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Abstract

We describe a method for creating conditional plans for con-
trollable thermal power generators operating together with
uncontrollable renewable power generators, under significant
uncertainty in demand and output. The resulting stochastic
sequential decision problem has mixed discrete and contin-
uous state variables and dynamics, and we propose a dis-
cretization method for the continuous part of the model that
unifies all variables into a large discrete Markov decision pro-
cess model. Although this model is way too large to be solved
directly, its state transition probabilities can be factored effi-
ciently, and a reduction of all continuous variables to one net
demand variable makes it tractable by dynamic programming
over a suitably constructed AND/OR tree. The proposed al-
gorithm outperformed existing non-stochastic solvers on sev-
eral problem instances, resulting in both lower risks and op-
erational costs.

Introduction
The operational planning of thermal generators is a diffi-
cult sequential optimization problem that electrical power
utilities must solve continuously to ensure that they meet
power demand with maximal reliability and at a minimal
cost. Fossil-burned thermal generators (using coal, natural
gas, or oil) consume vast amounts of expensive fuel and con-
tribute significantly to global warming, so minimizing the
amount of consumed fuel is of primary importance in the
electrical power industry.

Given a set of generators with their cost structure and fuel
consumption rates, the objective of optimal operational plan-
ning is to find the best sequence of commands to turn indi-
vidual generators on or off, and the optimal amount of power
produced by each of them over an extended period of time,
subject to the operational constraints that these generators
might have. Typical planning periods range between one day
or one week, and the state of the generators can typically
be changes once every hour. The predicted demand over the
entire planning horizon is also assumed to be known, either
exactly, or with some quantifiable uncertainty.

There are several reasons why this problem is very com-
putationally challenging. The first reason lies in the temporal
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constraints on the operational durations of individual gener-
ators that arise from their mechanical construction and re-
quirements for reliable operation. It is generally not desir-
able (or frequently even possible) to turn the burners of the
generators on and off at arbitrary moments, because frequent
switching would cause damage due to excessive thermal ex-
pansion and contraction. For this reason, once a generator
is turned on or off, it must remain in that state for several
hours, and conversely, if it has been turned off, it must be
kept off for several hours. In other words, when a command
is given to turn a generator on or off, it is committed to that
state for multiple decision periods, and that is why this prob-
lem is also known as the unit commitment problem. Due to
these temporal constraints, the planning problem must be
solved over the entire planning horizon, making it a sequen-
tial decision problem. Although the states of the generators
are Boolean variables (on or off), the state variables of the
sequential decision problem must include information about
how many decision periods the generator has been on or off,
and that increases the cardinality of the state space enor-
mously.

The second reason for the high computational complex-
ity of this problem is its mixed continuous/discrete nature.
Some of the decision variables are discrete (e.g. the commit-
ment status of generation units), and others are continuous
(e.g. the amount of power produced by each unit). More-
over, the dynamics that govern the evolution of the system
are also mixed: the total demand for electricity is a contin-
uous scalar variable, whereas the main components (gen-
eration units) switch between discrete modes (on or off).
This significantly limits the number of solution methods that
can be applied to this problem, because there are relatively
few planning and optimization methods that can solve mixed
continuous/discrete problems efficiently.

The third reason this problem is very difficult is that at
least part of the system dynamics are random, for most prac-
tical situations. In all cases, for any future moment during
the planning period, the total demand for power will not be
a completely known, deterministic value, but a random vari-
able predicted from the information available at the time of
planning. The prediction error can often be quantified (typ-
ical values are around 2% of total demand), and although
most currently deployed planning systems have chosen to
ignore this uncertainty or deal with it in a heuristic man-



ner, such uncertainty information can arguably be used to
improve the performance of the planning algorithm. More-
over, the increased penetration of renewable power sources
such as photovoltaic panels and wind turbines, whose output
depends strongly on uncontrollable atmospheric conditions
such as solar radiation and wind speed, has effectively intro-
duced much higher levels of uncertainty in the net demand
for power to the controllable thermal generators. For exam-
ple, if 20% of the power generator by a utility is supplied by
wind turbines, in case the wind dies down suddenly, the net
demand to the thermal generators might increase suddenly
by 20%. The operational plan must allow for such contin-
gencies, if forced outages are to be avoided. As a result, ig-
noring uncertainty in the system is becoming increasingly
impossible for electrical power utilities. And, in addition,
other sources of uncertainty are possible faults in the gener-
ators, which are naturally random events, but can be charac-
terized probabilistically.

Due to its primary economic significance, the opera-
tional planning problem for thermal generators has been ad-
dressed by a very large number of solution methods, in-
cluding ones based on dynamic programming, Lagrangian
relaxation, interior point methods, and mixed integer pro-
gramming, as well as heuristic methods such as genetic al-
gorithms, simulated annealing, evolutionary programming,
differential evolution, particle swarm optimization, Hop-
field neural networks, etc. (Wood and Wollenberg 1996;
Xia and Elaiw 2010). Formulations as a model predictive
control or optimal control problem are possible, too (Xia,
Zhang, and Elaiw 2011). Dynamic programming methods
can leverage successfully the sequential nature of the deci-
sion process in order to compute suitable plans efficiently,
but suffer from the well known curse of dimensionality due
to the large size of the state space of the problem. Mixed
integer programming methods can handle successfully the
mixed continuous/discrete nature of the planning task, but
again do not scale up very well because of the sheer com-
binatorial complexity of the discrete optimization part. La-
grangian relaxation could also be a very effective solution
to the mixed continuous/discrete optimization problem, and
has been shown to perform well on large problems. Global
optimization methods such as genetic algorithms and simu-
lated annealing can be very effective on problems with dis-
joint feasibility regions, but cannot guarantee that global op-
tima would always be reached, in general.

However, the majority of these methods either ignore un-
certainty completely at the planning state, or deal with it
heuristically, or consider only a small number of possible
future realizations of the uncertain variables, and usually
compute a fixed operational plan for the entire period that
is executed sequentially. As is well known in AI, such plans
can only succeed if the problem domain is static, completely
observable, deterministic, and the action descriptions avail-
able to the planner are correct and complete. One common
heuristic is to include a safety margin of extra capacity (for
example, 3%) to be committed for production. This results
in operating more and/or larger units than are necessary to
meet expected demand. This approach is largely heuristic,
and is not likely to work in the future, when renewable en-

ergy sources become even more widespread. And, in gen-
eral, whereas there might be some value in algorithms that
can find fixed plans that are maximally robust with respect
to future uncertain outcomes, a much more natural approach
would be to use algorithms that can compute conditional
plans that can select actions depending on future states (also
known as contingency plans in AI, feedback controllers in
control theory, and decision policies in operations research).
This paper describes one such approach based on factored
Markov decision processes (fMDP), where continuous dy-
namics are discretized by means of a barycentric approxi-
mation and added to the discrete dynamics, the state of the
resulting completely discrete fMDP is pruned by means of
problem domain knowledge, and the optimal decision policy
is found by means of dynamic programming over AND/OR
trees.

Formulation of the Planning Problem

Formally, the operational planning problem for generators
can be described as follows. Given N available controllable
generator units, and a planning horizon of length T units of
suitable duration, for example one hour, the overall goal is
to minimize the total operating cost for these units, subject
to operating constraints and at an acceptable risk of a forced
outage. The demands Dt, 1 ≤ t ≤ T , over the entire plan-
ning horizon are random variables coming from a stochastic
process with known structure and parameters. There are also
K uncontrollable generators, and we assume that the real-
izations ykt of their random output amounts Y kt , 1 ≤ t ≤ T ,
1 ≤ k ≤ K, also come from known stochastic processes.
At all times, the sum of the supply from all generators, con-
trollable and uncontrollable, must match the total demand at
that time.

In order to formulate a sequential decision problem,
we introduce the decision variables uit ∈ {0, 1} for all
time periods t, 1 ≤ t ≤ T , and controllable units i,
1 ≤ k ≤ K, which represent the intended commit-
ment status of the generators during the next operational
period. Similarly, we introduce the state variables xit ∈
{−l,−l + 1, . . . ,−1, 1, . . . , L− 1, L}, where l is the mini-
mum allowed time for keeping a generator off, and L is the
minimum allowed time for keeping a generator on. Nega-
tive values correspond to off condition, and positive values
correspond to on condition.

For the state variables of the controllable part of the pro-
cess, if we have an existing commitment status uit−1 for gen-
erator i, operation time xit−1, and new commitment status
uit, the new operational time xit can calculated by Equation
(1) where T cli is the “cold start” time of unit i, li is the min-
imum down time of unit i, and Li is the minimum up time
of unit i (Li, Johnson, and Svoboda 1997).



xit =



1 if −T clt ≤ xit−1 ≤ −li and
uit = 1 (start up)

xit−1 + 1 if 1 ≤ xit−1 ≤ Li − 1
(up and must stay up)

Li if xit−1 = Li and uit = 1
(up and available to shut down)

−1 if xit−1 = Li and uit = 0
(shutting down)

xit−1 − 1 if −l + 1 ≤ xit−1 ≤ −1
(down and must stay down)
or −T cli + 1 ≤ xit−1 ≤ −li and
uit = 0
(down and available to start up)

−T cli if xit−1 = −T cli and uit = 0

(1)

Additional constraints, such as maximal up/down times,
can be accommodated by suitable modifications to Eq. (1).

For the demand variable, we assume that we have a
stochastic dynamic model that specifies the probability
Pr(Dt = dt|Dt−1 = dt−1, Dt−2 = dt−2, . . . , D0 = d0)
that value (power demand) dt will be observed at time t
if a series of demands d0, d1, . . . , dt−2, dt−1 has been ob-
served until then. Similarly, for each uncontrollable gen-
erator k we assume that we can estimate the probability
Pr(Y kt = ykt |Y kt−1 = ykt−1, Y

k
t−2 = ykt−2, . . . , Y

k
0 = yk0 )

that value (power output) ykt will be observed at time t if
a series of outputs yk0 , y

k
1 , . . . , y

k
t−2, y

k
t−1 has been observed

until then. Various predictive models can be used, such as
auto-regressive (AR), neural nets, support vector machines,
etc., that map past observations onto future values.

The planner must observe several constraints in minimiz-
ing the total cost. The load balance constraint states that the
total generation must be equal to the demand dt at any time
step. If pit is the generation of unit i at hour t, then

N∑
i=1

pitu
i
t +

K∑
k=1

ykt − dt = 0, for t = 1, 2, . . . , T. (2)

The objective function is presented in Equation 3, where
Eu0,x0,y0,d0 denotes the expectation operator with regard to
the initial configuration u0, operational time x0, the initial
demand d0, and the initial output y0. For notational sim-
plicity, the decision variables at time t are represented as
the vector ut

.
= [u1t , u

2
t , . . . , u

N
t ], the state variables are

denoted by the vector xt
.
= [x1t , x

2
t , . . . , x

N
t ], and the re-

alizations of all uncontrollable generators are denoted as
yt

.
= [y1t , y

2
t , . . . , y

K
t ].

J∗ = minu1,u2,...,uT
Eu0,x0,yt,dt{

∑T−1
t=0 [

∑N
i=1 fi(x

i
t, u

i
t, yt, dt)

+
∑N
i=1 hi(x

i
t, u

i
t, u

i
t+1) + gt(ut, yt, dt)]}

(3)
Here fi(xit, u

i
t, yt, dt) denotes the operating cost of op-

erating unit i in configuration uit and state xit for one
time step in order to meet demand dt when the uncontrol-
lable generators output electricity amount yt. The function

hi(x
i
t, u

i
t, u

i
t+1) denotes the cost of switching to configura-

tion uit+1 at the end of the step. The third cost component,
gt(ut, yt, dt), denotes the equivalent cost of the risk of not
being able to meet demand dt under output of uncontrol-
lable generators yt with the chosen configuration of all units
ut. This cost is proportional to the probability that the total
capacity of the committed units in ut plus what the uncon-
trollable generators produce (yt) is less than the demand dt:

gt(ut, yt, dt) = αPr(

N∑
i = 1

uitcap
i +

K∑
k = 1

ykt < dt),

where capi is the maximal generation capacity of unit i. A
suitably chosen proportionality coefficient α specifies the
relative preference between minimizing operating cost and
risk of failure to meet demand. By adding the operating cost
and risk compensation cost together, the objective function
represents a trade-off between fuel costs and risk.

At any given time, if we can find the optimal sequence
u1, u2, . . . , uT that minimizes the cost in Equation 3 by
whatever computational means, we will have an operational
plan that can be executed over the entire planning horizon.
However, as argued above, such an open-loop, unconditional
plan is not tailored to the concrete situation that will be en-
countered in the future. An alternative approach is to rec-
ognize that the uncertainty in power demand and genera-
tor supply makes the decision problem a stochastic one, and
its optimal solution is not an unconditional plan (sequence
of commitment decisions), but an entire decision policy. A
conditional operational planner could compute conditional
plans that are robust to future variations of supply and de-
mand, and could provide a safety margin implicitly, by plan-
ning for all possible contingencies. One significant difficulty
associated with this approach has been how to represent all
such possible contingencies, and how to plan for them. One
proposal organizes all future possible realizations of the sys-
tem (called scenarios) as a tree of scenario bundles (Takriti,
Birge, and Long 1996). However, this model for represent-
ing stochasticity is limited to only the few scenarios included
in it, whereas in a practical system the future evolution can
be realized in an infinite number of ways. Our work aims to
expand this approach by improving the probabilistic model-
ing of system evolution.

We propose a method for finding the optimal conditional
operational plan of a set of power generators under stochas-
tic demand for electrical power and stochastic output of
some generators. Unlike traditional operational plans, which
are fixed in advance, a conditional operational plan depends
on the future state of the observable random variables (de-
mand and output), and can result in different actual se-
quences of decisions depending on the observed outcomes
for these variables. The planner explicitly balances the op-
erational cost of electricity generation with the risk of not
being able to meet future electricity demand. We represent
the stochastic dynamics of the components of the system as
a factored Markov decision process (MDP) model, and pro-
pose efficient approximate algorithms for computing suit-
able conditional operational plans.
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Figure 1: DBN for a power generation problem with three
controllable and one uncontrollable power generators.

Factored Markov Decision Processes for
Conditional Operational Planning

We propose to represent a power generation system consist-
ing of multiple generators of the type described above by
means of a factored Markov decision process (fMDP), and
find the optimal conditional operational plan by means of ap-
proximate dynamic programming (Boutilier, Dearden, and
Goldszmidt 2000). The fMDP is usually expressed graphi-
cally as a dynamic Bayesian network (DBN). A DBN con-
sists of circles that represent random variables, diamonds
that represent decision variables, and directed edges con-
necting the circles and diamonds that represent the statisti-
cal dependence between the corresponding variables. When
dealing with a time-dependent system, each time period (e.g.
one hour) is represented by its own set of random variables.
Three time slices of the DBN for an example stochastic unit
commitment problem with four generators, one of which un-
controllable (solar), are shown in Fig. 1.

In Fig. 1, one random, continuous, and uncontrollable
variable represents the power demand. Another random,
continuous, and uncontrollable variable represents the out-
put of a photovoltaic generator. (In this case, these two
model components are first-order Markovian, that is, the
next state depends only on the current state, for example by
means of an AT(1) model. However, this is not a fundamen-
tal limitation: for higher-order models, edges from previous
time slices can be added, too.) In addition, three conven-
tional controllable generators are shown, too; their discrete
variables xit take on l + L possible different values, and
represent the operational time of the respective generator.
Three decision variables (shown as diamonds) represent the
individual decisions ati = uit to turn on/off the correspond-
ing generators, and thus commit them for power production.

These models components are necessarily first-order Marko-
vian, but do not need to be deterministic — certain probabil-
ity of failure to change the state of a generator as desired
could be modeled in them. The probabilistic evolution of
the system is described by local conditional probability ta-
bles for each variable, where the conditional dependence is
defined only on the parents of that variable in the graph of
the DBN. Thus, the DBN serves as a compact representa-
tion of a large Markov decision process whose state space is
exponentially large in the number of states of the individual
variables over which it is factored.

In order to specify a factored MDP, the state, action, and
transition model for each individual variable must be de-
fined, along with the reward/cost structure. This is done
differently for the thermal generators which are naturally
represented by means of discrete variables, and for the de-
mand and uncontrollable generators which are naturally rep-
resented by means of continuous variables. For the fMDP
part corresponding to thermal generators, the definitions of
state and action variables coincide with those in the origi-
nal sequential decision problem described in Section . For
the continuous variables, we use a discretization method
based on barycentric coordinates that we have already ap-
plied to other sequential decision problems such as train run-
curve optimization and set-point scheduling for air condi-
tioners (Nikovski and Esenther 2011; Nikovski et al. 2012;
Nikovski, Xu, and Nonaka 2013).

The main idea of the method is to replace the continuous
state variables with a discrete set of states in a way that ap-
proximates well the original continuous dynamics. Let the
dynamics of a continuous component of the model be rep-
resented by the function zt+1 = fz(zt, at), where zt is a
vector variable that could include one or more of the de-
mand dt, the output of uncontrollable generators ykt , or some
of their time-lagged values dt−1, ykt−1, etc. Let the dimen-
sionality of this vector be b. The objective of the conversion
method is to represent the dynamics of the continuous sys-
tem zt+1 = fz(zt, at) by a conditional probability transfer
function Pr(st+1 = s(j)|st = s(i), at = a(k)), defined over
suitably chosen set S of N discrete states s(i), 1 ≤ k ≤ K.
The algorithm selects N states s(1), s(2), . . ., s(N) such
that each corresponds to a state z(i) ∈ Rb, and their De-
launay triangulation is computed (Fig. 2), (Preparata and
Shamos 1990). Then, each available action a(l) is executed
in each of them in turn, according the continuous dynam-
ics function z′ = fz(z

(i), a(l)), and the barycentric coordi-
nates p1, p2, . . . , pb+1 of the end state z′ are computed with
respect to the simplex that encloses it. These barycentric
coordinates are then used as transition probabilities of the
discrete MDP. The detailed computational procedure, along
with discussion of its computational complexity, is available
in (Nikovski and Esenther 2011).

Conceptually, we can think of this algorithm as a way of
converting the system dynamics represented by the function
fz to an equivalent probabilistic representation involving
only a small set of points s(i)embedded into the original con-
tinuous state space of the system. If the system starts in one
of these few points, the successor state z′, in general, will
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Figure 2: A Delaunay triangulation on a set of vertices
sampled from the embedding two dimensional space. The
dashed line shows the transition from some starting state
z(i) under action a resulting in end state z′ = f(z(i), a).
The simplex (here, triangle) containing the end state z′ is
shown with a dotted background, and the barycentric coor-
dinates p1, p2, and p3 of z′ are computed with respect to
the vertices of that simplex. These coordinates are also the
transition probabilities from z(i) under action a to the states
corresponding to these vertices in the resulting MDP.

not coincide with another one of these points. However, we
can identify the b+ 1 points that define a simplex that com-
pletely encloses the successor state z′, and can think that the
system has transitioned not to point z′ itself, but to the ver-
tices of this simplex with various probabilities, instead. The
probabilities are equal to the convex decomposition of point
z′ with respect to the vertices of the simplex, also known as
the barycentric coordinates of that point within the simplex.
The similarities between convex combinations (barycentric
coordinates) and probability mass functions required by the
MDP formalism make this conversion possible.

This procedure is applied in turn for every group of vari-
ables in the DBN that have temporal dependence. For the
demand variable D, we could assume that the next demand
Dt+1 depends only on the current demand Dt (Markovian
property of the underlying stochastic process) with transition
probability Pr(Dt+1 = dt+1|Dt = dt), and if a higher-
order model is necessary, time-lagged values of demand
Dt−1, Dt−2, etc. could be included. For the uncontrollable
generators, we make similar assumptions that Y kt+1 depends
only on Y kt , with probability Pr(Y kt+1 = ykt+1|Y kt = ykt ).
These transition probabilities can be estimated either from
statistical data, or by means of discretizing a suitable contin-
uous stochastic Markov process, such as the auto-regressive
process of order 1 (AR(1) process).

Once the transition probabilities for all variables in the
DBN have been determined, joint transition probability for
the entire system Pr(ut+1, xt+1, yt+1, dt+1|ut, xt, yt, dt)
can be computed from the transition probabilities of the in-
dividual random variables, as is customary for Bayesian net-
works. It can be observed that although the MDP has a very

large joint state space, its transition structure is very sparse.
The next step is to determine the transition cost,

which, unlike transition probabilities that can be spec-
ified separately for each individual variable, must be
specified for the entire MDP. Given a joint MDP state
(ut, xt, yt, dt) and an action ut+1, the immediate one-step
cost c(ut, xt, ut+1, yt, dt) is computed as

c(ut, xt, ut+1, yt, dt) =
∑N
i=1 fi(x

i
t, u

i
t, yt, dt)

+
∑N
i=1 hi(x

i
t, u

i
t, u

i
t+1) + gt(ut, yt, dt)

(4)
where the switching costs hi(xit, u

i
t, u

i
t+1) and risk cost

gt(ut, yt, dt) are computed as described above, and the fuel
costs fi(xit, u

i
t, yt, dt) are computed by solving the follow-

ing economic dispatch problem: minimize
∑
i Fi(p

i
t) sub-

ject to the generation limits for all generators and the load
balance constraint for this particular realization of the un-
controllable variables yt and demand dt:

N∑
i = 1

uitp
i
t +

K∑
k=1

ykt − dt = 0

where Fi(pit) is the cost of producing pit units of elec-
tricity by generator i; typically, this function is quadratic
in pit, and the economic dispatch problem can be solved
by means of quadratic programming. The objective of eco-
nomic dispatch is to find the optimal generation amounts
pit of the committed units so that the cost of generation is
minimized for a specific realization of the random variables.
After the optimal generation amounts [p1t , p

2
t , . . . , p

N
t ] are

found, the individual generation costs can be calculated as
fi(x

i
t, u

i
t, yt, dt) = Fi(p

i
t), 1 ≤ i ≤ N .

Given such an MDP, we can define its cost-to-go functions
Jt for each step t and each joint state of the MDP. For the
terminal step T , when no further decisions will be made,
JT (uT , xT , yT , dT ) = 0.

For all other steps, the cost-to-go function
Jt(ut, xt, yt, dt) is defined iteratively by means of a
Bellman equation, as follows (Puterman 1994):

Jt(ut, xt, yt, dt) = minut+1
{c(ut, xt, ut+1, yt, dt)

+
∑
dt+1,yt+1

Pr(dt+1, yt+1|dt, yt)Jt+1(ut+1, xt+1, yt+1, dt+1)}
(5)

Note that the transition probabilities
Pr(dt+1, yt+1|dt, yt) are factored conveniently, due to
the conditional independence relations in the DBN of
the MDP. The cost-to-go function J0(u0, x0, y0, d0) of
the initial state of the generators and demand would then
correspond to the minimal operating cost under the optimal
policy for the entire planning problem.

In principle, this cost can be found by computing the
costs-to-go of all states in the MDP. However, when some of
the variables are continuous, the cost-to-go (value function)
of the MDP cannot be computed and represented efficiently.
The discretization method described above addresses pre-
cisely this problem, by replacing the continuous variables
D and Yk with sets of discrete states S, making the entire



MDP discrete, and standard MDP solution methods such as
dynamic programming, value iteration, and policy iteration
can be applied (Puterman 1994). A solution method based
on dynamic programming over AND/OR trees is described
in the next section.

Furthermore, if these costs are computed and stored, the
optimal decision ut+1 = πt(ut, xt, yt, dt) for time step t
and state (ut, xt, yt, dt) can be identified as the one that min-
imizes the right-hand side of the Bellman equation 5:

πt(ut, xt, yt, dt) = argminut+1
{c(ut, xt, ut+1, yt, dt)

+
∑
dt+1,yt+1

Pr(dt+1, yt+1|dt, yt)Jt+1(ut+1, xt+1, yt+1, dt+1)}
(6)

This policy is conditioned upon the current realizations of
the random variables yt and dt, so it represents a conditional
planner. By observing the outcomes yt and dt for each con-
secutive time step, different actual operating schedules will
be obtained.

Solving fMDP Models with Aggregated Net
Demand

The objective of solving the stochastic unit commitment
problem represented by the fMDP is to find the optimal
policy that maps the states of the fMDP onto the decision
variables that signify which generators will be turned on/off
in the next period, where optimality is defined in terms of
jointly minimizing production cost and risk of failure. The
straightforward method of solving fMDPs is to expand the
factored state and solve the resulting flat MDP by means
of dynamic programming, applying equation 5 repeatedly,
starting from the terminal step and proceeding backwards to
the first step (Puterman 1994). However, for most practical
problems, e.g. when L = l = 5, the number of generators
N = 20, the number of one-hour time periods T = 24, the
expanded MDP will have |X| = T (L+ l)N = 24 · 1020 dis-
tinct states for the controllable generators only, and would
be impossible to solve.

One practical simplification of the problem is to aggre-
gate the output of the uncontrollable generators Yt into the
demand variable, by subtracting these outputs from the total
demand Dt to arrive at the net demand D′t. If all uncon-
trollable random variables are Gaussian processes, then D′t
is a Gaussian process, too, with expected value (mean) D̄′t
and variance σt for each time period t. Henceforth, we will
assume that Dt denotes the net demand. For planning pur-
poses, the net demand Dt can be computed by subtracting
the expected values Ȳt at the time of planning (t = 0). When
executing the policy, the actually observed realizations yt at
time t can be used to estimate the distribution of the random
variable Dt+1, so that the estimates of the transition proba-
bilities Pr(dt+1|dt, yt) will in fact be based on yt, when de-
termining the optimal configuration ut+1 by means of Equa-
tion 6.

Another computational simplification of the problem is to
reduce the size of the MDP in a reasonable manner. Intu-
itively, if forecasts for the values of the continuous random
variables Dt and Yt are known in advance, and the assump-
tion that these are Gaussian processes holds true, most of

the configurations of the generators ut at time t would be
irrelevant to satisfying demand at that time. Some of them
will have capacities too low to meet demand, and others will
use unnecessarily many generators to meet demand econom-
ically. By considering only configurations ut of the control-
lable part of the MDP whose maximal committed capacity
(MCC) is close to the expected net demand D̄t, we can dras-
tically reduce the size of the space of the MDP.

A practical way of identifying such suitable configura-
tions is to run a fast deterministic algorithm for unit com-
mitment for several possible values of target reserve β such
that the target demand is (1 + β)D̄. Suitable schedules Sβ
are identified for each β, and the generator configurations
ut present in Sβ are included in the reduced state space of
an approximate solver, which essentially switches between
individual segments from multiple schedules Sβ , depending
on the time evolution of power demand and uncontrollable
generators.

Hence, the fundamental idea of the solution algorithm
is to identify suitable configurations for representative de-
mands, and then use them to produce schedules for any
possible realization of demand. We use an AND/OR tree
(Martelli and Montanari 1973) to represent all selected con-
figurations of the generators and possible realizations of fu-
ture demand. The AND/OR tree is then used for planning
for any demand instances.

The algorithm is outlined in Table 1. Before discussing
its details, we remark that commitment schedule specifies
whether a generation unit is on or off. A commitment sched-
ule may specify the on/off status of the units over all time
steps. When restricted to a particular step, it specifies the
unit status at that step. For convenience, in the rest of the
paper, a schedule refers to a commitment schedule unless
stated otherwise.

1. Pick a set of demand instances
and solve UCs to obtain schedules

2. Use the schedules to build an AND/OR tree
3. Return the AND/OR tree for planning

Table 1: The algorithm to solve the factored MDP

Generating Candidate Schedules
This step identifies a finite set of representative commit-
ment schedules so that they can be reused in the remaining
steps. To solicit schedules, we first select a set of demand
samples in hope that they are representative ones. For each
slected demand, a deterministic UC problem associated with
the demand is solved to obtain its schedule. We start iden-
tifying demand samples by finding the overall “upper” and
“lower” demands of interest. Let the mean of the demand
D be D̄ = [D̄1, D̄1, . . . ¯, DT ]. Starting from a large posi-
tive number β and decreasing it gradually, we find a demand
(1 + β)D̄ whose UC is feasible. This demand is the up-
per demand. Similar procedure can find the lower demand.
The two demands determine a demand interval. The sched-
ule generation procedure performs search in the interval and
finds demands and their solution schedules.



An iterative search procedure is as follows. Given a lower
demand d and upper demand d, a new demand d(= (d +
d)/2) is created. (The demands d and d are called parent
demands.) Its asscoiated UC problem UC(d) is solved. If
UC(d) and its parent UC(d) have different schedules, their
average demand (d+ d)/2 is added to consideration and the
interval [d, d] is added to future search; otherwise, the inter-
val [d, d] is discarded. By bookkeeping a demand and their
parents, the procedure knows what interval it is searching.
The advantage of this search strategy is that it focuses on
the regions that lead to distinct schedules. This is contrast to
an evenly split approach that searches an interval [d, d] in a
uniform manner. The uniformity in demand interval search
does not necessarily mean schedule distinction.

The demands selected in iteratvie interval search preserve
the upward/downward trend in the demand vector over time
steps. A upward or downward trend is that the demand mean
at the next step is larger or smaller than that at the current
step. Since the lower and upper demands are proportional to
the mean iterative interval search and the newly created de-
mands are the arithmetic average of their parents demands,
the trends are preserved. To diversify the set of the selected
demands, we add some randomized schedules to the sched-
ule set. Specifically, we randomly change the commitment
schedules for a small portion of the identified schedules.

The pseudo-codes that implement those ideas are pre-
sented in Table 2. The constant MinWidth determinines
the size/width of the intervals to be discarded. The other
constant MaxNum is the maximum number of schedules to
find. They are initialzied at Line 1. A queue data structure Q
holds the processed and to-be-processed UCs. The pointer of
the queue is Q_ptr. For a demand d, we use UC(d) to refer
to its associated UC problem and u(d) to refer to the sched-
ule of UC(d). Line 2 initializes the queue and the schedule
set U to be empty. Line 3 generates the “maximum” de-
mand and adds the UC to the queue. Line 4 generates the
“minimum” demand and adds the UC to the queue. Line 5
produces the first child demand and adds its UC to queue. It
is pointed by the queue pointer at Line 6. Line 8 solves the
UC. Line 9 loads the parent demands d and d. Line 10 exam-
ines the schedule of UC(d) and its “upper” parent UC(d).
If they are different, or they are the same but the interval is
larger than the preset MinWidth, a new demand and its UC
are created and added to the tail of the queue at Line 11.
Lines 13-15 check the other parent likewise. Line 16 moves
the pointer forward. Such a process terminates if the pointer
points to null (no more UCs in the queue) or the maxi-
mum number of distinct schedules have been achieved (Line
7). Line 18 copies the set U with the identified schedules
stored in the examined UCs of the queue. Line 19 perturbs
the schedules by adding some randomization. Finally, Line
20 returns the schedules in U.

Building the AND/OR tree
An AND/OR tree has two types of nodes — AND nodes
and OR nodes. An AND/OR tree is a tree where (1) its
root is an AND node, (2) it has alternating levels of AND
and OR nodes, and (3) its terminal nodes are AND nodes

1. MinWidth←constant, and MaxNum←constant
2. Q← ∅, U← ∅
3. Find upper demand d; Solve UC(d); Add UC(d) to Q
4. Find ower demand d; Solve UC(d); Add UC(d) to Q
5. Add UC(d)(d = (d+ d)/2) to Q
6. Q_ptr ← 3
7. While Q_ptr 6= null && Q_ptr ≤ MaxNum
8. Solve UC(d) pointed by Q_ptr
9. (d, d)← the parent demands of UC(d)
10. If differ(u(d), u(d)) ||

(same(u(d), u(d))&&|d− d| ≥ MinWidth)
11. Add UC(d)(d = (d+ d)/2) to Q
12. End If
13. If differ(u(d), u(d)) ||

(same(u(d), u(d))&&|d− d| ≥ MinWidth)
14. Add UC(d)(d = (d+ d)/2)) to Q
15. End If
16. Q_ptr + +
17. End of While
18. U← UC schedules from Q1 to Q_(ptr − 1)
19. Perturb U
20. Return U

Table 2: Generating schedules to be reused in the remaining
algorithmic steps
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Figure 3: An AND/OR tree example

(Martelli and Montanari 1973). An AND/OR tree is shown
in Fig. where the AND/OR nodes are respectively in rect-
angular/circular shapes. Note that in this case the outputs
of the uncontrollable generators Yt have been aggregated
into the net demand variable Dt, and are not included in the
AND/OR tree.

An AND node for the UC problem is associated with a
system state (ut, xt, dt) at time step t, whereas an OR node
is associated with the action ut at that time. The root node
corresponds to the initial state of the UC system. The values
of the nodes are evaluated bottom-up. For an OR node ut+1,
if its parent AND node is (ut, xt, dt) and its children (AND)
nodes are {(ut+1, xt+1, dt+1)|dt+1}, then the value of the
OR node is evaluated as



Vt(ut+1|ut, xt, dt) = c(ut, xt, ut+1, dt)
+

∑
dt+1

p(dt+1|dt)Vt+1(ut+1, xt+1, dt+1)

(7)
Note that the notation Vt(ut+1|ut, xt, dt) means that the

value of OR node is conditional on its parent AND node. For
an AND node (ut, xt, dt), its value Vt(ut, xt, dt) is evalu-
ated as follows:

Vt(ut, xt, dt) =

{
c(uT , xT , uT , dT ), if t = T
minut+1

Vt(ut+1|ut, xt, dt) otherwise (8)

Note that the minimization in minut is over all children
OR nodes ut+1, and that no configuration switching cost is
incurred at the last step, since the continuation of the sched-
ule at that time is yet unknown.

Now we are ready to explore the AND/OR tree for plan-
ning purpose. It takes two steps – building the AND/OR tree
and constructing the schedules for planning.

1. The root node (u0, x0, d0) is the initial state of the sys-
tem. It is the first node of the tree. It is the node at Level
0. Since the levels correspond to the time steps in a UC,
we use steps to refer to levels. The rest of the tree is
built over time steps: the AND nodes at Step t and an
OR node are used to build AND nodes at Step t + 1.
The OR nodes are the schedules generated at Step 1 of
the entire algorithm (Table 1). For a node (ut, xt, dt), we
use every generated schedule to produce AND nodes at
the next time step. Let the OR node be ut+1. The sta-
tus of the units at next time step is (ut+1, xt+1). Since
the demand at t + 1 is uncertain, we generate an AND
node for every possible demand. So the set of next AND
nodes is {(ut+1, xt+1, dt+1|dt+1)}. The process repeats
until completion at Step T . The pseudo-codes for this pro-
cess are presented in Table 3. Let the notation NA

t and be
the AND nodes at Step t, and NO

t be the schedules ob-
tained from schedule generation but restricted to Step t.

1. Initialize the root node NA
0 to the initial system state

2. For t = 1, . . . , T
3. NA

t ← ∅
4. NO

t ← schedules from schedule generation
5. For each node (ut−1, xt−1, dt−1) in NA

t−1
6. For each schedule ut in NO

t
7. For each demand dt
8. Node (ut, xt, dt) is generated
9. If the UC is feasible
10. NA

t ← NA
t ∪ {(ut, xt, dt)}

11. End if feasible
12. End for each demand
13. End for each schedule
14. End for each node n
15. End for t
16. Return the tree represented by {NA

0 ,N
A
1 , . . . ,N

A
T }.

Table 3: Building an AND/OR tree

2. The AND and OR nodes in the tree are evaluated by Equa-
tions (7) and (8). In evaluating the non-terminal AND
nodes, there must be an OR node that achieves the mini-
mum in Equation (8). The action represented by that OR
node is the best action of the system state represented by
the parent AND node.

Evaluating MDP Policies
Once a policy has been computed and stored in the AND/OR
tree, we adopt a sampling approach to evaluate its op-
erational cost and risk under future random demand D.
For this purpose, we draw a suitable number of samples
d = [d1, d2, . . . , dT ] from the demand variable D (e.g.,
1000 samples). For each sample, we start from the root
of the tree and execute the actions specified by the tree.
Such an execution results in a path in the tree. Specifically,
an execution path is a sequence of system states and ac-
tions {(u0, x0, d0), u1, (u1, x1, d1), . . . , uT , (uT , xT , dT )}
that are prescribed by the initial system state, the AND/OR
tree, and the demand realization d = [d1, d2, . . . , dT ]. The
cost of a path can be accessed by solving the economic dis-
patch problem for each step, given the prescribed configura-
tions ut, while its risk can be calculated using the committed
capacity ut and the realization of demand dt. The overall
risks and costs are the average across the paths associated
with the demand samples. These costs and risks show how
the risks can be compromised by the additionally paid cost.
Pseudo-code of the simulation procedure is presented in Ta-
ble 4.

1. For each demand sample
2. Determine the execution path from the AND/OR tree
3. Solve the UC based on the path to get the cost
4. Calculate the risk based on the path
5. Sum up the cost
6. Sum up the risk
7. End For each demand
8. Calculate the average cost and average risk
9. Return the average costs and risks

Table 4: Simulating the cost and risk of an MDP policy

Complexity Analysis
The most expensive part of the algorithm is the building and
evaluation of the AND/OR tree, because it is exponential in
the planning horizon T , where the base of the exponent is the
number of discrete levels of discretization for the demand
variable Dt. However, when an AND node is added to the
tree, a feasibility check is performed first: a node is added
only when it meets all temporal constraints plus the demand
and load constraints, and the economic dispatch associated
with the node has a feasible solution.

Experimental Results
We experimented with the proposed method on a test prob-
lem adopted from (Li, Johnson, and Svoboda 1997), ex-
tended with the introduction of uncertainty in the demand.



The standard deviation of demand was assumed to be 2%
of expected demand: σt = 0.02D̄t. No uncontrollable gen-
erators were used, so the net demand is equal to the total
demand. The approximate algorithm from the previous sec-
tion was implemented and compared against two existing
algorithms: one of them was based on a priority list ((Wood
and Wollenberg 1996)), and the other one was the decom-
mitment algorithm proposed in (Li, Johnson, and Svoboda
1997). Our results showed that the approximate solution
method provides a good balance between generation cost
and risk of failure to meet demand. We performed exper-
iments on two UC examples: one with 4 units, and another
one with 20 units. We were able to calculate the truly optimal
MDP solution for the 4-unit UC example, so we were able
to investigate the accuracy of our approximation scheme on
that problem, too. The experiments were performed on a
computer with Intel Core 2 Duo E6600 CPU (2.40GHz). The
algorithm was implemented in MATLAB.

Experimental Conditions
The generation cost of a committed unit i at time t is
computed as a quadratic function of the produced amount
of power by the unit: fi(x

i
t, u

i
t, dt) = ci0 + ci1p

t
i +

ci2(pit)
2. The unit switching and start-up cost is expressed as

h(xit, u
i
t, u

i
t+1) = tcsti + bcsti(1− exp(−γxit)), if uit = 0

and uit+1 = 1, and zero otherwise. In the start-up cost, the
fixed component tcsti represents the cost of starting gen-
erator i, while the second term bcsti represents the cost of
starting the boiler and varies exponentially with the length
of the time that the unit has been off.

Under a Gaussian assumption for demand (Dt ∼
N(D̄t, σ

2
t )), the risk compensation cost gt(ut, dt) is given

by

α′ · CFSO ·
ˆ ∞∑

i
ui
tcapi

1√
2πσ2

t

exp(− (D − D̄t)
2

2σ2
t

) · dD

where α′ is the proportionality constant, CFSO is the full
system operating costs (the cost of the system in which all
units are turned on and generate according to their maximum
capacity), and the integral is the failure probability (risk).
Failure happens when the actual demand D is greater than
the Maximum Committed Capacity (MCC)

∑
i capiu

i
t of all

operating units. By increasing the constant α, the weight of
the risk component in the objective function is increased,
thus favoring configurations with higher MCC, at the ex-
pense of a higher operational cost for running such configu-
rations.

A 4-unit example
The decision horizon of the 4-unit UC prob-
lem was 24 hours. The coefficients tcsti and
bcsti of the start-up costs for the four units
were [200,2000;500,20000;100,700;44,100]. The
fuel cost coefficients [c0, c1, c2] for the four units
were [0.00211,16.51,02.7; 0.00063,21.05,1313.6;
0.00712,22.26,371.0; 0.00413,25.92,660.8], in cho-
sen cost units. The minimum up and minimum down
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Figure 4: Performances of the algorithms on a 4-unit prob-
lem

times were [3, 3, 2, 2] and [4, 4, 3, 3]. The minimum
and maximum capacities were [10, 10, 10, 10] and
[100, 90, 80, 60], here and henceforward, in cho-
sen power units. The expected demand vector was
D̄ =[105,85,65,140,100,105,125,145,165,185,205,245,265,285,
200,140,100,105,125,145,165,185,205,225]. The initial op-
erational times were x0 = [5,−5, 5,−5].

The risk versus cost curves for various methods are pre-
sented in Fig. 4. “Conditional exact” refers to the algo-
rithm that solves the MDP exactly, i.e., all Bellman backups
(Equation 6) were performed. “Conditional approximate”
refers to the algorithm proposed in the previous section. In
the figure, the horizontal axis is the percentage of the ex-
tra operational cost with respect to a reference operational
cost, taken to be the lowest experimentally obtained opera-
tional cost for any scheduler on this problem. For this prob-
lem instance, it can be seen that the solution of the proposed
algorithm is very close to optimality (the conditional exact
solution), and the algorithm outperforms significantly both
the priority list and the decommitment algorithms in balanc-
ing operational costs and risks. For the lowest levels of risk,
which are probably close to the desired cost/risk trade-off
point of an actual generation system, the loss of optimality
is less than 1%, whereas the gain in costs with respect to
deterministic schedulers is greater than 9%.

20-unit example
In this experiment we used all 20 generators described in (Li,
Johnson, and Svoboda 1997). The expected demand vec-
tor was [2133.3, 2133.3, 2066.7, 2066.7, 2133.3, 2133.3,
2266.7, 2400.0, 2400.0, 2400.0, 2333.3, 2200.0, 2133.3,
2133.3 ,2200.0, 2266.7, 2400.0, 2400.0, 2400.0, 2400.0,
2333.3, 2200.0, 2200.0, 2066.7]. It was no longer possible
to find the truly optimal conditional schedules, but it is pos-
sible to compare the performance of the conditional approx-
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Figure 5: Performances of the algorithms on a 20-unit prob-
lem

imate, priority list, and decommitment algorithms (Fig. 5).
Again, the results show that the proposed novel algorithm
uniformly achieved a much better risk/cost balance than the
priority list and the decommitment approaches, with opera-
tional cost savings around 4% for the lowest levels of risk.

Conclusion and Future Work
We have described a general method for representing the
mixed continuous/discrete dynamics of power generation
systems under multiple sources of uncertainty such as
variable power demand and intermittent renewable energy
sources, and have introduced a class of conditional opera-
tional plans where the unit commitment decisions are con-
ditioned upon the state of observable random variables. The
proposed factored Markov decision process models repre-
sented in the form of dynamic Bayesian networks are com-
pact and are also easy to specify, maintain, and extend with
new power sources. We have also proposed one concrete al-
gorithm for finding such conditional operational schedules
for power generation that depend on a single random vari-
able — the net demand that aggregates in itself all sources
of randomness. The algorithm focuses on small subsets of all
possible configurations of generators in order to compute the
schedule efficiently. Experimental results suggest that the re-
sulting conditional plans are close to the truly optimal ones,
and provide a much better trade-off between generation cost
and risk of failure to meet demand than two known non-
stochastic unit commitment algorithms that compute fixed
schedules.

In the proposed solution algorithm, we use AND/OR trees
to represent, find, and evaluate the optimal conditional plan.
However, this algorithm is by no means the only possible
way to solve stochastic generation problems represented by
means of fMDPs and DBNs. In future work, we plan to in-
vestigate other solution methods based on approximate dy-

namic programming that could result in much better com-
putational complexity. Furthermore, the current solution ag-
gregates the variability of all stochastic variables into the
net demand to the controllable power generators, for the
sake of computational efficiency. This simplifies the plan-
ning problem, because the branching in the AND-OR tree
is based only on that single variable. However, even higher
efficiency might be possible if the conditional schedule is
conditioned on the values of each individual stochastic com-
ponent. This would significantly increase the complexity of
the planning process, and would depend critically on find-
ing more computationally efficient solution methods for the
undrelying fMDP models.

For example, the method proposed in (Feng et al. 2004)
represents the value function of the dynamic programming
problem over continuous domains by adaptively discretiz-
ing such continuous variables. This approach might result in
more accurate and compact representations than are possi-
ble with our method, where the tesselation of the continu-
ous domains is performed apriori, before value functions are
evaluated. Adaptive discretization is indeed compatible with
our discretization scheme, too, for example by sub-dividing
a simplex where the value function varies a lot (measured on
its vertices), into multiple smaller simplices. The application
of symbolic dynamic programming (SDP, (Sanner, Delgado,
and de Barros 2011)) to the factored MDP-based formula-
tion of the operational planning problem might be possible,
too.

The formulation of the fMDP described in the paper as-
sumes that all generators assume their intended configura-
tion uti without fail. This allows us to use the decision vari-
ables uti as components of the state of the system, thus sim-
plifying the planning process. If the possibility of equipment
failure must be taken into account, the actual configuration
U ti of the generators should be included as a random state
variable in the DBN, and its probabilistic dependence on the
intended configuration uti can be modeled according to the
failure probabilities of individual generators. Such an exten-
sion is completely compatible with the proposed modeling
formalism of factored Markov decision processes.
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