe-
ses. We consider transition probabilities of the clusters while updating the weights of
the hypotheses, which allows us after evaluating all observations in a frame, to remove
the hypotheses that have unusual change in the states of the clusters. In [4], after each
observation (Xn) is assigned to a target, a new hypothesis is derived weight of which
(wh) is updated as:

wh = wh p(cn = k;α). (3)
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We also perform the same update rule while generating new hypotheses during han-
dling the observations. In addition, for one frame, after all observations are assigned to
targets and target parameters are updated, we calculate the following transition proba-
bilities for each cluster and update the weight of the hypothesis:

wh = wh
∏
k∈h

p(θfk |θ
f−1
k ). (4)

The transitions are calculated for clusters inherited from previous frame (f −1) and
kept in current frame (f ). Addition of new clusters is controlled by the parameter α in
Eq. 1, and at this stage there is no special handling for the deletion of the clusters, which
we leave as a future work. The transition probability in Eq. 4 is taken as:

p(θfk |θ
f−1
k ) = N (µfxy|µ

f
x̂ŷ, Σ

f−1
xy ) ×

N (σfx |σf−1x , 0.1 σf−1x ) ×
N (σfy |σf−1y , 0.1 σf−1y ) ,

(5)

where x̂ and ŷ denote the initial spatial estimates of the positions of the targets estimated
from their previous motions with the Rao-Blackwellization. Considering also that the
variance of a target is proportional to its size, the first probability in Eq. 5 represents the
typical assumption that the position of the tracked target conforms with the past dynam-
ics with an uncertainty proportional to its size. The latter two probabilities represent the
assumption that the size of the tracked target changes at most around 10% of its size
between frames.

4 Refining Object Boundaries

Tracking by the DPMM clustering scheme presented in Section 3.3 generates the la-
beled foreground superpixels, where the labels correspond to tracked clusters/targets.
To compensate border artifacts caused by the quick but rough superpixel extraction we
apply a refinement step.

MRFs [12] are commonly used graphical models in image labeling tasks to obtain
smooth maps. The labeling is considered as an optimization problem where energies
for labeling of the image are defined for individual pixels within local neighborhoods
on uniform grid.

The energies for neighborhoods are used to enforce smoothness in the local regions.
Having a graphical model where nodes n correspond to pixels and vertices υ to neigh-
borhoods, the aim is to find the lowest overall energy E of a labeling L for image I,
which is calculated as sum of unary and pair-wise energies as

E(L) =
∑
u∈n

E(Lu) +
∑

(u1,u2)∈υ

E(Lu1 ,Lu2), (6)

where E(Lu) is the cost of labeling individual pixels (unary term) and E(Lu1
,Lu2

)
is the cost of labeling neighboring pixels (pair-wise term), which is used to enforce
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(a) (b) (c) (d)

Fig. 3: Four sample frames from PETS 2001 dataset. Ellipses are the isocontours
of the Gaussian distribution (for σ=1) that defines the target position (Section 3.2).
Green ellipses correspond to single targets, red ellipses correspond to two or more
merged/grouped targets (Section 5). Pink trajectories denote the past spatial centers
of the relevant targets.

smoothness. In our work, we label each pixel in the frame as one of the targets obtained
with the DPMM tracking and the background. During that process, we employ MRFs
as with any other labeling task [12].

The DPMM clustering results in target clusters for a frame and for each pixel. Using
position and color of the pixel, Eq. 2 can be used to calculate the likelihood of the pixel
for each target. To impose this likelihood as the unary term for a single pixel Xn in
Eq. 6, we take the negative log of Eq. 2:

E(LXn) = − log(p(Xn|θk)), (7)

For the background label, we again take negative log of the background probabil-
ity obtained with the background subtraction results produced in Section 3.1 to detect
foreground superpixels. For the pair-wise term in Eq. 6, we set 8-pixel neighborhoods
and give a fixed energy value if the neighboring pixels have different labels where same
labels incur zero penalty.

5 Grouping Targets into Objects

We empirically obtained results with different α values (of Eq. 1) and observed that
even with suitable values there may be cases that parts of an object may be assigned
to different targets because of color differences. Thus, we run a final step to detect and
group those different parts of an object into one object, and present the final tracking
output by representing objects as those grouped targets.

To decide whether any two targets can be merged into one, we analyze the histor-
ical motion of the targets by measuring the similarity of the motions of the pairs of
targets. To measure the similarity, we use cross-correlation of historical spatial (x and
y components) positions of the targets.
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(a) (b) (c) (d)

Fig. 4: Sample frames from PETS 2009 dataset. Ellipses are the isocontours of the Gaus-
sian distribution (for σ=1) that defines the target position (Section 3.2). Green ellipses
correspond to single targets, red correspond to two or more merged/grouped targets
(Section 5). Pink trajectories denote the past spatial centers of the relevant targets.

Cross-correlation for x component of any two targets historical positions of which
are known is calculated as

ρx =

∑
t

(x1(t)− µx1)(x2(t)− µx2)√∑
t
(x1(t)− µx1)

2
√∑

t
(x2(t)− µx2)

2
, (8)

and similarly for ρy . At each frame, we calculate ρx and ρy using last t frames after
tracking with DPMMs is achieved. In case their sum exceeds a threshold value for any
two targets, we assume those targets move together, thus belong to the same object.
Such targets are merged into the same object.

6 Experiments and Results

We implemented the proposed algorithm in C#. For superpixel extraction, we used
SLIC superpixels [8]. We integrated the implementation in VLFeat library [13] for
smoothing with MRFs, which comes with a FastPD MRF optimization [14, 15]. To ex-
tract the foreground pixels, we applied the GMM implementation of OpenCV [16]. Ob-
ject boundaries were obtained withα-shapes [17] implementation of CGAL library [18].
We run the experiments on a sequence of 200 frames in PETS 2001 [19] and 100 frames
in PETS 2009 [20] datasets where α in Eq. 1 is fixed (α = 1) for the proposed method.

6.1 Tracking and Target Grouping Results

Figures 3 and 4 present the tracking results by denoting the tracked targets as 2D Gaus-
sian ellipses drawn on the image frame, as well as their past tracks superimposed onto
the image.

The results demonstrate that the proposed tracking algorithm works accurately in
complex situations where some tracked objects are partially occluded by others like in
the last two sample frames from the PETS 2009 sequence. In Fig. 4c, it can be seen that
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the pedestrian that entered the scene from right passes in front of the pedestrian that was
walking in the middle of the scene from the beginning. The proposed tracker continued
to track those two pedestrians in the following frames (Fig. 4d) without having any drift
problems.

The figures also show the success of the proposed target grouping scheme. For ex-
ample, initially at Fig. 3a, parts of the pedestrian in the middle of the scene are detected
and being tracked as separate targets, as well as the car in Fig. 3b. After 10 frames, using
the proposed target grouping scheme, parts of the targets that belong to the same object
are grouped and assigned as one (Fig. 3c and Fig. 3d). In all figures, the red ellipses
denote the targets that are obtained by grouping two or more targets.

Similarly, initially at Fig. 4a, parts of three pedestrians are detected and being
tracked as separate targets. After 10 frames, parts of the pedestrians are grouped and
represented as a single object (Fig. 4b). Again, the grouped targets are denoted by red
ellipses in the figure.

6.2 Refining Object Boundaries

Figures 5 and 6 display results in which accurate object boundaries are drawn rather
than ellipses. After target clusters and superpixel assignments are obtained, a finer la-
beling of pixels is obtained with MRFs.

The refinement step provides pixel-wise assignments for targets. Using those assign-
ments, boundaries are calculated as sets of pixels that represent the border contains all
pixels assigned to the target cluster. Note that, borders are not necessarily convex. While
the boundaries are being determined, pixel assignments that are far from the target clus-
ter are filtered out where the cut-off distance is determined by the standard deviation of
the spatial components of the target cluster (i.e. σx and σy). The results show that even
in complex situations that objects come together (e.g. Fig. 6c); the boundaries of them
can be detected accurately by taking the grouping of the targets into consideration.

(a) (b) (c) (d)

Fig. 5: Sample object boundaries (Section 4) from PETS 2001 dataset. The target bor-
ders are denoted with distinct colors across frames, as well as the historical centers as
the superimposed trajectory having the same color with the target borders.
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Proposed Neiswanger [5]
ATA 78.07 29.93
SPF 9.91 18.08

Table 1: Tracking accuracy (100×ATA) and running time (SPF) for PETS 2001 se-
quence comparing the proposed method and [5] (best results are in bold).

6.3 Quantitative Analysis

We report the average tracking accuracy (ATA) scores given as [21]:

STDA =

No∑
i=1

∑Nf

f=1
Gf

i ∩D
f
i

Gf
i ∪D

f
i

N(Gf
i ∪D

f
i )6=0

, ATA =
STDA

(NG+ND

2 )
(9)

which is the normalization of sequence track detection accuracy (STDA) by the number
of detected (ND) and ground truth objects (NG). STDA is calculated using overlaps
and unions pixels that belong to the ground truth (Gfi ) and detected (Df

i ) objects. This
overlap ratio is aggregated over the sequence of Nf frames and normalized by the
number of frames (N(Gf

i ∪D
f
i )6=0) where a ground truth or detected object exists, and

calculated for all No objects.
In Table 1, we report the ATA values of the proposed method for the PETS 2001

sequence that contains three distinct objects along with the accuracy of the method
proposed in [5]. For both methods, we filter clutter by removing targets that appear
less than five frames. For our method, we take the target merges into consideration.
For [5], we repeat the experiments with different α and covariance confidence, which
is a specific parameter used for output representation in [5], and report the best result.
We also report the average running times to process one frame, i.e. seconds per frame–
SPF in the same table. The results demonstrate that the proposed method significantly
outperforms [5]. The primary reason is that our method calculates target parameters
deterministically as opposed to probabilistic sampling approach in [5]. In addition, we

(a) (b) (c) (d)

Fig. 6: Sample object boundaries (Section 4) from PETS 2009 dataset. The target bor-
ders are denoted with distinct colors across frames, as well as the historical centers as
the superimposed trajectory having the same color with the target borders. Some targets
in (a) merged (Section 5) into others in the following frames.
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SP size=9 SP size=25 SP size=100
ATA 77.98 78.07 62.57
SPF 28.27 9.91 5.88

(a)

Clean Noisy
ATA 78.07 77.96
SPF 9.91 13.21

(b)
Table 2: Tracking accuracy (100×ATA) and running time (SPF) of the proposed method
for PETS 2001 sequence; (a) comparing the different superpixel sizes, (b) comparing
noisy observations.

extract the foreground pixels by a more robust background generation method instead
of the simple frame differences as in [5].

In Table 2-a, we give the tracking accuracy scores of our method for different aver-
age superpixel sizes. The results show that the superpixel size plays an important role
for both tracking accuracy and running time.

As seen in the first two columns, increasing superpixel size significantly decreases
the running time by reducing the number of observations. However, using large su-
perpixels (as in the third column) may negatively impact the tracking accuracy too.
The reason is that as superpixels get larger, there is risk of grouping some pixels of
the background and nearby targets into same superpixels, thus losing the distinction
between targets and deforming their boundaries at the observation level that causes
tracking drift problems. For tracking accuracy, it is not always preferable to use smaller
superpixels either as the optimal size for the ATA is around 25.

In Table 2-b, we report tracking accuracies when a detection noise is added by
adding a random number of false observations. The number of false observations are
controlled such that during foreground extraction, each background superpixel is cho-
sen falsely as with some particular probability, which was set as 0.001 for the presented
result. The effect of noise can be seen on the running time. Noisy observations intro-
duces false targets, which involves more calculations in the process of the observation-
to-target assignment during the generation of tracking hypotheses. Table 2-b shows that
the tracking accuracy changes minimally for noisy observations, which indicates that
the proposed method is very robust to observation errors.

7 Discussion and Future Work

We use DPMMs in visual object tracking in a deterministic multiple-hypotheses track-
ing framework. DPMMs allow us to detect and track unknown number of object in
a fully automatic fashion, without any initial labeling required. Since our method is
based on superpixels and incorporates an efficient pruning step, the number of hypothe-
ses does not grow in memory and is tractable. It also achieves refinement of object
boundaries with MRFs while employing a target grouping step to compensate cluster-
ing errors.

In the future we plan to extend MRF refinement by enforcing different higher or-
der constraints such as shape and histograms to incorporate object specific priors into
segmentation.
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