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Abstract—In this paper, we investigate the fundamental fre-
quency and phase estimation problem in a balanced three-phase
power system with harmonic distortion. An estimation algorithm
that can rapidly track the fast-changing frequency and phase
by using quarter cycle samples are proposed. Specifically, the
data model in the three-phase power system is first converted
to the noise-corrupted single phase harmonic signal model by
using the Clarke transformation. A new weighted least squares
(WLS) parameter estimator, which refines the initial estimates
from the standard estimation techniques, is computed by utilizing
the harmonic structure of the signal. Since the initial estimates
become unreliable with limited samples, we proposed an iterative
algorithm to polish the initial estimates for WLS. Numerical
results show that the proposed estimator outperforms the con-
ventional estimators, especially in a data-limited case.

Index Terms—Phasor extraction, fundamental frequency es-
timation, phase estimation, harmonic structure, multiple signal
classification, weighted least squares.

I. INTRODUCTION

Power quality is becoming a major concern in order to

ensure the reliability of power delivery and maintain the

voltage characteristics within certain limits [1]. The main

characteristics of the voltage waveforms to be measured are

the magnitude, fundamental frequency and phase. In power

system, the typical use of frequency and phase estimation is

for protection against loss of synchronism, under-frequency re-

laying and power system stabilization. However, the frequency

and phase of a distribution network can extremely quickly vary

during transient events, and it can be very difficult to track the

frequency and phase with enough accuracy [2]. Thus, fast and

accurate frequency and phase estimation in the presence of

harmonic distortion and noise is a challenging problem that

has attracted much attention.

Various techniques have been developed to extract the

phasor in power system. Zero-crossing detection algorithm is

widely employed and easy to implement, but it requires the

appropriate filtering and large time windows to obtain accurate

measurements [3]. The filtering technique by using DFT and

recursive DFT algorithm needs a time window which has to be

multiple of the fundamental period in order to obtain accurate

results. A three-phase phase-locked loop (3PLL) is a structure

that is widely used to estimate and track the frequency of three-

phase (3PH) power signals. Numerous architectures have been
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proposed to construct a 3PLL mechanism [4]–[6]. However,

in all cases, the 3PLL shows a transient response above one

cycle. A fast frequency estimation method is present in [7],

by which the response time is around half cycle of the grid

voltage, however, this method requires a filter to eliminate the

harmonics distortion and it does not consider the phase delay

or measurement delay generated by the filter.

Despite the fact that there are many algorithms used to

estimate the frequency [8]–[12], most of them are based

on the measurement of a single phase of the system, thus

these algorithms exhibit poor behavior when the tracked phase

suffers a dip or a transient. The Clarke’s α, β transformation

is widely used to convert 3PH quantities to a complex quan-

tity in a single-phase system which has a classic harmonic

signal model. The parameter estimator based on this single-

phase system is more robustness due to the utilization of

the information from all the three-phase voltage. In [13],

[14] the authors consider the overall information from 3PH

voltage when they design the frequency estimator, but they

still need the adaptive FIR filter which requires multiple

fundamental period to eliminate the harmonics. The multi-

ple signal classification (MUSIC) [15] estimation criterion

and estimation of signal parameters via rotational invariance

techniques (ESPRIT) [16] can be used for high resolution

estimation of the fundamental frequency and phase of the

harmonic signal. However, both of them ignore the useful

information from the harmonic distortion. In [17], [18], the

developed MUSIC parameter estimations utilize the harmonic

structure and can achieve a great improvement. Especially, the

estimator present in [19] using a Markov-like WLS (MWLS)

to refine the initial estimation from MUSIC provides a good

estimation performance which is very close to the CRB with

large observations or high SNR. Moreover, the MWLS is

also able to significantly reduce the computational complexity

compared with the optimal nonlinear least-squares method.

In this paper, we design the fundamental frequency and

phase estimators by considering the data-limited constraint:

there are quarter cycle samples are available for the system.

These estimators have great significance in practice due to

their accuracy and fast response around quarter cycle. To be

specific, we first apply the Clarke transformation to convert

the 3PH system to a single-phase system with a harmonic

signal model. By extending the WLS technique [19] to our

signal model, the new frequency and phase estimators are

computed. Since the advantage of the new WLS parameter

estimators are lost due to the data-limited constraint, in terms

of the characteristics of the harmonic component in 3PH power

system, we then propose an improved WLS (IWLS) scheme
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to increase the estimation accuracy.

II. PROBLEM FORMULATION

A. Signal Model in 3PH Power System

In a balanced three-phase power system with K − 1 har-

monic distortion, the observed signal can be modeled as:

va(n) = V1 cos(ω0n + φ) +
K

∑

k=2

Vk cos k(ω0n + φ) + ǫa(n)

vb(n) = V1 cos(ω0n + φb) +
K

∑

k=2

Vk cos k(ω0n + φb) + ǫb(n)

vc(n) = V1 cos(ω0n + φc) +

K
∑

k=2

Vk cos k(ω0n + φc) + ǫc(n)

(1)

where φb = φ − 2
3π, φc = φ + 2

3π, n is the time instant

and n = 1, 2, ..., N , ω0 is the fundamental frequency with

0 < |ω0| < π and the phase φ ∈ [0, 2π), Vk > 0
is the magnitude of the kth harmonic. The noise vector

ǫabc(n) =
[

ǫa(n) ǫb(n) ǫc(n)
]T

is assumed to be a zero

mean Gaussian random vector with covariance matrix σ2
I.

Give the observations {vi(n)}
N

n=1 with i = a, b, c, the
problem of interest is to estimate the unknown parameters: the

fundamental frequency ω0 and the phase φ with only quarter

cycle samples.

B. Harmonic Signal Model in Single-phase System

Applying the Clarke transformation to (1), we obtain the

corresponding signal in αβ stationary reference frame as

[

vα(n)
vβ(n)

]

= T





va(n)
vb(n)
vc(n)



 (2)

where the transform matrix is given by:

T =
2

3

[

1 − 1
2 − 1

2

0
√

3
2 −

√
3

2

]

. (3)

The complex voltage obtained by v(n) = vα(n)+ jvβ(n) can
be expressed in terms of a harmonic signal model

v(n) =
K

∑

k=1

Akejlk(ω0n+φ) + ǫ(n), n = 1, 2, ..., N (4)

where lk = (−1)k−1(6k−3)+1
4 , Ak = V|lk| and ǫ(n) ∼

CW(0, 4
3σ2). It can be seen that there are totally K harmonics

involved in this model and the order of the kth harmonic is

lk. This signal model synthesized from the three single-phase

signals is more reliable and robust whenever an arbitrary phase

suffers dips, transients, or small interruptions.

Let v =
[

v(1) . . . v(N)
]T

and ǫ =
[

ǫ(1) . . . ǫ(N)
]T
. Then, (4) can be compactly written as

v = H(ω0)γ + ǫ (5)

where γ =
[

A1e
jl1φ . . . AKejlKφ

]T
and H(ω0) ∈ C

N×K

denotes the Vandermonde matrix with the kth column given

by hk =
[

ejlkω0 ejlk2ω0 . . . ejlkNω0

]T
. The problem of

interest is to estimate ω0, φ and Ak from the observations

{v(n)}
N

n=1.

III. THE NEW WLS FREQUENCY AND PHASE ESTIMATOR

In this section, we extend the WLS [19] technique to our

signal model, the rationale of the WLS is that it first ignores

the harmonic structure and uses some standard sinusoidal

parameter estimators, such as MUSIC [15] and ESPRIT [16],

to obtain the initial estimates: ω̃k, φ̃k and Ãk for ωk, φk and

Ak respectively, then the WLS utilizes the harmonic structure

of the 3PH power system, i.e., ωk = lkω0 and φk = lkφ, to
refine the initial estimates.

Specifically, let ζ = [l1φ, l1ω0, . . . , lKφ, lKω0]
T ∈ R

2K×1

and η = [φ, ω0]
T . Then, there is a rank-two matrix S = l⊗I2,

where l = [l1, . . . , lK ]T , satisfying the equation

ζ = Sη. (6)

Let ζ̃ = [φ̃1, ω̃1, . . . , φ̃K , ω̃K ]T be the corresponding initial

estimate of ζ from MUSIC. The WLS estimate η̂ of η is

given by

η̂ = arg min
η

‖ζ̃ − Sη‖2W. (7)

The weighting matrix W obtained from the CRB matrix

without considering the harmonic structure is given by

W =

[

2NÃ2
k N2Ã2

k

N2Ã2
k

2
3N3Ã2

k

]

(8)

then, we rewrite the cost function in (7) as

J(η) =‖ζ̃ − Sη‖2
W

=
3

4σ2

K
∑

k=1

[

φ̃k − lkφ
ω̃k − lkω0

]T

×

[

2NÃ2
k N2Ã2

k

N2Ã2
k

2
3N3Ã2

k

] [

φ̃k − lkφ
ω̃k − lkω0

]

=
3

4σ2

K
∑

k=1

Ã2
k[2N(φ̃k − lkφ)2

+ 2N2(φ̃k − lkφ)(ω̃k − lkω0) +
2

3
N3(ω̃k − lkω0)

2].

(9)

The solution of (7) can be cast as follows: differentiating the

above equation with respect to φ, and we have

dJ

dφ
=

3

4σ2

K
∑

k=1

Ã2
k

[

4Nlk(lkφ − φ̃k) + 2N2lk(lkω0 − ω̃K)
]

(10)

equating the expression to zero result in the estimate of φ as:

φ̂ =

∑K

k=1 Ã2
klk(2φ̃k + Nω̃k)

∑K

k=1 2Ã2
kl2k

−
N

2
ω0 (11)

where the right side of the equation depends on the unknown

parameter ω0. Substitute the above equation into (9) and take

the differentiation w.r.t ω0, yields the WLS estimate of ω0:

ω̂0 =

∑K

k=1 lkÃ2
kω̃k

∑K

k=1 l2kÃ2
k

(12)
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using the above ω̂0 to replace ω0 in (11), we can obtain the

WLS estimate of φ as:

φ̂ =

∑K

k=1 lkÃ2
kφ̃k

∑K

k=1 l2kÃ2
k

. (13)

Hence, (12) and (13) provide closed-form expressions for

the WLS estimates of the frequency and phase parameters.

As ω̂0 and φ̂ are weighted linear regression over {ω̃k}
K

k=1

and
{

φ̃
}K

k=1
, respectively, by utilizing the harmonic structure,

WLS estimators can extract the useful information from the

harmonic distortion and its performance is very close to the

CRB (see Appendix A) with large observation data.

IV. IMPROVED WLS FOR POWER SYSTEM WITH LIMITED

DATA

In this section, we first describe the disadvantage of apply-

ing the WLS estimator to a power system with limited obser-

vations, especially, only quarter cycle samples are available

for the system. Then, an improved WLS (IWLS) technique

based on iterative MUSIC algorithm is proposed.

A. Disadvantage of WLS in 3PH Power System

The WLS estimator performs well when the non-primary

harmonics have comparable magnitudes with first order har-

monic. Unfortunately, with very low harmonic distortion in

3PH power system, the WLS estimator loses its advantage in

the data-limited case. The reason is that, with limited samples,

the estimation accuracy for the unknown parameters of the

non-primary harmonics with weak power is not guaranteed.

Thus, these unreliable information used in the WLS estimator

will jeopardize its estimation performance. In the following

subsection, we present a scheme which can provide reliable

initial estimation for the WLS estimator in the data-limited

case.

B. Proposed IWLS Parameter Estimation

For the parameter estimation problem in a harmonic sig-

nal model, it is well known that the greater magnitude the

harmonic has, the more accurate the associated parameter

estimates are. An example to show the CRBs of the frequen-

cies are given in Fig.1, where three harmonics are involved

in the signal with independent frequencies ω1, ω2, ω3 and

magnitudes A1 = 1, A2 = 0.06 and A3 = 0.05, respectively.
The observation data length is N = 20, and the CRB is

computed in terms of 1
σ2 W, where σ2 is the noise power

and W is given in (8). It can be seen that a harmonic with

the strongest magnitude has the lowest CRB for its frequency

estimate. Therefore, the accuracy or the reliability of the three

frequency estimates satisfies acc(ω̂1) > acc(ω̂2) > acc(ω̂3),
where acc(ω̂) denotes the accuracy of ω̂. Based on this

property, we propose an iterative algorithm to improve the

estimation accuracy.

The proposed estimation scheme still involves a two-step

procedure: initial estimation by using MUSIC and refined

estimation by using WLS. Since the initial estimation for

the unknown parameters of the harmonics with weak power
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Fig. 1. CRBs of the frequencies versus SNR

is imprecise in the data-limited case, we introduce an it-

erative scheme to polish the initial estimates. Specifically,

with the N × 1 observation vector v, we can use MUSIC

to estimate the unknown parameters
{

ω̃k, φ̃k, Ãk

}K

k=1
of all

the K harmonics. However, we only save the most accurate

and reliable estimate τ̃ 1 =
[

ω̃1, φ̃1, Ã1

]

which corresponds

to the harmonic with the strongest magnitude, i.e., the first

order harmonic. Then, with τ̃ 1 we can construct the first

order harmonic component s̃(τ̃ 1) = [s̃1(1) . . . s̃1(N)]T with

s̃1(n) = Ã1e
j(nω̃1+φ̃1) approximately. Applying MUSIC

again on the vector v1 = v− s̃(τ̃ 1) which only involves K−1
harmonics, we can obtain the estimate vector τ̃ 2 of the second

strongest harmonic by saving the estimates corresponding to

the strongest harmonic in the left K − 1 harmonics. Continue

the iteration with K steps, all the K polished initial estimates

{τ̃ 1, . . . , τ̃K} can be saved for the next refined estimation

stage.

Remark: the MUSIC algorithm is often sensitive to the

choice of M relative to the data length N , where M is

the length of the data subvectors used in MUSIC. This is

an inherent trade-off between having many subvectors in

the averaging while retaining sufficient dimensions of the

harmonics. We have observed that when M = 4N/5, MUSIC

often provides the best estimation on the unknown parameters

of the strongest harmonic. Therefore, we use M = 4N/5 for

the MUSIC.

The structure of the proposed parameter estimation algo-

rithm is shown in Fig.2, where v = [v(1) . . . v(N)]T is the

input observation vector and τ̂ 0 = [ω̂0, φ̂, Ã1, . . . , ÃK ] is

the output parameter estimates. The estimated kth harmonic

component is given as s̃(τ̃ k) = [s̃k(1) . . . s̃k(N)]T with

s̃k(n) = Ãkej(nω̃k+φ̃k).

Recall that the WLS frequency estimator (12) and phase

estimator (13) are weighted linear combination over {ω̃k}
K

k=1

and
{

φ̃
}K

k=1
, respectively. However, with limited observations

or low SNR, not all of the K parameters can be estimated

accurately. Thus, we only use the k, k ≤ K estimates of the
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Fig. 2. Structure of the proposed IWLS parameter estimation algorithm

first k strongest harmonics to estimate ω0 and φ. In other

words, we only need to run k iteration steps rather than going

through all K iterations. Note that we implement the iteration

in the initial estimation only when the input observation data

is limited. Therefore, the computational complexity introduced

by the iterations is acceptable.

V. NUMERICAL RESULTS

In this section, computer simulation results are presented to

compare the performance of the proposed IWLS with other

estimators, including MUSIC, ESPRIT, and their associated

WLS estimators in the data-limited case, the CRB is also

involved in the comparison.

The parameters of the 3PH power system (1) for perfor-

mance test is set in terms of European Standard: EN 50160

[20]. The fundamental frequency and phase is f0 = 50Hz
and φ = 10◦ respectively. We consider the first six (K = 6)
strongest harmonics component in the signal and note that the

multiples of 3rd harmonics are disappeared after Clarke trans-

formation. Thus, the orders of the harmonics involved in the

signal are {1, 5, 7, 11, 13, 17} and the associated magnitudes

are {1, 6%, 5%, 3.5%, 3%, 2%}, the total harmonic distortion

(THD) factor is THD = 9.29%. The sample frequency used

in the system is fs = 4KHz, which indicates that there are

totally 80 samples per cycle, and the fundamental angular

frequency is ω0 = 2πf0/fs = π/40. The SNR for the system

is defined as 10 log10 3V 2
1 /4σ2dB, where the coefficient 3/4

is introduced by the Clarke transformtion.

We first compare the performance of the proposed IWLS

with ESPRIT, MUSIC and their corresponding WLS. Fig.3(a)

shows the mean square errors (MSE) of the fundamental

frequency estimates along with the CRB as a function of

the data length with SNR=40dB and M = 4N/5. It is seen
that WLS frequency estimate can converge to the CRB with

0.5 cycle and 1 cycle data when using MUSIC and ESPRIT

as initial estimation, respectively. However, WLS based on

MUSIC and ESPRIT lose the advantage when the data length

is less than half cycle. The proposed IWLS can achieve the

best performance in small data case. Especially, when the

data length is quarter cycle which is more interesting in

practice, IWLS can have about 5dB improvement compared

with MUSIC. Fig.3(b) presents the MSE of phase estimates,

which also shows that the proposed IWLS performs best with

quarter cycle data, while the WLS based on MUSIC and

ESPRIT can even not converge to the CRB within one cycle.
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Fig. 3. MSE of the parameter estimates and the associated CRB versus
the data length with SNR=40dB, M = 4N/5. (a) Estimates of fundamental
frequency ω0. (b) Estimates of phase φ.

We also evaluate the estimation performance of the IWLS

in terms of the phase angle. The iteration steps in IWLS is

k = 3, and the data length for each estimate is N = 20
(quarter cycle). Fig.4 provides the phase angle estimates with

a single run for the first 50 ms. We can see that the proposed

method perfectly tracks the actual phase angle after quarter

cycle. The corresponding MSE is also shown in this figure

where 100 trials are tested and the simulation time period is

500ms for each run. It shows that the MSE is below -35dB

in most of the time, which means that the proposed algorithm

can estimate the phase angle with high accuracy.

VI. CONCLUSION

We have considered a fundamental frequency and phase

estimation problem in 3PH power system with quarter cycle

samples. The model of 3PH power system with harmonic

distortion is first convert to a noise-corrupted single-phase

harmonic signal model. Then, we compute a new WLS fre-

quency estimator and phase estimator. Due to the low voltage
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Fig. 4. Phase angle estimation and its associate MSE based on quarter cycle
data

characteristic of the non-primary harmonics and the limited

observations constraint in realistic 3PH power system, an

improved WLS which using an iterative algorithm to polish

the initial estimates for WLS is introduced. The statistical

performance of the new method has been evaluated and

compared to the conventional estimation in terms of the mean

square error. The simulations show that the performance gain

by applying the proposed IWLS estimator is significant when

only quarter cycle samples are available.

APPENDIX A

CRAMER-RAO BOUND

In this appendix, the CRB for the parameter estimation

problem posed for the complex data model in (4) is derived.

By defining η̄ = [φ, ω0,a
T ]T ∈ R

(K+2)×1 and a
T =

[A1, . . . , AK ] we rewrite (5) as

v= B(ω0, φ)a + ǫ = x(η̄) + ǫ (14)

where B(ω0, φ) ∈ C
N×K with its kth column is defined by

bk = ejlkφ
hk. By using the Slepian-Bangs formula, the CRB

matrix for the problem under study is given by

CRB−1(η̄) =
3

2σ2
ℜ

[

∂x
H(η̄)

∂η̄

∂x(η̄)

∂η̄T

]

. (15)

We then evaluate the partial derivatives as follows:

∂x(η̄)

∂η̄T
=

[

∂x(η̄)

∂φ
,
∂x(η̄)

∂ω0
,
∂x(η̄)

∂aT

]

(16)

where
∂x(η̄)

∂φ
= Ca (17)

∂x(η̄)

∂ω0
= Da (18)

∂x(η̄)

∂aT
= B (19)

with the kth columns of C ∈ C
N×K and

D ∈ C
N×K given by ck = jlkbk and

dk = jlkejlkφ[ejlkω0 , 2ejlk2ω0 , . . . , NejlkNω0 ]T , respectively.
Finally, it follows that

CRB(η̄)

=
2σ2

3







ℜ





a
H
C

H
Ca a

H
C

H
Da a

H
C

H
B

a
H
D

H
Ca a

H
D

H
Da a

H
D

H
B

B
H
Ca B

H
Da B

H
B











−1

(20)
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