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Abstract
Hybrid Petri nets represent a powerful modeling formalism that offers the possibility of in-
tegrating in a natural way continuous and discrete dynamics in a single net model. Usual
control approaches for hybrid nets can be divided into discrete-time and continuous-time ap-
proaches. Continuous-time approaches are usually more precise but can be computationally
prohibitive. Discrete-time approaches are less complex but can entail mode-mismatch errors
due to fixed time discretization. This work proposes an optimization-based event-driven con-
trol approach that applies on continuous time models and where the control actions change
when discrete events occur. Such an approach is computationally feasible for systems of
interest in practice and avoids mode-mismatch errors. In order to handle modelling errors
and exogenous disturbances, the proposed approach is implemented in a closed-loop strategy
based on event-driven model predictive control.
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of Timed Hybrid Petri Nets
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C. Mahulea

Abstract Hybrid Petri nets represent a powerful modeling formalism that offers the
possibility of integrating in a natural way continuous and discrete dynamics in a single
net model. Usual control approaches for hybrid nets can be roughly divided into dis-
crete time and continuous time approaches. Continuous time approaches are usually
more precise but can be computationally prohibitive. Discrete time approaches are less
complex but can entail mode-mismatch errors. This work proposes an optimization-
based event-driven control approach that applies on continuous time models and whose
control actions change only when events occur. Such an approach is computationally
feasible for systems of interest in practice and avoids mode-mismatch errors. In or-
der to handle modelling errors and exogenous disturbances, the proposed approach is
implemented in a closed-loop strategy based on model predictive control.
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1 Introduction

Petri nets represent a widely spread formalism for modeling discrete event systems [29,
32]. Similarly to other formalisms for discrete systems, Petri nets suffer from the well-
known state explosion problem, i.e., the number of states increases exponentially with
respect to the size of the system.

An interesting approach to avoid the state explosion problem is to approximate
the discrete variables that reach high values by continuous variables. Such variables
typically correspond to raw parts, produced items, capacity of buffers, etc. On the
other hand, other system variables, such as shared resources or processing machines,
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Dpto. Informática e Ingenieŕıa de Sistemas, Universidad de Zaragoza, Spain.
E-mail: {julvez,cmahulea}@unizar.es

S. Di Cairano
Mitsubishi Electric Research Laboratories, Cambridge, MA.
E-mail: dicairano@ieee.org

A. Bemporad
Dip. Ingegneria Meccanica e Strutturale, Università di Trento, Italy.
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might maintain small values for any potential system evolution. Hence, they should
be maintened as discrete. The above considerations lead to hybrid Petri nets [13], a
modeling formalism in which the Petri net structure is the same as in a classical Petri
net, but the amount of tokens in the subset of continuous places and the firings of the
subset of continuous transitions are real numbers.

As in timed discrete Petri nets, several semantics can be associated to the firing
of continuous transitions in timed hybrid Petri nets. In this paper, we will consider
single-server semantics. Under this semantics the firing rate of a continuous transition
remains constant as long as no place gets empty [4]. When a place gets empty, the firing
rate changes and remains constant again until another place gets empty. in this way, the
continuous-time evolution of the marking of a continuous Petri net is piecewise-linear.

The autonomous behavior of a hybrid Petri net can be modified by introducing
control actions on the net transitions. By using a common analysis where a continuous
transition is seen as a valve through which a liquid flows, the control action on the
transition determines how much such valve is open. The introduction of control actions
allows one to define control problems in the framework of hybrid Petri nets.

In this paper we propose a framework for optimization-based control of timed hy-
brid Petri nets, based on their piecewise linear dynamics. The task of solving control
problems for continuous-time piecewise-linear systems is, in general, a challenging prob-
lem [23, 33]. A common approach to overcome this difficulty is to consider a discrete-
time representation of the system [28]. However, time discretization leads to mode
mismatch errors [15], mode changes that occur during the intersampling, and hence
are lost or delayed in the discrete-time representation, leading to possibly large differ-
ences between the discrete-time and continuous-time trajectories. Clearly, the smaller
the time step, the smaller the effects of the mode mismatch are. Unfortunately, in the
case of finite horizon optimal control, reducing the sampling period usually increases
the complexity of the problem to solve [8,15].

The framework proposed in this paper is event-driven, and, by considering mode
switches as included in the events, mode-mismatch is avoided. In such an approach, the
control input is parametrized by a piecewise constant function where the time-duration
of the different step is not assumed constant. As a consequence, the control signal is
defined by tuples (v(k), q(k)) defining the integral of the control signal during the
application period, and the application period, respectively. A tuple is produced when
an event occurs, i.e., for a hybrid Petri net, when a places gets empty or when a discrete
transition fires. Given that the marking evolution is piecewise-linear, the full system
trajectory is defined by the sequence of tuples. Preliminary results of this method for
optimal control of continuous Petri nets were proposed in [24]. This paper improves
such preliminary results by considering hybrid Petri nets, and further extending the
optimal control framework to a model predictive one, in order to provide a closed-loop
strategy that corrects external disturances.

Model predictive control (MPC) [11,25] is an optimization based receding horizon
closed-loop control strategy, where at each control cycle a (constrained) finite horizon
optimal control problem is solved, and only the first part of the computed optimal input
profile is applied to the system. However, differently from open-loop optimal control,
when fresh information on the system state becomes available, by measurements or
estimators, the optimal sequence is recomputed. In this way, feedback is taken into
account and MPC results to be a closed-loop control strategy.

Due to the improved performance achieved by using optimization algorithms, to the
capability of handling multiple input, and to the possibility of enforcing constraints,
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model predictive control has found several applications, for instance in process indus-
try [30], automotive (e.g., [17,19]), aerospace (e.g., [21]), and supply chains (e.g., [10]).
A previous application of model predictive control to a particular class of discrete-event
systems is found in [14].

Several approaches to control continuous Petri nets exist in the literature. In [34]
an algorithm to track control of Petri nets without joins is suggested. In [4] an optimal
mode of operation for hybrid Petri nets is obtained by means of linear programming
problems. Classical model predictive control has been applied to continuous Petri nets
in [20,26]. However, classical model predictive control requires time discretization that
may lead to mode mismatch errors when places of the net become empty during the
intersampling. As such, the sampling period must be kept small enough to minimize
the problems due to such errors, which however increases the complexity of the MPC
controller. With respect to previous approaches, the present paper provides improve-
ments in the class of models considered -hybrid Petri nets instead of continuous Petri
nets- and on the controller properties, since the event-driven MPC does not require
time-discretization nor oversampling to avoid mode mismatch problems.

The rest of the paper is organized as follows. Section 2 introduces hybrid Petri nets.
A technique to express the behavior of hybrid Petri nets in an event-driven fashion is
discussed in Section 3. Section 4 presents two methods for the event-driven control of
continuous Petri nets. A finite horizon open-loop optimal control problem is introduced
first, then used to implement a model predictive control strategy. Two control scenarios
are shown in section 5. The conclusions are summarized in section 6.

1.1 Notation

R, (R0+, R+) is the set of (nonnegative, positive) real numbers and N is the set of
natural numbers. Inequalities between vectors are intended componentwise and when a
number c is used in the place of a vector, it indicates a vector where all the components
have value c. For a time-dependent vector x, x[i](k) denotes the value of component i
at step k, and x(k) denotes the whole vector at step k. The step (k) will be omitted
if clear from the context. For a vector µ ∈ R

n, µ(h|τ ) is the h-steps ahead predicted
value starting from time τ . Since this paper discusses event-driven control, the steps
start at the occurrence of events and time duration of the steps is not constant.

2 Hybrid Petri nets

In the following we assume the reader is familiar with the basic concepts of Petri nets
(PNs), see [18,29] for an extensive overview. This section introduces the basic concepts
related to hybrid Petri nets.

2.1 Untimed hybrid Petri nets

In contrast to conventional (i.e., discrete) PNs, the arc weights of hybrid PNs are
real-valued.

Definition 1 (HPN) A Hybrid Petri Net (HPN) is a tuple N = ⟨P, T,Pre,Post⟩
where:
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– P is a set of |P | places, and T is a set of |T | transitions.
– Pre : P × T → R0+ and Post : P × T → R0+ are the pre- and post- incidence

functions that specify the arc weights.
– P = Pc ∪ Pd, Pc ∩ Pd = ∅, and T = Tc ∪ Td, Tc ∩ Td = ∅

The set of places P is partitioned into a set of discrete places Pd and a set of con-
tinuous places Pc. Similarly, the set of transitions T is partitioned into a set of discrete
transitions Td and a set of continuous transitions Tc. Discrete places are represented
as circles and continuous places as double circles, and similarly discrete transitions
are represented as rectangles and continuous transitions as double rectangles, see for
instance the network in Figure 2(a).

The main difference between HPNs and discrete PNs is in the way the transitions
are fired. In discrete PNs the transitions are fired a natural number of times. In HPNs
the discrete transitions are also fired a natural number of times, but the continuous
transitions can be fired a real number of times which leads to real markings in contin-
uous places.

In order to ensure the integrality of the marking of discrete places, two conditions
are required: a) Pre[p, t] ∈ N and Post[p, t] ∈ N for every p ∈ Pd and every t ∈ Td; b)
Pre[p, t] = Post[p, t] for every p ∈ Pd and every t ∈ Tc.

The incidence matrix of the net is C = Post− Pre, C ∈ R
|Pc|×|Pd| and the state of

the net is the marking m ∈ R0+
|Pc| × N

|Pd|, which evolves dynamically. The marking

can be partitioned into its real and natural components, m = [m′
c m′

d]
′, mc ∈ R0+

|Pc|,

md ∈ N
|Pd|, the marking of continuous places and discrete places, respectively. The

preset and postset of a node ξ ∈ P ∪ T are denoted as •ξ and ξ•.

Definition 2 (HPN system) A Hybrid Petri Net System is a tuple ⟨N ,m0⟩ where:

– N is a HPN.
– m0 : P → R0+ assigns to each place p, an initial marking m0[p]. For every p ∈ Pd,

it is required m0[p] ∈ N.

Definition 3 (Enabling degree) Let ⟨N ,m0⟩ be a HPN system. The enabling de-
gree of a transition t ∈ T at marking m is enab(t,m) = min

p∈
•t{m[p]/Pre[p, t]}.

Definition 4 (Firing) Let ⟨N ,m0⟩ be HPNs system. A transition t ∈ T can be fired
in any amount α such that 0 ≤ α ≤ enab(t,m), and α ∈ N if t ∈ Td, α ∈ R if t ∈ Tc.
The firing of t in a certain amount α leads to a new marking m′ = m + α · C[P, t],
where C[P, t] is the column of the incidence matrix corresponding to transition t.

Hence, as in discrete PN systems, the state (or fundamental) equationm = m0+C·σ
summarizes the marking evolution. Similarly to continuous Petri nets, in HPNs the
marking of a continuous place can be seen as an amount of fluid being stored, and the
firing of a continuous transition can be considered as a flow of this fluid going from a
set of places (input places) to another set of places (output places).

2.2 Timed hybrid Petri nets

For the timing interpretation of continuous transitions a first order (or deterministic)
approximation of the discrete case [31] is used, hence assuming that the delays associ-
ated to the firing of the transitions are approximated by their mean values. As a result,
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the marking evolution with respect to time τ is

m(τ ) = m(0) + C · σ(τ ). (1)

The instantaneous flow of a continuous transition t ∈ Tc is defined as the derivative
of its firing count vector with respect to time, i.e., f = σ̇, and thus the evolution of a
continuous place p is described by

ṁ[p](τ ) =
∑

t∈
•p

Post[p, t] · f [t](τ )−
∑

t∈p•
Pre[p, t] · f [t](τ ) (2)

Different semantics have been defined for the firing of continuous transitions, the
most commonly used being infinite servers [31] and finite servers [1]. In this paper,
finite servers semantics is considered. Under finite firing semantics, every continuous
transition, t ∈ Tc, of the timed system is associated with a real parameter λ[t] > 0 that
is the maximum flow allowed by t, i.e., f [t] ≤ λ[t].

As for continuous transitions, different time interpretations can be adopted for the
firing of discrete transitions. Here, a deterministic firing of discrete transitions under
finite server semantics is considered. Conflicts between discrete transitions are solved
according to a given established scheduling policy, therefore no preemption can occur.

Definition 5 (THPN system) A Timed Hybrid Petri Net System (THPN system)
is a tuple ⟨N ,m0,λ,ϑ⟩ where:

– ⟨N ,m0⟩ is a HPN system.
– λ : Tc → R+ defines the maximum flow allowed by each continuous transition.
– ϑ : Td → N defines the time delay of each discrete transition.

Intuitively, if a continuous transition is seen as a valve through which a fluid passes,
λ can be seen as the maximum flow admitted by the valve. In contrast to [4], we do
not impose a lower bound for the flow of the transitions, thus, 0 ≤ f [t] ≤ λ[t].

In THPN two types of enabling for continuous transitions are considered [4].

Definition 6 (Enabling of continuous transitions) Let ⟨N , m0, λ⟩ be a THPN
system and t ∈ Tc. Let m be a marking such that m[p] ≥ Pre[p, t] for every p ∈ •t∩Pd.

– t is strongly enabled at m if m[p] > 0 for every p ∈ •t ∩ Pc.
– t is weakly enabled at m if there exists p ∈ •t ∩ Pc such that m[p] = 0.

A continuous transition is not enabled if there exists p ∈ •t ∩ Pd such that
m[p] < Pre[p, t]. Notice that in contrast to an untimed HPN, a continuous transition
in a THPN having an empty continuous place is still weakly enabled and can fire. This
happens when such an input place receives some input flow that is instantaneously
consumed by the transition.

The flow of a transition depends on its enabling state:

Definition 7 (Flow) Let ⟨N ,m0,λ⟩ be a THPN system and t ∈ Tc.

– If t is strongly enabled then it has maximum flow, i.e., f [t] = λ[t].
– If t is not enabled then it has no flow, i.e., f [t] = 0.
– The flow of the weakly enabled transitions must ensure that m[p] ≥ 0, for all p ∈ Pc.



6

The computation of an admissible f is non-trivial when several empty places ap-
pear. In [2], an iterative algorithm is suggested to compute one admissible f . In this
paper, f is computed similarly to [4] where the set of admissible f is characterized by
a set of linear inequalities. We choose f to fulfil the linear inequalities and maximize
∑

t∈T

f [t] while assuming no priority on the transitions.

Due to the use of finite server semantics, the continuous transitions flow vector f
is piecewise constant, and, due to (2), the trajectory of the marking evolution of the
continuous places is piecewise linear. Because of Definition 7, f changes only when an
event occurs, where for HPNs, an event occurs only when a place becomes empty, i.e.,
a transition becomes weakly enabled, or when a discrete transition fires.

Between two consecutive events, the system is said to be at an invariant behavior

state (IB-state) [1]. Note that since the dynamics are constant in an IB-state, these
play a similar role to the modes of a hybrid system [3]. Thus for a given fixed marking
of the discrete places, the number of potential IB-states equals the number of sets
of continuous places that can be empty. In principle, each place can be empty or
not empty, hence the number of IB-states for a given fixed discrete place marking is
bounded by 2|Pc|. However, the real number of IB-states is usually not so large, since
initially marked P-semiflows ( [18,29]) cannot be emptied.

Example 1 Let us consider the system in Figure 1(a). The only input place of t1 is
marked, hence it is strongly enabled and f [t1] = λ[t1] = 2. The evolution of m[p1] is
given by ṁ = λ[t2]−λ[t1] = −1. At time 1, p1 becomes empty, i.e., an event occurs, and
t1 becomes weakly enabled. Now, the maximum flow admitted by t1 is 1, since a greater
flow would cause m[p1] to be negative. Being f [t1] = 1, p1 remains empty. Now p1 can
be seen as a tube instead of a deposit and no more events occur. For arbitrary values
of λ[t1] and λ[t2], the flow of t1 when p1 is empty is defined as f [t1] = min(λ[t1],λ[t2]).

t1

t2

p1

λ[t1] = 2

λ[t2] = 1

1.0

(a)

t1 t2

t3

p1

λ[t1] = 1 λ[t2] = 3

λ[t3] = 3

2.0

(b)

Fig. 1 (a) Transition t1 becomes weakly enabled at τ = 1. (b) Transitions t1 and t2 become
weakly enabled at τ = 2.

Example 2 Transitions t1 and t2 of the system in Figure 1(b) are strongly enabled for
the given initial marking m[p1] = 2. After two time units, p1 becomes empty and t1, t2
become weakly enabled. At this point, it must be decided how to split the input flow,
λ[t3], coming into p1. Since we are considering that t1 and t2 have the same priority,
half of the flow should be routed to t1 and half to t2. Unfortunately, the maximum
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flow of t1, λ[t1] = 1, is smaller than λ[t3]/2. To solve this situation, the flow that
cannot be consumed by t1, λ[t3]/2−λ[t1], is routed to t2. This results in f [t1] = 1 and
f [t2] = 2. The explicit analytic expressions for f [t1] and f [t2] with arbitrary λ[t1], λ[t2]
and λ[t3] when m[p1] = 0 are f [t1] = min(λ[t3]/2 + max(0, λ[t3]/2 − λ[t2]),λ[t1]) and
f [t2] = min(λ[t3]/2+max(0, λ[t3]/2−λ[t1]),λ[t2]). The THPNs systems in Figure 1(a)
and Figure 1(b) have two IB-states, one takes places when m[p1] > 0 the other one
when m[p1] = 0.

2.3 Control actions

The hybrid Petri net models introduced so far are autonomous. Control actions can
be introduced in THPNs in order to modify the autonomous evolution. In THPNs the
controls act on the transitions.

A discrete transition t ∈ Td is controllable when its firing time is a decision variable
for a controller. Obviously, the firing cannot happen before ϑ[t] time units have elapsed
from the enabling of t, according to the common definition of discrete transition delay.

A continuous transition t ∈ Tc is controllable when its flow can be reduced by a
decision variable u[t] such that

0 ≤ u[t] ≤ λ[t], (3)

where u ∈ R
m is the vector of controls. An action u[t] on the transition t can be seen

as if the hypothetical valve associated to t was closed by the amount u[t].
The flow f is still computed as discussed in Section 2.2, where the maximum allowed

flow by t ∈ Tc, is λ[t]−u[t], i.e., 0 ≤ f [t] ≤ λ[t]−u[t]. Thus, if t ∈ Tc is strongly enabled,
f [t] = λ[t]− u[t], while if t ∈ Td is weakly enabled, f [t] ≤ λ[t]− u[t]. Finally, if t ∈ Tc
is not enabled, f [t] = 0.

Example 3 To show how input actions modify the evolution of a system, let us apply
the input action u[t1] = 0.5 to the system in Figure 1(a). Since, transition t1 is initially
strongly enabled, its flow will be f [t1] = λ[t1] − u[t1] = 1.5. After two time units p1
becomes empty. Hence, the maximum flow allowed by t1 is the input flow coming to
p1, that is 1. Now, every input action on t1 ranging from 0 to 1 has no effect on the
system evolution. However, if u[t1] is greater that 1, the flow of t1 will be slowed down.
For example, if u[t1] = 1.5, the flow of t1 will be f [t1] = 0.5, and consequently p1 will
start to fill. The analytic expression for f [t1] with arbitrary λ[t1] and λ[t2] when p1 is
empty is f [t1] = min(λ[t1]− u[t1],λ[t2]− u[t2]).

Similarly, for the system in Figure 1(b), if m[p1] > 0 then f [t1] = λ[t1]− u[t1] and
f [t2] = λ[t2]− u[t2]. If m[p1] = 0 then f [t1] = min((λ[t3]− u[t3])/2 + max(0, (λ[t3]−
u[t3])/2−(λ[t2]−u[t2])),λ[t1]−u[t1]) and f [t2] = min((λ[t3]−u[t3])/2+max(0, (λ[t3]−
u[t3])/2 − (λ[t1]− u[t1])),λ[t2]− u[t2]).

3 Event-driven representation

This section shows how THPNs can be expressed as a particular class of Mixed Logical
Dynamical systems where each step represents the occurrence of an event. Section 3.1
introduces Mixed Logical Dynamical systems, and Section 3.2 shows how the mentioned
transformation is performed.
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3.1 Event-driven mixed logical dynamical systems

Mixed Logical Dynamical (MLD) systems [9] are computationally oriented represen-
tations of discrete-time hybrid systems. MLDs consist of a set of linear equalities and
inequalities involving both real and Boolean ({0, 1}) variables. An MLD system is
described by the relations

x(k + 1) = Ax(k) +B1u(k) +B2δ(k) +B3z(k) +B4 (4a)

y(k) = Cx(k) +D1u(k) +D2δ(k) +D3z(k) +D4 (4b)

E1u(k) + E5x(k) ≤ E2δ(k) + E3z(k) + E4 (4c)

where x = [xc xd] ∈ R
nr × {0, 1}nb is a vector of continuous and binary states,

u = [uc ud] ∈ R
mr × {0, 1}mb are the inputs, y = [yc yd] ∈ R

pr × {0, 1}pb are the
outputs, δ ∈ {0, 1}rb , z ∈ R

rr represent auxiliary binary and continuous variables,
respectively, and A, C, Bi, Di, i = 1, . . . , 4, Ei, i = 1, . . . , 5 are matrices of suitable
dimensions. Given the current state x(k) and input u(k), the evolution of (4a)-(4c) is
determined by solving (4c) for δ(k) and z(k), then updating x(k + 1) and y(k) from
(4a) and (4b). It is assumed that the system (4a)-(4c) is well-posed [9], which means
that for any value of x(k), u(k) within the range of interest, δ(k), z(k) are uniquely
defined by (4c).

In the recent work [16] the authors have proposed an event-driven MLD model,

χ(k + 1) = χ(k) +B1µ(k) +B2δ(k) +B3z(k) +B4 (5a)

y(k) = Cχ(k) +D1u(k) +D2δ(k) +D3z(k) +D4 (5b)

E1µ(k) + E5x(k) ≤ E2δ(k) + E3z(k) + E4 (5c)

where χ(k) = [x(k)′ τ (k)], q ∈ R0+, µ(k) = [v(k)′ ud(k)
′ q(k)]′. In (5), the counter

k represents the number of events, the additional state variable τ (k) is the total time
elapsed when the kth event occurs, q(k) is the time between the kth and the (k+ 1)th

events, and v(k) is the integral of the continuous control input between the kth and
the (k+1)th events, where it is assumed piecewise constant, i.e., v(k) = q(k)uc(t(k)

+).
As discussed in [16], in the eMLD system an event occurs either when the value of δ
changes, due to (5c), or when the input µ is changed.

In what follows we show how to transform THPNs in eMLD form.

3.2 Transforming THPNs to event-driven MLDs

Consider again the THPN in Figure 1(a). According to the defined semantics, the
continuous-time marking evolution is described by

if m[p1] > 0 then ṁ[p1] = −1

else ṁ[p1] = 0 .
(6)

Clearly, if the initial marking of p1 is m0[p1] = 1, after 1 time unit p1 gets empty.
Such an evolution can be described appropriately by a discrete-time model only if the
duration of the sampling period h ∈ R satisfies h · k = 1, for some k ∈ N. If this is
not the case, the marking of p1 will become at some point negative, and the evolution
will block. This phenomenon is named mode-mismatch error, where the exact instant
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of the mode switch is lost, because it occurs in the intersampling. Mode-mismatch is
present in most discrete-time models of hybrid systems [8], and it can be alleviated
by imposing a very small sampling period h (oversampling), which however results in
unnecessary computations in the control algorithm.

Indeed, mode mismatch is not present if a continuous time of the system is used.
However, for continuous time models, the input is an infinite-dimensional decision
variables, hence computational tools which require finite dimensional decision variable,
such as mathematical programming, cannot be used. To overcome the mode-mismatch
while retaining finite dimensionality of the input, an event-driven approach, instead of
a discrete-time one, shall be used. In an event-driven the system evolves at events, and
the time separation of the events is not constant, but modelled as a variable, e.g., q(k)
in (5). By including mode switches in the set of events, the mode-mismatch error is
removed.

For the marking evolution of the system in Figure 1(a) we obtain

if m[p1] > 0 then m[p1](k + 1) = m[p1](k)− 1 · q(k)

else m[p1](k + 1) = 0
(7)

In order to guarantee that q(k) does not drive the system to negative markings,
the constraint m[p1] ≥ 0 must be considered. Such a constraint together with the
conditional statement (7) can be easily included in an eMLD system (4), as it will be
shown later.

Next, the controls on t ∈ Tc have to be included. Let us consider again the system in
Figure 1(a) with m0[p1] = 1. Suppose that the continuous transition t1 is controllable,
so that the flow of t1 is f [t1] = λ[t1] − u[t1](k) and the marking evolution of p1 from
event k to k + 1 is

m[p1](k+1) = m[p1](k)+q(k)·(f [t2]−f [t1]) = m[p1](k)+q(k)·(λ[t2]−(λ[t1]−u[t1](k))).

Thus, the equation defining m(k+1) is nonlinear. As in eMLD system (5), the control
action is re-parametrized by considering the integral between two events

v[t1](k) = q(k) · u[t1](k), (8)

which results in the linear dynamics

m[p1](k + 1) = m[p1](k) + q(k) · λ[t2]− q(k) · λ[t1] + v[t1](k).

The constraints on the control action (3) are also translated to the new parametrization
of the control action by 0 ≤ v[t1] ≤ q(k) · λ[t1] must be added.

The input action on the discrete transitions t ∈ Td is expressed as a boolean
variable, u[t], which can be straightforwardly included in (4a). If u[t](k) = 1, then
transition t fires at step k, it does not fire otherwise. The constraints in (4b) are used
to avoid u[t](k) from being equal to 1 before ϑ[t] time units have elapsed from the
enabling of t.

In a THPN the flow of the transitions is constant between events and depends only
on the IB-state of the net. By treating each step k as the occurrence of an event in the
THPN rather than the elapse of a sampling period, we will transform the THPN into an
event-based mixed logical dynamical (eMLD) system. In this way we obtain two major
advantages. First, a discrete-event representation where the events include the mode
switches avoids the mode-mismatch errors typical of the discrete-time system, while
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maintaining the capability of finite parametrization of the control signals. Second, the
number of control actions is not increased, since any event causes the request of only
one control action. As a consequence, the length of the sampling period is not constant,
but depends on the time separation between the events.

The steps to convert a THPN into the aforementioned eMLD system are the fol-
lowing:

1. Identify the potential IB-states of the THPN, i.e., the possible dynamics that de-
fine the evolution of the system. For example, the system in Figure 1(a) has two
potential IB-states: a) m[p1] > 0 and b) m[p1] = 0.

2. Define the flow of continuous transitions under each IB-state. The flow of t1 in
Figure 1(b) is f [t1] = λ[t1] if m[p1] > 0, and f [t1] = min(λ[t1],λ[t2]) if m[p1] = 0.

3. Define the evolution of the marking, by including the state equation of the THPN
in the eMLD equations. For instance, for the system in Figure 1(b), the equation
defining the evolution of the marking is m(k+1) = m(k)+ q · (f [t3]− f [t1]− f [t2]),
where q is the real variable storing the time elapsed between events k and k + 1.

4. Specify the remaining time to fire of enabled discrete transitions. If a discrete tran-
sition t becomes enabled at a given IB-state its time to fire is set to ϑ[t]. If t was
already enabled in the previous IB-state, its time to fire is decreased in q time units,
where q is the time duration of the previous IB-state.

5. Constrain the system variables to nonnegative numbers. In order to achieve this,
inequalities on the marking of places, e.g., m[p1](k) ≥ 0, and on the time to fire of
the discrete transitions are added. An event occurs when one of these constraints
is activated, modeling a place to become empty or a discrete transition to be fired.

By Step 1 a set of modes Jc is computed, each corresponding to an IB-state and
identified by a set of linear inequalities on the marking of places

Hm
j m(k) ≤ hmj . (9)

The inequalities in (9) represents the IB-state conditions on the marking, such as
m[p2](k) = 0, or1 m[p1](k) > 0.

For each j ∈ Jc the vector fj defining the net flow in the corresponding IB-state is
computed (Step 2). At Step 3 we compute the marking update dynamics by considering
controllable transitions and integrating between two events, hence obtaining

m(k + 1) = m(k) +Bjv(k) + fjq(k), (10)

where Bj represents the effects of the controls when in IB-state j ∈ J . The commands
are subject to constraints of the type 0 ≤ v[t](q) ≤ λ[t]q(k).

Step 4 concerns the modelling of the discrete transitions t ∈ Td. In order to account
for the transitions delay, a vector of timers ψ is added. For a given IB-state i ∈ Jc, the
timer dynamics are defined by

ψ(k + 1) = ψ(k) + γijq(k) + ϑij (11a)

j ∈ J i
ψ : Hψ

j ψ(k) ≤ hψj , (11b)

where (11b) selects the timer dynamics depending on the current timer value (e.g.,
ψ[h](k) > 0, ψ[h](k) = 0, etc.), and (11a) represents the different timer evolu-
tions such as ψ[h](k + 1) = ϑ[h] for a timer that has not started the countdown,

1 An arbitrarily small numerical constant, e.g., the machine precision, is used to convert
strict inequalities into non-strict ones.
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ψ[h](k + 1) = ψ[h](k) − q(k), for a timer that is counting down, ψ[h](k+1) = ψ[h](k),
for a timer that maintains the current value, for instance because it has reached zero.

The discrete transition can be fired when enabled, which depends on the current
IB-state and on the timer state. Thus, the firing of discrete transition j, occurs by
setting to 1 a corresponding Boolean variable ud[j] ∈ {0, 1}, when the conditions on
the timer and on the IB-state are met. This results in a set of modes Jd with evolution
defined by

m(k + 1) = m(k) + φj , j ∈ Jd (12a)

τ (k + 1) = τ (k) (12b)

ud[j] ≥ 0.5 (12c)

Hd,m
j m(k) ≤ hmd (12d)

Hd,ψ
j ψ(k) ≤ hψd (12e)

where fj , j ∈ Jd represents the effect of the transition, (12b) shows the transition
firing is instantaneous, (12c) is added to command the transition firing, and (12d),
(12e) represents the conditions that have to be met for a discrete transitions to fire, in
terms of marking and timers, respectively.

By collecting (9)–(12) we have that the complete set of modes is
J = Jd ∪

(
⋃

i∈Jc
J i
ψ

)

, and the dynamics of the net are formulated as

m(k + 1) = m(k) +Bpn
j v(k) + fpnj q(k) + φpnj (13a)

τ (k + 1) = τ (k) + Γ pn
j q(k) (13b)

ψ(k + 1) = ψ(k) + γpnj q(k) + ϑpnj (13c)

m(k) ≥ 0, q(k) ≥ 0 (13d)

j ∈ J : Hpn,m
j m(k) +Hpn,ψ

j ψj(k) ≤ hpnj , (13e)

ud(k) ≥ ρj , (13f)

0 ≤ v(k) ≤ Λjq(k) (13g)

Ωm
j m(k) +Ωψj ψ(k) +Ωv

j v(k) +Ωq
j q(k) ≤ ℓj (13h)

where γpnj , Bpn
j , fpnj ,φpnj ,Γ pn

j ,ϑpnj are obtained from (10), (11a), (12a). Note that

γpnj ,Γ pn
j , Bpn

j , fpnj = 0, for j ∈ Jd, since the discrete transition firings are instanta-
neous, and φj = 0, for j /∈ Jd, since the marking evolution is continuous except for the
discrete transitions.

Inequalities (13e) are obtained from the marking conditions (9) that select the cur-
rent IB-state, from conditions (12d) that indicate whether a discrete transition can
occur at the current IB-state, from timer conditions (11b), that select how the timer
evolves, and from conditions (12e) that check whether a timed discrete transition can
occur. Inequalities (13f) fire a discrete transition, where obviously the firing is disabled
by setting the components of ρj to be larger than 1. The additional set of inequali-
ties (13h) enforces the conditions (13e)–(13g) to hold for m(k+1), ψ(k+1) within an
arbitrarily small bound, so that mode switches do not occur during (t(k), t(k + 1)) but
only at t(k + 1) (see [16] for details).

Equation (13) define the net dynamics as a piecewise affine system that is easily
converted into eMLD form (5) as discussed in [15] by algorithm [6], whose implemen-
tation is available in the toolbox [5]. The result is an eMLD (5) whose state vector
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χ′ = [m′ ψ′ τ ′] contains the net marking, the timers values, and the current time, and
whose input vector µ′ = [u′ u′d q′] contains the integral of the continuous input to
be applied, the discrete transition firing commands, and the duration of the applica-
tion. By using the language Hysdel in [5], the net dynamics can be directly obtained
from the high-level description in Steps (1)–(5), while the matrices of (13) and of the
corresponding eMLD (5) are automatically generated.

Proposition 1 Let (13) be used to model the THPN and let τ (k), τ (k+1), k ∈ N, be

the time instants of two consecutive events. Then, neither IB-state changes nor changes

in the ready-to-fire discrete transitions occur during (t(k), t(k + 1)).

Proof: For given ȷ̄ ∈ J , inequalities (13e)–(13g) identify the the active IB-state and
ready-to-fire transitions. By the results of [16], constraint (13h) enforces that inequali-
ties (13e)–(13g) are satisfied at τ (k) and at τ (k+1)−σ, for σ > 0 arbitrarily small. Thus,
the IB-state and the ready-to-fire transitions are the same at τ (k) and at τ (k+1)− σ.
Inequalities (13e)–(13g) are linear, hence they describe a polyhedral set, and the state
trajectory χ(τ ) is linear between two events. Given that the extrema of the segment
χ(τ ), τ ∈ [τ (k), τ (k + 1) − σ] belongs to the polyhedral set, the whole segment be-
longs to the set. Hence constraints (13e)–(13g) which describe the active IB-state and
ready-to-fire transitions are the satisfied for all τ ∈ [τ (k), τ (k + 1)− σ]. ✷

The result of Proposition 1 ensures mode and constraint enforcement continuously-
in-time. This is stronger than classical results for discrete-time systems, where con-
straints and mode enforcement are guaranteed only pointwise-in-time. Proposition 1
ensures the mode-mismatch error is avoided.

Example 4 Consider the system in Figure 2(a) with λ[t1] = (1.5), λ[t2] = (1), λ[t3] =
(2), ϑ[t4] = ϑ[t5] = 5, and m0 = (0 0 3 1 0). The system is transformed into eMLD form
following the tasks described above. At time 0 the flow of the continuous transitions is
f [t1] = 1.5, f [t2] = 1 and f [t3] = 2. At time instant 3 place p3 becomes empty, i.e., the
length of the first interval is q(1) = 3 time units. At that instant t3 becomes weakly
enabled and its new flow is f [t3] = 1, the other two continuous flows keep the same.

At time instant 5, transition t4 fires. This second event disables transition t2 causing
the continuous flows be f [t1] = 1.5, f [t2] = 0 and f [t3] = 0. The time trajectory of the
system for the first 7 time units is depicted in Figure 2(b).
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Fig. 2 (a) A THPN system. (b) Its marking evolution.
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4 Event-driven control of THPNs

In this section, we show how optimization based control can be applied on THPNs
via their eMLDs formulation, and how feedback can be accounted for by a model
predictive control strategy. We first propose a set of cost functions and constraints
that can be used to formulate open-loop finite horizon optimal control problems for
the THPN that can be solved by standard Mixed Integer Linear Programming (MILP)
algorithms, then we show how the optimal control problem can be used as the base
for a receding horizon control strategy, hence implementing an event-driven model
predictive control algorithm for the THPN.

4.1 Event-driven optimal control

The advantages of formulating the THPN as an eMLD system (5) is that the dynam-
ics are expressed by mixed-integer equalities and inequalities. As a consequence, the
dynamics equations can be used into the mixed integer optimization problem

min
µ̄(t)

J(µ̄(t), χ̄(t)) (14a)

s.t. χ(k + 1|t) = Aχ(k|τ ) +B1v(k) +B2δ(k|τ ) +B3z(k|τ ) +B5 (14b)

E2δ(k|τ ) + E3z(k|τ ) ≤ E1µ(k|τ ) +E4χ(k|τ ) + E5 (14c)

H2δ(k|τ ) +H3z(k|τ ) ≤ H1µ(k|τ ) +H4χ(k|τ ) +H5 (14d)

χ(0|t) = χ(t), k = 1, . . . , N (14e)

where J in (14a) is the cost function, µ̄(t) = {µ(k|τ )}Nk=0 are the decision variables, χ̄ =
{χ̄(k|τ )}Nk=0 is the eMLD state trajectory, (14b) and (14c) define the dynamics, (14d)
includes additional constraints, and (14e) defines the initial state used for prediction.
Note that once the initial state is fixed by (14e) the trajectory χ̄(t) and the value of
the auxiliary variables is assigned because of the wellposedness of the eMLD.

The decision variables µ(t) contains the continuous command integral, the corre-
sponding durations, and the discrete commands. From the first ones and the second
ones, the flow commands can be easily obtained as u(h|t) = v(h|t)/q(h|t), with appli-
cation interval (τ (h|t), τ (h|t) + q(h|t)).

Since the constraints in (14) are linear relations between integer and real variables,
by choosing the cost function (14a) to be linear, the resulting problem is a mixed
integer linear programming (MILP) problem, which can be solved by using exisiting
reliable solvers [12, 22, 27]. Figure 3 sketches the steps that have been followed to
obtain an MILP problem from the initial THPN. If (14a) was chosen to be a quadratic
function, the resulting problem would be a mixed-integer quadratic problem, which is
still solvable, even though computationally more complex, see [16].

The cost function (14a) and the additional constraints (14d) are used to define the
objectives of the optimization problem, as shown next.

4.1.1 Final target marking

In order to enforce the marking to reach a desired target marking m̂ after N events, a
terminal constraint can be added

m(N) = m̂. (15)
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Fig. 3 Obtaining an MILP problem from a THPN.

The terminal constraint (15) can be softened to preserve feasibility of optimization
problem (14), hence adding to J in (14a) the term

F
(

m(N), τ (N)
)

= ρ ∥m(N)− m̂∥∞, (16)

where ρ is a large weight. A more general case is to consider a desired marking range,
for instance a polyhedral set expressed by the constraints MNm(n) ≤ MN , MN ∈
R
q×|P |, MN ∈ R

q .

4.1.2 Cost function

For THPN control, the general form of the cost function is

J(χ̄(t), µ̄(t)) = F
(

m(N |t), τ (N |t)
)

+
N−1
∑

k=0

L
(

m(k|τ ), τ (k|τ ), µ(k|τ )
)

. (17)

hence composed of a terminal cost F and a stage cost L, usually in the form

L(m, τ, µ) ! ∥m− m̂∥Q1

p + ∥τ − τ̂∥Q2

p + ∥v − v̂∥R1

p + ∥q − q̂∥R2

p (18a)

F (m, τ ) ! ∥m− m̂∥QN

p + ∥τ − τ̂∥Qτ

p , p ∈ {1,∞}. (18b)

where “ˆ” denotes a given reference for the corresponding vector. The following sub-
sections show some of the possible control goals in an event-driven framework. The use
of 1,∞-norms allows to formulate (17) as a linear function, through auxiliary variables
and linear constraints [7].

A case of particular interest is minimum-time control, where the minimum time
to reach a certain marking is sought. Thus, together with terminal constraint (15) the
stage cost and terminal cost are respectively set to

L(m(k), τ (k), µ(k)) =
N
∑

k=1

q(k), F
(

m(N), τ (N)
)

= 0. (19)

A different criterion to reach the desired marking m̂ is minimum-effort, which
minimizes the intensity of the command input u(τ ), hence letting the THPNs evolve
as close as possible to its autonomous behavior. By using the ℓ1-norm of the input

signal, we obtain J(m, τ, q, v) =
∫ τN
0 ∥u(τ )∥dt =

∑N−1
k=0

∫ τ(k+1)
τ(k) ∥u(τ )∥1dτ . Since u is

constant in each period [τ (k), τ (k + 1)),

L
(

m(k|τ ), τ (k|τ ), µ(k|τ )
)

= ∥v(k|τ )∥1, F
(

m(N |t), τ (N |t)
)

= 0. (20)
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A slightly different cost function from (17) can be used to represent the minimum-

displacement criterion. This criterion looks for the trajectory that minimizes the largest
deviation from a desired continuous state trajectory m̂(·), that we assume piecewise
linear and continuous (a special case is m̂(·) ≡ m̂)

J(χ̄(t), µ̄(t)) = max
τ∈[τ(0),τ(N)]

∥m(τ )− m̂(τ )∥∞. (21)

Proposition 2 Let mc(τ ), ∀τ ∈ [τ0, τN ], be the trajectory of continuous states of a

THPN system, τ0 < τ1 < . . . < τN be the event instants, assume that m̂(τ ) is linear

over each [τi, τi+1), i = 0, . . . , N − 1 and continuous over [τ0, τN ]. Then

max
τ∈[τ0,τN ]

∥m(τ )− m̂(τ )∥∞ = max
k=0,...,τN

{∥m(k|τ )− m̂(k|τ )∥∞}. (22)

Proof: The marking trajectories of a THPN are continuous, so ∥m(·) − m̂(·)∥∞ is
continuous, being the composition of continuous functions (∥ · ∥∞, m(·), m̂(·)), and
therefore the maximum over [t0, tN ] is well defined. Moreover, function ∥m(·)−m̂(·)∥∞
is a convex function of time τ on [τ (k), τ (k + 1)], being the composition of a convex
function (the infinity norm) with linear functions (the state trajectory of the THPN
and m̂ between two consecutive switches), and thus it attains its maximum either at
τ (k) or at τ (k + 1). Hence,

max
τ∈[τ(0),τ(N)]

∥m(τ )− m̂(τ )∥∞

= max
0≤k≤N−1

{

max
τ∈[τ(k),τ(k+1)]

∥m(t)− m̂(t)∥∞

}

= max
0≤k≤N−1

{max{∥m(τ (k))− m̂(τ (k))∥∞, ∥m(τ (k + 1))− m̂(τ (k + 1))∥∞}}

= max
0≤k≤N

{∥m(τ (k))− m̂(τ (k))∥∞} = max
k=0,...,τN

{∥m(k|τ )− m̂(k|τ )∥∞}

✷

Note that cost function (22) still leads to a mixed-integer linear formulation of
problem (14).

4.2 Event-driven model predictive control

Problem (14) is a finite horizon open-loop optimal control problem, which computes
the control profile u(r), r ∈ [τ, τ + τ (N |τ )], such that the constraints are satisfied and
the cost is minimized. However, the control profile proceeds only for a finite number
of events, where more events can be considered only at the price of an increased com-
putational burden for solving (14). Furthermore, disturbances that occur during the
execution of the control profile and possible modelling errors are not accounted for.
Thus, a receding horizon feedback strategy is more advisable for cases where distur-
bances are possible. For this reason we incorporate the optimal control problem (14) in
an event-driven closed-loop strategy based on Model Predictive Control (MPC) [11,25].

The event-driven Model Predictive Control (eMPC) strategy is defined as follows:

1. Let N be the event horizon; at a generic time τ set χ(τ ) = [m(τ )′ ψ(τ )′ τ ′]′.
2. Solve problem (14), to obtain the sequence of optimal controls µ∗(χ(τ )) =

[µ∗(0|τ ), . . . , µ∗(N − 1|τ )].
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3. Compute the input levels profile ū∗c (χ(τ )) = [u∗c (0|τ ), . . . , u
∗
c(N − 1|τ )] =

[

v∗(0|τ)
q∗(0|τ) , . . . ,

v∗(N−1|τ)
q∗(N−1|τ)

]

,

4. Apply u(r) = [u∗c (0|τ )
′ u∗d(0|τ )

′]′ for r ∈ [τ, τ + q∗(0|τ )].
5. Set τ = τ + q∗(0|τ ), measure the new value of χ(τ ) and go to Step 2.

The actual state m(τ + q(0|τ )) at the end of each control action may be different
from the predicted one m(1|τ ) because of external disturbances and modelling errors.
In fact, also the time instant at which the optimization problem is repeated may be
different from the scheduled instant τ + q(0|τ ). By the closed-loop nature of the eMPC
approach, the current state (and time) are measured or estimated again and a new
updated optimal input sequence is computed.

For the nominal case, i.e., the trajectory is not purturbed by external disturbances,
the reachability of a desired target marking can be proven.

Proposition 3 Consider the event-driven MPC scheme applied to a THPN where

the cost function is the minimum-time criterion (19), and where the terminal con-

straint (15) is applied on the desired target marking m̂. If the problem is feasible at

time τ0 with finite cost, then it is recursively feasible and the desired marking is reached

in finite time, i.e., m(τ ) = m̂ for τ < ∞.

Proof: The result follows from the convergence of eMLD scheme proved in [16]. Since
at time τ0 problem (14) is feasible with finite cost, due to terminal constraint and
minimum-time criterion, the command sequence µ∗(τ0) brings the marking to the
target in finite time J∗(τ0). A time τ1 = τ0 + q∗(0|τ0), a new optimization problem is
solved, where the sequence [µ∗(1|τ0), . . . , µ(N |τ0), µ(N |τ1)] where µ(N |τ1) = [0 0 0]′ is
feasible, and brings the marking to the target in time J(τ1) = J∗(τ0)−q∗(0|τ0). Hence,

J∗(τ1) ≤ J∗(τ0) − q∗(0|τ0), and by recursive application, J∗(τk) +
∑k−1

i=0 q∗(0|τ0) ≤
J∗(τ0), which means that the time computed at the first step it is always a lower bound
for the time to reach the marking. Since J∗(τ0) < ∞ the time to reach the marking is
finite. ✷

Similar reachability results can be proved for the other type of criteria, where
however the target may be reached only asymptotically in time, because convergence
time is not explicitly accounted for in the cost function.

5 Control scenarios

This section presents two manufacturing systems modeled with hybrid Petri nets to
which an event-driven MPC approach has been applied. The first system is a multiclass
machine, the second one is a production network.

5.1 Multiclass machine

The hybrid Petri net in Figure 4 models a production system consisting of two lines
and a single machine that processes the items in both lines. The first (second) line is
modeled by transitions t1, t2 (t3, t4), and places p1, p3 (p2, p4), and has a capacity
of c1 (c2) items. The input flows of the first and second lines are given by the flows
of t1 and t3, respectively. Places p1 and p2 are the buffers to store the incoming parts
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from t1 and t3 before being processed. The output flow of the first (second) class is
represented by t2 (t4). The processing machine is modeled by transitions t5, t6, t7, t8
and places p5, p6, p7, p8. Since the number of items in the lines is expected to be high,
the places and transitions for the lines are continuous. On the other hand, since only
one machine is available, the subnet that models the machine is discrete.

c1 c2

t1

t2

t3

t4

t5 t6

t7t8

p1 p2p3 p4

p5

p6

p7

p8

Fig. 4 Two production lines and a multiclass machine.

Let the capacity of the buffers be c1 = 30, c2 = 25, and λ[t1] = 1.5, λ[t2] = 2,
λ[t3] = 1, λ[t4] = 3. It is assumed that the processing machine needs 2 time units
to change from one line to the other. During such 2 time units, none of the lines is
processed. This is modeled by a deterministic delay of 2 units in transitions t6 and t8
, i.e., ϑ[t6] = ϑ[t8] = 2, and by immediate transitions t5 and t7, i.e., ϑ[t5] = ϑ[t7] = 0.
Let the initial marking of the system be m0[p1] = 5, m0[p2] = 15 and m0[p7] = 1.
The marking of the remaining places is uniquely defined by these, since the invariants
m[p1] +m[p3] = c1, m[p2] +m[p4] = c2, m[p5] +m[p6] +m[p7] +m[p8] = 1), hold.

Assume that it is required to compute a control law that maximizes the number of
items produced over a given time interval. This is equivalent to maximizing the sum
of the integral flows, v, of transitions t2 and t4. Hence, the cost function associated
to (17) is

F (m(N |τ ), τ (N |τ )) = 0, L
(

m(k|τ ), t(k|τ ), µ(k|τ )
)

= −
N−1
∑

k=1

(v[t2](k|τ ) + v[t4](k|τ ))

(23)
The control actions for this control problem are obtained by applying the MPC

approach with prediction horizon N = 8 steps, and imposing a maximum time
τ (N |τ0) ≤ 200, added to (14d). The time evolution of the system is shown in Fig-
ure 5(a). The state of the machine is shown by the line associated to machine: when
the value is 2, the machine is processing line 1, i.e., m[p5] = 1, when the value is 0, it
is processing line 2, i.e., m[p7] = 1, when the value is 1, it is swapping from one line
to the other, i.e., either m[p6] = 1 or m[p8] = 1. It can be observed that the machine
starts swapping as soon as one of the buffers become empty, i.e., for this particular
set of parameters, the maximum production is obtained when the production of both
lines is alternated. Note that, as expected for an event-driven formulation, a step only
takes place when an event happens, and thus, in general, the duration of the steps is
variable.
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Let us now assume that input flows are subject to external uncontrollable factors
that can modify the controlled flow up to 10%. The proposed eMPC strategy reacts
to these perturbations by recomputing its control actions at each step. Figure 5(b)
shows the resulting trajectory of the system. At the first step (around time instant 12),
the marking of place p1 is not as high as expected. Hence, in order to maximize the
items produced over the specified period of time, the controller decides not to swap
the machine to line 1 in order to let buffer of line 1 fill completely. It can be seen,
that although the trajectory of the disturbed controlled system is slightly different
to the nominal one (Figure 5(a)), the controller manages to fill and empty buffers
appropriately in order to maximize the performance.
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Fig. 5 Time trajectory of the controlled system in Figure 4 without disturbances (a); with
disturbances in flows of t1 and t3 (b).

5.2 Production network

In this section we consider a production network system described in [4]. The model
of the system consists of continuous places and transitions representing buffers and
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flows of items, and two discrete places and transitions modeling a single machine,
see Figure 6. In contrast to the model in [4] and in order to model the system more
realistically, the net in Figure 6 includes complementary places for every buffer, so that
the system is structurally bounded, and models the existing machine with a discrete
subnet. In this model we assume that the time spent by the machine to swap from one
line to the other is negligible, i.e., ϑ[t7] = ϑ[t8] = 0.
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Fig. 6 A production network.

Let the capacity of the buffers be c1 = 8, c2 = 6, c3 = 4, c4 = 8, c5 = 6, the λ of
transitions be λ[t1] = 0.5, λ[t2] = 1.5, λ[t3] = 0.6, λ[t4] = 1, λ[t5] = 0.8, λ[t6] = 1.5,
and α = 0.1, β = 0.4. Assume that the initial marking of the system is m0[p1] = 1,
m0[p2] = 3, m0[p3] = 5, m0[p4] = 2, m0[p5] = 4 and m0[p6] = 1.

We first focus on the minimum time problem to reach the target markingm[p1] = 3,
m[p2] = 6, m[p3] = 4, m[p4] = 5, m[p5] = 5 and no target marking is specified for
the machine. After adding the constraint for the target marking (15), the objective
function of the control problem is set to minimum time criterion

F (m(N |τ ), τ (N |τ )) = 0, L
(

m(k|τ ), t(k|τ ), µ(k|τ )
)

=
N−1
∑

k=1

q(k|τ ), (24)

where we have set N = 3.
Figure 7(a) shows the time evolution of the system under the obtained control ac-

tions. The value associated to the label ’machine’ indicates in which place the machine
is located: if the value is 1 then the token is in p6, if the value is 0 then the token is
p7. The target marking is reached at the second step. During the first interval of time,
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which lasts 8.1 time units, the machine is processing the items in buffer p1, and in the
second time interval it is processing the items in buffer p4.

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

time

m
ar

ki
ng

 

 

m(p1)
m(p3)
m(p5)
machine

(a)

0 50 100 150 200 250
0

1

2

3

4

5

6

7

8

9

time

m
ar

ki
ng

 

 
m(p1)
m(p3)
m(p5)
m(p6)

(b)

Fig. 7 Time trajectory of the controlled system in Figure 6 to reach a target marking (a); to
maximize the number of items produced by t4 (b).

Let us now assume that it is desired to maximize the number of items produced dur-
ing the first 250 time units. The objective function associated to such control problem

is: L
(

m(k|τ ), t(k|τ ), µ(k|τ )
)

= −
∑N−1

k=1 v[t4](k). The trajectory of the system under

the computed control actions for a control horizon of 3 steps is shown in Figure 7(b). It
can be observed that after the first step a repetitive pattern develops in order minimize
the objective function.

6 Conclusions

With the aim of maintaining the performance of continuous-time approaches and
the computability of discrete-time ones, in this paper we have introduced an event-
driven scheme for controlling timed hybrid Petri nets. While the control action is
finitely parametrized, as in discrete-time models, hence allowing the application of
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optimization-based control algorithms, by selecting the events to include mode switches
and constraints activation, the event-driven strategy enforces constraints and mode
switches continuously in time, hence avoiding intersampling constraint violation and
mode-mismatch errors.

By representing the hybrid Petri net in the proposed event-driven formalism, we
have proposed a finite horizon open-loop optimal control problem that, using different
control objectives, optimizes the dynamic behavior of the net. The problem has been
used as the base of an event-driven model predictive control strategy that is a closed-
loop control strategy and hence able to counteract the effect of external disturbances.

We have evaluated the behavior of the proposed algorithms on two examples ob-
tained from the literature.
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