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Abstract
We propose a method for model-based control of building air conditioning systems that mini-
mizes energy costs while maintaining occupant comfort. The method uses a building thermal
model in the form of a thermal circuit identified from collected sensor data, and reduces the
building thermal dynamics to a Markov decision process (MDP) whose decision variables are
the sequence of temperature set-points over a suitable horizon, for example one day. The
main advantage of the resulting MDP model is that it is completely discrete, which allows
for a very fast computation of the optimal sequence of temperature set-points. Experiments
on thermal models demonstrate savings that can exceed 50% with respect to usual control
strategies in buildings such as night setup.
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Abstract
We propose a method for model-based control of building air conditioning systems
that minimizes energy costs while maintaining occupant comfort. The method uses
a building thermal model in the form of a thermal circuit identified from collected
sensor data, and reduces the building thermal dynamics to a Markov decision process
(MDP) whose decision variables are the sequence of temperature set-points over a
suitable horizon, for example one day. The main advantage of the resulting MDP
model is that it is completely discrete, which allows for a very fast computation
of the optimal sequence of temperature set-points. Experiments on thermal models
demonstrate savings that can exceed 50% with respect to usual control strategies in
buildings such as night setup.
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1. Introduction

Heating, ventilation and air conditioning (HVAC) systems are responsible
for the largest part of electrical energy consumption in most developed
countries, and optimization of their energy use is one of the most promising
means for reducing greenhouse gases and the overall cost and pollution as-
sociated with generation of electrical energy. A simple strategy for reducing
energy consumption by HVAC systems is to increase the temperature set-
point to the highest value that is still comfortable for building occupants
(e.g., 28oC). While this strategy would be more cost-effective in comparison
to cases when the zone set-point is held constant at a lower value, it is not
necessarily the most efficient strategy. Another possible strategy is to vary
the set-point throughout the day so as to shift the load from peak periods
when the HVAC system is less efficient and energy costs might be higher
(e.g., the afternoon in summer) to off-peak periods when the system is more
efficient and energy is less expensive (e.g., in the morning). This strategy
effectively results in pre-cooling (respectively, pre-heating in winter) of the
building, and is based on the ability of the thermal mass of the building to



Figure 1: Integrated HVAC Control System

store heat over time intervals with duration of several hours, comparable to
the time difference between peak and off-peak periods. The question then
emerges of how to compute the optimal sequence of set-points throughout an
entire day. This is a sequential optimization problem that could be solved
if a suitable building model and a computational procedure that can use
this model can be found. We propose such a procedure based on Markov
decision processes (MDP) that uses a building thermal model in the form
of a third-order thermal circuit. Section 2 describes the formulation of the
sequential optimization problem, as well as the thermal circuit, and Section
3 explains how this problem is reduced to an MDP that can be solved
efficiently. Section 4 presents experimental results in comparison with two
widely used practical scheduling strategies for energy saving, and Section
5 concludes and suggests directions for further improvements to the model
and computational procedure.

2. Set-Point Optimization for HVAC Systems
2.1. Overall Operation of the Optimizing System
The general operation of the optimizing method and system is shown in

Fig. 1. The system constantly collects operational and environmental tem-
perature data from the sensors on the indoor and outdoor HVAC units, stores
the measurements in a database, and uses a learning algorithm to acquire a
predictive building thermal model that can predict future temperatures of the
controlled zone given its current state, outdoor conditions, and a proposed
sequence of temperature set-points that implicitly control the amount of
heat transferred by the HVAC system. A typical prediction horizon is 24



hours, with prediction/control step a fraction of an hour, for example 5
minutes. This means that the predictive model is iterated multiple times to
produce predictions for the entire prediction horizon. Since future outdoor
temperatures that will determine the heat load on the HVAC system are not
known in advance, weather forecasts from public meteorological services
(e.g. the National Weather Service of the USA) can be retrieved over the
Internet and used for prediction. The job of the optimal set-point scheduler is
to find the optimal sequence of set-points for the entire optimization period.
However, typically, the entire sequence is not executed; rather, after the
optimal sequence is found, only its first value is assigned to the thermostat
set-point, and at the next time steps, the operation is repeated, resulting in
continuous rolling-horizon operation. If computational resources are limited,
the optimal sequence can also be re-computed less frequently, for example
once every hour.

The computational complexity of the optimization problem of finding
the optimal set-point sequence could be very large. For a 24-hour opti-
mization horizon and 5-minute prediction/control step, the sequence would
have K = 288 different set-points. If we choose a discrete set of A possible
values for the set-points at any given time, there is an exponential number
of possible set-point sequences — AK — and enumeration and evaluation
of all such sequences is not computationally feasible. This paper describes
a computationally efficient procedure for finding the optimal sequence with-
out exhaustive enumeration, based on the modeling formalism of Markov
decision process (MDP) models and dynamic programming. The building
thermal model, the HVAC efficiency function, and the MDP model used in
the computational procedure are described below.

2.2. Building Thermal Model
The method uses a building thermal model in the form of a third-order

thermal circuit ([2], [4]), which is a popular modeling formalism that strikes
a reasonable balance between physical realism of the model, prediction
accuracy, and model order. The state vector x of the model is defined as the
three temperatures x .

= [TZ ,TIsur f ,TOsur f ]
T ,where TZ is the zone temperature

(under the assumption of well mixed air with uniform temperature), TIsur f
is the temperature of the inside surface of the wall surrounding the zone,
and TOsur f is the temperature of the outside wall that is in direct contact
with the outside air that has temperature TOutside, assumed to be known at
all times. Of the three components of the state vector, only the first one, TZ ,
is assumed to be measurable; the other two are hidden (unobservable) state
variables. The dynamic behavior of the thermal circuit can be expressed by
means of the following set of ordinary differential equations (ODE), [1],



[2]:

dTOsur f
dt =

TOoutdise−TOsur f
REoCEo

+
TIsur f−TOsur f

REmCEo
+ S1

CEo
dTIsur f

dt =
TOsur f−TIsur f

REmCEi
+

TZ−TIsur f
REiCEi

+ S2
CEi

dTZ
dt = TOutside−TZ

RWinCZ
+

TIsur f−TZ
REiCZ

+ S3
CZ

(1)

In this ODE set, S1, S2, and S3 are heat gains, and dynamics are parametrized
by means of thermal resistances R and capacitances C. However, in most
HVAC systems, the amount of heat transferred by the system is not directly
controllable; instead, the usual means of controlling such systems is to
specify a temperature set point by means of a thermostat. Still, for any
existing controller, we can describe the evolution of the system by the
general set of equations xk+1 = fk(xk,ak), where xk is the state of the system
at time tk, ak = TS,k is the temperature set-point specified at time tk, fk is a
state evolution function (not necessarily linear), and the system evolves in
discrete time such that tk = k∆t. In general, the function fk is time dependent,
because it is parametrized by the uncontrollable inputs TOutside, O, and V , all
of which vary throughout the day. The goal of the optimization algorithm is
to select a sequence of temperature set-points TS,1, TS,2, . . ., TS,K such that
a cumulative performance measure (energy or cost) dependent on the states
traversed by the system and the controls applied to it is optimized over the
entire optimization horizon of K steps:

J =
K−1

∑
k=1

gk(xk,ak)+h(xK) (2)

where gk is the running cost for a single period (again, time dependent),
and h is a terminal cost associated with the final state xK . Regardless of the
feedback controller used to regulate zone temperature starting from a given
system state for a specified target set-point, the amount of heat Q transferred
by the air conditioner can be computed for any period. From there, the
amount of electrical power W needed to transfer this amount of heat can
obtained by means of the coefficient of performance (COP) of the system,
defined as COP .

= |Q|/W . As discussed previously, the efficiency (COP) of
an HVAC system based on a vapor compression cycle depends strongly on
the outdoor temperature. Furthermore, if the objective is to minimize total
monetary cost, rather than energy, that cost can also be readily estimated
by multiplying the amount of energy by its price obtained from time-of-
use tariffs. Following this procedure the running cost functions gk can be
estimated.

It is much more difficult to estimate the terminal cost h at the end of the



optimization period. One possible simplification would be to assume that
h(xK) = 0 for all states xK . This simplification would bias the scheduler
towards set-point sequences that leave the building as hot as possible, but
such solutions are not unreasonable for office spaces that are occupied only
until the end of the official business hours — intuitively, if the indoor air
temperature reaches the upper limit of the comfort zone in the very last
period, more energy would be saved than if the temperature at that time
was lower. For this reason, the choice h(xK) = 0 should be acceptable in
practice.

3. Markov Decision Process Model
Methods for minimizing the cumulative cost 2 for arbitrary functions f ,

g, and h do not generally exist, although solutions for special cases, such as
linear dynamics and quadratic costs, have been known and used for a long
time [7]. However, in this case, even though the thermal circuit model could
be represented by a linear system, the function fk is neither linear nor time
independent, due to the time-varying driving conditions TOutside, O, and V ,
and the operation of the HVAC controller. Moreover, the cost functions gk
and h are generally not quadratic in the state and control, since the COP
curve can have an arbitrary form for different HVAC devices. In such cases,
the optimal control has to be found by means of either numerical methods
([5]) or reinforcement learning ([6]). An alternative strategy for solving the
optimal control problem is to convert the continuous-state-space dynamical
system into a Markov decision process (MDP) with discrete state space and
solve it by means of existing algorithms for MDP. The proposed algorithm
is one such method.

A discrete-space MDP is described by the tuple (S,A, p,r), where S is a
discrete set of states such that the MDP occupies one of the states sk ∈ S at
any time tk. A is a discrete set of actions a∈ A, and the transition probability
function p(sk+1|sk,ak) expresses the probability of being in state sk+1 at
time tk+1 if the MDP was in state sk at time tk and control (action) ak was
applied at that time. r(sk,ak) is a cost function that expresses the cost of
applying control ak in state sk. The MDP evolves in discrete time, where
time steps usually have the same duration (tk = k∆t). The goal is to optimize
a performance measure R=∑

K
k=0 r(sk,ak), much like in the continuous case.

We construct all transition functions of the MDP as sets of coefficients for
suitably defined convex combinations, equivalent to the barycentric coordi-
nates of the end points of transitions of the continuous dynamical system.
The procedure for constructing the MDP has the following steps (explained
in more detail in [8]):

1) Define the feasible subspace of the entire state space R3 of the thermal



circuit as a cube limited by the minimal and maximal values for the
three state variables TZ , TIsur f , and TOsur f . A possible minimal value
is the lesser of the lowest comfortable zone air temperature (e.g.,
210C) and the lowest outdoor temperature TOutside throughout the day;
similarly, a possible maximal value is the highest outdoor temperature
TOutside during the optimization period. Tighter bounds for some of
the state variables, for example TZ , are also possible.

2) Sample a set of N anchor points X = {x(1),x(2), . . . ,x(N)} from the
feasible subspace of the system (in this case, it is three-dimensional).
Either random sampling or a regular grid can be used.

3) Triangulate the set of anchor points, for example by means of De-
launay triangulation . The result will be a set of three-dimensional
simplices (tetrahedra).

4) Define a set S = {s(1,1), . . . ,s(1,N),s(2,1), . . . ,s(2,N), . . . ,s(K,N)} of K×N
MDP states, and associate all K MDP states s(k,i), 1 ≤ k ≤ K with
anchor point x(i). The states can be organized in K subsets of N slices
each, such that the subset Sk = {s(k,1),s(k,2), . . . ,s(k,N)} defines the set
of states that can be occupied by the MDP at time tk.

5) Define a set of actions A by discretizing the temperature interval that
corresponds to the comfort zone at suitable steps, for example A =
{21oC,22oC, . . . ,28oC}.

6) For every time step tk, 1≤ k < K, every anchor point x(i), 1≤ i≤ N,
and every action a(l), 1≤ l ≤ |A|:

a) Find the resulting building state y = fk(x(i),a(l)) if the HVAC
system is operated with temperature set-point a(l) from time tk
to time tk+1, starting in state x(i) and using the thermal model
and HVAC control policy.

b) In general, the resulting building state y will not coincide with
any of the anchor states x(i), 1≤ i≤ N. However, it will always
be within exactly one simplex (tetrahedron) of the Delaunay
triangulation. Let x(i1),x(i2),x(i3), and x(i4) be the four anchor
points corresponding to the vertices of this tetrahedron. Then,
there exist four uniquely defined real numbers c1, c2, c3, and c4,
such that y = ∑

4
m=1 cmx(im), 0 ≤ cm ≤ 1, and ∑

4
m=1 cm = 1, also

known as the barycentric coordinates of y with respect to the
tetrahedron.

c) For a starting state sk = s(k,i) and chosen action ak = a(l), define
the transition function p(s(k+1, j)|s(k,i),a(l))=Pr(sk+1 = s(k+1, j)|sk =
s(k,i),ak = a(l)) to the N possible successor states sk+1 = s(k+1, j),
1≤ i≤ N, as follows. If anchor point x( j) associated with MDP



state s(k+1, j) was one of the four vertices xm of the tetrahedron
containing y = fk(x(i),a(l)), then p(s(k+1, j)|s(k,i),a(l)) .

= cm; oth-
erwise p(s(k+1, j)|s(k,i),a(l)) .

= 0. That is, in effect, we assume that
when executing a transition from a given MDP state, the transi-
tion can be only to one of the four states in the next time slice
whose associated anchor points define the tetrahedron containing
the end state y of the actual system evolution. Transitions to all
other states in other times slices have zero probability, resulting
in MDP transitions from one subset (slice) of MDP states to the
next.

d) The transition cost r(sk,ak) is equal to the cost experienced by
the continuous system: r(s(k,i),a(l)) = gk(x(i),a(l)).

Since the resulting MDP model has no loops (transitions are always from
one time slice to the next), the value function (cost-to-go) V (s) of every
state s of the MDP (and from there the optimal policy ak = π∗(sk)) can be
computed by means of dynamic programming starting from the last time
slice and proceeding backward in time. Making use of the auxiliary function
q(s,a), the computation uses Bellman back-ups of the form:

q(s(k,i),a) = r(s(k,i),a)+
N

∑
j=1

p(s(k+1, j)|s(k,i),a)V (s(k+1, j)) (3)

V (s(k,i)) = min
a∈A

[q(s(k,i),a)] (4)

π
∗(s(k,i)) = argmina∈A[q(s(k,i),a)], (5)

for all time periods 0≤ k < K, and initializing the value function of the
terminal states s(K,i), 1 ≤ i ≤ N, as V (s(K,i)) = h(x(i)), where the terminal
costs h(x(i)) could be assumed to be zero for this optimization problem,
as discussed above. Notably, since a Bellman back-up would be performed
exactly once for each MDP state, the computational complexity of the entire
solution procedure will be O(KN).

However, the identified optimal policy a = π∗(s(k,i)) is a mapping from
the state of the MDP to the optimal action, whereas we need a mapping
a = µ∗k (x) from the state of the building x at time tk instead. As noted, the
state of the building x will generally not coincide with any of the N anchor
points {x(1),x(2), . . . ,x(N)} at any given time, but will always be within a
tetrahedron defined by four such points x(im), 1≤m≤ 4. Then, if cm are the
corresponding barycentric coordinates of x with respect to the four anchor
points, we can estimate the cost-to-go q̂k(x,a) of the state/action pair (x,a)



as

q̂k(x,a)
.
=

4

∑
m=1

cmq(s(k,im),a),

and the optimal policy would be µ∗k (x) = argmina∈A[q̂k(x,a)]. Note that the
optimal policy will be time-dependent, in general.

4. Experimental Analysis
4.1. Experimental Conditions
A set of experiments in simulation were performed in cooling mode,

using actual measured data for weather conditions, human activities data,
etc. A single-zone building thermal model was estimated from measured
data, with parameters shown in Table 1. The comfort zone for building
temperature was assumed to be the interval [21oC,26oC]. The set of possible
temperature set-points for the zone thermostat was chosen to be the set
{21o,21.25o,21.5o, . . . ,26oC}. For the efficiency model of the air condi-
tioner, we chose a COP curve for refrigerant R22. For the Time-Of-Use
(TOU) electricity price structure, we used the same tariff as in [3], by
dividing each day into a peak period and an off-peak period, with ratio of
peak to off-peak prices equal to 3. Four summer weather profiles collected
in Cambridge, Massachusetts in July and August of 2003 were used as
weather conditions in the experiment.

For comparison, we used two known energy-saving strategies: the Night
Set-up Strategy (NSS), where a set-point is specified for the official business
hours, and the zone temperature is left to float freely at other times, and
the Demand Limiting Strategy (DLS) that uses a fixed set-point schedule
that starts pre-cooling the building 3 hours before the start of office hours,
setting the temeperature set-point at the lowest comfortable value, and in
the afternoon, when peak period starts, gradually raises the set point to the
upper limit of the comfort zone.

4.2. Experimental Results
The results over four days of experiments are shown in Table 2. The

cost for the NSS, DLS, and MDP-based set-point scheduling methods is
computed according to a time-of-use tariff. It can be seen that the MDP-
based scheduler can save costs significantly, sometimes exceeding 50%.
Example simulation and optimization results over one day are shown in
Fig. 2.



Table 1. Thermal circuit parameters

Parameter Name Value Description
RWin 0.1295 Resistance of windows
REO 0.3846 Resistance of outside wall surface
REm 0.0511 Resistance of wall
REI 0.0261 Resistance of inside wall surface
CEO 7.3447e+05 Capacitance of outside wall surface
CEI 9.5709e+05 Capacitance of wall
CZ 9.03473e+04 Capacitance of inside wall surface

Table 2. Simulation results over four days, starting from the same initial condition
x0 = [24.2,24.3,24.9]T , but with four different outdoor temperature profiles. Energy (E) is in

kWh. The monetary cost (C) is computed according to a time-of-use tariff, in equivalent
monetary units for the three set-point scheduling strategies, with 360 units/kWh in off-peak

hours and 1080 units/kWh in peak hours.

Date E(MDP) E(NSS) E(DLS) C(MDP) C(NSS) C(DLS)
07−22 655 828 2200 948 1750 2240
07−28 405 642 1800 476 1450 1850
08−16 1030 1210 2380 1710 2630 2450
08−28 1290 1600 2410 2390 3760 2480

5. Conclusion
A general method for controlling building zone air temperature by setting

temperature set-points was proposed in this paper. The method uses a low-
order thermal circuit model and converts the continuous-state building dy-
namics into a discrete Markov decision problem, relying on the similarities
between the mathematical properties of convex combinations (barycentric
coordinates) and probability transition functions. Finding the optimal con-
trol policy for the converted MDP representation is computationally very
efficient, and reduces to backward dynamic programming. This procedure is
linear in the number of states of the MDP, and the overall computational time
can be varied according to needs and the available computational resources
by means of adjusting the number of states. The favorable computational
complexity of the algorithm can be employed in a receding horizon con-
troller for continuous re-optimization of the set-points of HVAC systems.

In a set of experiments with a single zone in cooling mode, the MDP-
based scheduler proposed in this paper significantly outperforms traditional
scheduling strategies. Further research will extend this method to multi-
zone buildings, and will address the influence of model inaccuracy and
uncertainty in input data (outdoor temperature, etc.). Another possibility for
improvement of the method is to also include humidity both in the building



thermal model and the definition of the comfort zone for building occupants.

Figure 2: Simulation and optimization results over one particularly hot day. By pre-cooling
before the onset of the peak pricing period (2pm), the optimized set-point sequence expends

more power than the NSS strategy, but avoids operation of the HVAC systems when it is
most expensive and least efficient. As a result, its total cost is 2471, vs. 3220 for the baseline
NSS strategy. The DLS, although also pre-cooling, is not tailored to this particular building,

and results in sub-optimal cost, too: 2726.
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