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Abstract
State of charge (SoC) estimation is a fundamental challenge in designing battery management
systems. An adaptive SoC estimator, named as the AdaptSoC, is developed in this paper. It
is able to estimate the SoC when the model parameters are unknown, through joint SoC and
parameter estimation. Design of the AdaptSoC builds up on (1) a reduced complexity battery
model that is developed from the well known single particle model (SPM) and, (2) joint local
observability/identifiability analysis of the SoC and the unknown model parameters. Shown
to be strongly observable, the SoC is estimated jointly with the parameters by the AdaptSoC
using the iterated extended Kalman filter (IEKF). Simulation and experimental results exhibit
the effectiveness of the AdaptSoC.
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Adaptive Estimation of State of Charge for Lithium-ion Batteries
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Abstract— State of charge (SoC) estimation is a fundamental
challenge in designing battery management systems. An adap-
tive SoC estimator, named as the AdaptSoC, is developed in
this paper. It is able to estimate the SoC when the model
parameters are unknown, through joint SoC and parameter
estimation. Design of the AdaptSoC builds up on (1) a reduced
complexity battery model that is developed from the well-
known single particle model (SPM) and, (2) joint local ob-
servability/identifiability analysis of the SoC and the unknown
model parameters. Shown to be strongly observable, the SoC is
estimated jointly with the parameters by the AdaptSoC using
the iterated extended Kalman filter (IEKF). Simulation and
experimental results exhibit the effectiveness of the AdaptSoC.

I. INTRODUCTION

In almost all Li+ battery powered applications, state of
charge (SoC) estimation plays a fundamental role in mon-
itoring the battery status and regulating the charging and
discharging processes for real-time battery protection and
performance enhancement [1].

Literature review: SoC is the percentage ratio of the
present battery capacity to the maximum capacity. Model-
based SoC estimation has been given considerable attention
in recent years, due to its incessant operation and improved
accuracy. Equivalent circuit models (ECMs), which include
virtual voltage source, internal resistance and RC network to
simulate battery dynamics, have been used extensively. The
state observability of a ECM is studied in [2], by which a
SoC estimation algorithm is designed. In [3], the extended
Kalman filter (EKF) is applied to ECMs to estimate the
SoC. The estimation accuracy is enhanced in [4] using the
sigma-point Kalman Filter (SPKF). Some other nonlinear ob-
servers have also been reported to construct ECM based SoC
estimators, e.g., sliding mode observer [5], adaptive model
reference observer [6] and Lyapunov-based observer [7].

Another important type of battery models are built upon
electrochemical principles that describe the intercalation and
diffusion of Li+ ions and the conservation of charge within
a battery. Such electrochemical models have the merit of
ensuring each model parameter to retain a proper physical
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meaning. However, their structure based on partial differ-
ential equations (PDEs) is complex. A linear reduced-order
electrochemical model is established in [8], to which the
classical KF is employed for SoC estimation. In [9], the
EKF is implemented to estimate SoC via a nonlinear ordinary
differential equation (ODE) model obtained from PDEs by
finite-difference discretization. The unscented Kalman filter
(UKF) is used in [10] to avoid model linearization for
more accurate SoC estimation. Rather than using the ODE
model after simplification, nonlinear SoC estimators are also
developed in [11; 12] through direct manipulation of PDEs.

Adaptive SoC estimation, which enables the SoC to be
estimated when the model parameters are unknown or vary
with time, has been discussed for some ECMs and elec-
trochemical models, e.g., [4; 13; 14]. This paper makes
new contributions to study of this topic, with the aim of
developing an adaptive SoC estimator that is theoretically
sound and easy to implement.

Statement of contributions: An electrochemical model
with reduced complexity in structure is obtained in the
first place. For this model, a detailed analysis of joint
local observability/identifiability of the SoC variable and the
model parameters is performed. This attempt, despite its
importance, has been rarely made in the literature on adaptive
SoC estimation, to the author’s best knowledge. The SoC
variable is found to be able to be determined even though
some model parameters are hardly identifiable. This indicates
that adaptive estimation of at least the SoC is achievable.
With the observability analysis, an adaptive SoC estimator,
AdaptSoC, is built using the iterated extended Kalman filter
(IEKF), where the SoC and model parameters are estimated
concurrently but only SoC estimates are reliable.

II. A REDUCED-COMPLEXITY MODEL

In this section, the working mechanism of Li+ batteries is
briefly introduced first. Then a review of the single particle
model (SPM) is presented, followed by appropriate model
simplification for the purpose of SoC estimation.

A. The Working Mechanism of Li+ Batteries

The structure of a Li+ battery is schematically shown
in Fig 1(a). The positive electrode is typically made from
Li compounds, and the negative electrode usually contains
graphite particles. Both have a porous structure, providing
intercalation space such that the Li+ ions can be moved in
and out and stored. The electrolyte is electrically conductive
so that the Li+ ions can be transported easily. The separator
separates the electrodes apart. It allows the exchange of
Li+ ions from one side to the other, but prevents electrons
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(b)

Fig. 1: (a) Schematic characterization of a Li+ battery; (b)
the single-particle model.

from passing through. The electrons are thus forced to flow
through the external circuit.

During the charging process, Li+ ions are extracted from
the particles at the positive electrode into the electrolyte, and
the particles at the negative electrode absorbs Li+ ions from
the electrolyte. This process not only generates an influx of
Li+ ions within the battery, but also builds up a potential
difference between the positive and negative electrodes. In
the reverse process the battery becomes discharged.

B. The Single Particle Model

The single particle model (SPM) (see Fig. 1(b)), as the
name suggests, simplifies each electrode as a spherical
particle with area equivalent to the active area of this
electrode [15; 16]. It decreases complexities in identification,
estimation and control design to a large extent [9; 12]. An
introduction of the SPM is given below.

Input and output of the battery: The external input to the
battery is the current I(t) with I(t)< 0 for charge and I(t)> 0
for discharge. The terminal voltage is the potential difference
between the two electrodes, that is,

V (t) = Φs,p(t)−Φs,n(t). (1)

Conservation of Li+ in the electrode phase: The migration
of Li+ ions inside a solid particle is caused by the gradient-
induced diffusion. It follows from the Fick’s laws of diffusion
that

∂cs, j(r, t)
∂ t

=
1
r2

∂

∂ r

(
Ds, jr2 ∂cs, j(r, t)

∂ r

)
, (2)

with the initial and boundary conditions given by

cs, j(r,0) = c0
s ,

∂cs, j

∂ r

∣∣∣∣
r=0

= 0,
∂cs, j

∂ r

∣∣∣∣
r=r̄ j

=− 1
Ds, j

J j.

Variables
Φs electric potential in the solid electrode
Φe electric potential in the electrolyte
cs concentration of Li+ in the solid electrode
css concentration of Li+ at a particle’s spherical surface
J molar flux of Li+ at the particle’s surface
J0 exchange current density
η overpotential of reaction in the cell
U open-circuit potential
I external circuit current
V terminal voltage
r radial dimension of the particle

Physical parameters
Ds diffusion coefficient of Li+ in the solid electrode
r̄ radius of the spherical particle
F Farady’s constant
S specific interfacial area
T temperature of the cell
αa anodic charge transport coefficient
αc cathodic charge transport coefficient
R universal gas constant
Rc phase resistance
R f film resistance of the solid electrolyte interphase

Subscripts
s solid electrode phase
e electrolyte phase
n negative electrode
p positive electrode
j n or p

TABLE I: Definitions and nomenclature.

It is noted that J j is the molar flux at the electrode/electrolyte
interface of a single particle. When j = n and p, respectively,

Jn(t) =
I(t)
FSn

, Jp(t) =−
I(t)
FSp

.

Electrochemical kinetics: The molar flux J j is governed
by the Butler-Volmer equation:

J j(t) =
J0, j

F

[
exp
(

αaF
RT

η j(t)
)
− exp

(
−αcF

RT
η j(t)

)]
, (3)

where

η j(t) = Φs, j(t)−Φe, j(t)−U(css, j(t))−FR f , jJ j(t).

The electrolyte phase can be represented by a resistor Rc, j
in the SPM, implying Φc, j can be expressed as Φe, j(t) =
Rc, jI(t). Hence, η j becomes

η j(t) = Φs, j(t)−U(css, j(t))−FR̄ jJ j(t), (4)

where R̄ j = Rc, j +R f , j.

C. The Reduced Complexity Model
Average Li+ concentration in the electrode phase: The

average concentration of Li+ ions in the particle is considered
in the paper as the measure of the SoC. It is defined as

cavg
s, j (t) =

1
Ω

∫

Ω

cs, j(r, t)dΩ, (5)

where Ω denotes the volume of the particle sphere. From (2),
it is obtained that

ċavg
s, j (t) =

1
Ω

∫

Ω

∂cs, j(r, t)
∂ t

dΩ

= ε jDs, j
∂cs, j(r, t)

∂ r

∣∣∣∣
r=r̄ j

, (6)



where ε j is a constant coefficient. Depending on the electrode
polarity, (6) splits into

ċavg
s,n (t) =−

εn

FSn
I(t), ċavg

s,p (t) =
εp

FSp
I(t). (7)

By (7), the rate of change of cavg
s, j is linearly proportional

to the input current I. In other words, cavg
s, j is equal to the

initial value cavg
s, j (0) plus integration of I over time. This

illustrates that the change of SoC depends linearly on I as
a result of cavg

s, j indicating SoC. Such a relationship has not
only been presented for electrochemical models, e.g., [8],
but has also been justified in ECMs, e.g., [3; 17] and the
references therein.

Terminal voltage: Suppose there exists a function ϕ such
that css, j(t) = ϕ(cavg

s, j (t)) and define Ū =U ◦ϕ , where ‘◦’ de-
notes composition of two functions. Using (4), (1) becomes

V (t)= Ū(cavg
s,p (t))−Ū(cavg

s,n (t))+ηp(t)−ηn(t)+(R̄p−R̄n)I(t).

With αa = αc = 0.5, it follows from (3) that

ηn(t) =
2RT

F
sinh−1

(
Jn(t)F
2J0,n

)
=

2RT
F

sinh−1
(

εnI(t)
2J0,n

)
,

ηp(t) =
2RT

F
sinh−1

(
Jp(t)F
2J0,p

)
=

2RT
F

sinh−1
(
−

εpI(t)
2J0,p

)
.

Thus V (t) becomes

V (t) = Ū(cavg
s,p )−Ū(cavg

s,n )

+
2RT

F

[
sinh−1

(
−

εpI(t)
2J0,p

)
− sinh−1

(
εnI(t)
2J0,n

)]

+(R̄p− R̄n)I(t). (8)

As such, V(t) consists of two parts. The first is the open-
circuit voltage (OCV) that relies on Ū(cavg

s, j ), and the second
part is the direct feedthrough from I to V .

Construction of the state-space model: In above, (7)-(8)
provide a concise characterization of the battery dynamics.
To convert them into a state-space model for SoC estimation,
denote the SoC by a state vector x ∈ [0,1]. The input u and
the output y of the model can be defined as u = I and y =V ,
respectively. Since cavg

s, j is arguably equivalent to the SoC,
the following is obtained from (7)-(8):

{
ẋ(t) =−au(t),

y(t) = h(x(t))+g(u(t)),

where a is a parameter, h(·) is the counterpart of the
part containing Ū in (8), and g(·) corresponds to the part
involving I in (8). Discretization of the above system yields

{
xk+1 = xk−αuk,

yk = h(xk)+g(uk),
(9)

where α = aT and T is the sampling period.
Note that, h(·) represents the SoC-OCV relationship and

thus varies with different batteries. For the battery under
consideration, it takes the parametric form as follows:

h(x) = β0 ln(x+β1)+β2.

In addition, g(·) can be determined from (8):

g(u) = γ0
[
sinh−1(γ1u)− sinh−1(γ2u)

]
+ γ3u,

where γi for i = 0,1,2,3 are parameters from (8).
Developed for SoC estimation, the model in (9) contains

parameters α , βi’s and γi’s. Their values are often hard
to determine jointly and may even be subject to change
over time. It is hence well worth considering ‘adaptive SoC
estimation’ via simultaneous estimation of the SoC and the
unknown parameters. A two-stage approach will be used:
• Stage 1: The parameters βi’s in h(·) is determined using

the SoC-OCV data set collected from experiments.
• Stage 2: After h(·) is obtained, the state x(k), the

parameters α and γi’s are estimated simultaneously.
This identification problem in Stage 1 can be formulated as
a nonlinear least squares data fitting problem, which can be
easily addressed by numerical methods such as the Gauss-
Newton [18].Therefore, βi’s are assumed to be known in
sequel. Indeed a nonlinear state and parameter estimation
problem, Stage 2 is more complicated and will be the focus
of the following study.

III. JOINT OBSERVABILITY/IDENTIFIABILITY ANALYSIS

Observability/identifiability analysis is crucial to state and
parameter estimation. In this section, it is performed using
the approach of sensitivity analysis.

Problem formulation: To study the joint observabil-
ity/identifiability, the model in (9) is transformed into the
model including the initial state and the parameters:

yk = φ(θ ;u0, · · · ,uk), (10)

where

θ =
[
x0 α γ0 γ1 γ2 γ3

]T
,

φ(θ ;u0, · · · ,uk) = h

(
x0 +α

k−1

∑
i=0

ui

)
+g(uk,γ).

In sequel, θi for i = 1,2, · · · ,6 and its corresponding
parameter will be used interchangeably. The identifiabil-
ity problem for (10) is: Given the input data set ZN =
{u0, · · · ,uN ,y0, · · · ,yN}, can θ be uniquely identified? If it
cannot be, which parameters in θ can be determined with
considerable accuracy?

Basics of sensitivity analysis: The sensitivity of yk with
respect to the change of θ is of interest. The sensitivity
matrix for (10) is given by

S =




...
...

...
...

sk1 sk2 · · · sk6
...

...
...

...


 , (11)

whereski = ∂yk/∂θi, for i = 1,2, · · · ,6.
To estimate θ , consider the weighted mean-square-error

cost function:

`(θ) =
N

∑
i=0

wiδ
2
i (θ) = ∆

TW∆,



where wi > 0, δi = yi−φ(θ ;u0, · · · ,ui), ∆=
[
δ0 · · · δN

]T,
and W = diag(w0, · · · ,wN).

The best estimate of θ , denoted as θ ∗, is the one that
minimizes `(θ), that is,

θ
∗ = argmin

θ
`(θ).

It is known that θ ∗ will be the locally unique solution to
minimize `(θ) if `′(θ ∗) = 0 and `′′(θ ∗)> 0. Note that

`′′(θ) = 2STWS−2
N

∑
i=0

∆
TWi

∂

∂θ

(
∂φ(θ ;u0, · · · ,ui)

∂θ

)T

,

where Wi is the i-th column of W . When θ = θ ∗, the second
term in the right hand side becomes negligible because ∆

approaches zero. Thus `′′(θ ∗) can be approximated as

`′′(θ)≈ 2STWS. (12)

By (12), `′′(θ ∗)> 0 if S has full column rank.
Local identifiability analysis of θ : For the battery model

in (9), the sensitivity coefficients are given by

sk1 =
β0

x0 +α ∑
k−1
i=0 ui +β1

, sk2 =
β0 ∑

k−1
i=0 ui

x0 +α ∑
k−1
i=0 ui +β1

,

sk3 = sinh−1(γ1uk)− sinh−1(γ2uk),

sk4 =
γ0uk√

γ2
1 u2

k +1
, sk5 =−

γ0uk√
γ2

2 u2
k +1

, sk6 = uk.

The order of magnitude of each variable is: x0 ≈ 10−1,
α ≈ 10−5, β0 ≈ 100, β1 ≈ 100, β2 ≈ 100, γ0 ≈ 10−2, γ1 ≈
−(10−7 ∼ 10−6), γ2 ≈ 10−7 ∼ 10−6 and γ3 ≈ 10−3 ∼ 10−2.
Suppose uk lies within the reasonable range of −20∼ 20.

Let ski be normalized to eliminate the scale-induced effects
to fully show the influence of the change in θi on yk:

s∗ki = |θi|ski,

from which the normalized sensitivity matrix S∗ can be
defined accordingly. The normalized Hessian H∗ is

H∗(θ) = Γθ `
′′(θ)Γθ

= S∗T(θ)WS∗(θ),

where Γθ = diag(|θ1|, · · · , |θ6|). Analysis of s∗ki and S∗ estab-
lishes the following:

Fact 1: The parameter vector θ is almost locally uniden-
tifiable.

Note that s∗ki→ 0 for i = 3,4,5. This indicates that S∗i for
i = 3,4,5, where S∗i is the i-th column of S∗, are almost
linearly dependent. From a theoretical perspective, if {uk}
contains a rich mix of frequency contents, S∗2 is independent
of the other S∗i ’s. However, the order of magnitude of s∗k2 is
quite small, which lies between 10−5 ∼ 10−1, depending on
the scale of {uk}. It can be concluded that S∗ will be almost
surely rank-deficient in numerical sense, with rank of about
3. Thus θ can be hardly identified.

Even though θ cannot be identified, it is pointed out in [19]
that a reparameterized model structure, or more specifically,
a combination of parameters in θ , may be identified. The
next remarkable fact is then established.

Fact 2: Despite Fact 1, x0 can still be locally identified
with high accuracy.

Intuitive thinking shows that x0 can still be estimated due
to the independence of S∗1 from S∗i for i = 2, · · · ,6 and the
order of magnitude of s∗k1 far exceeding s∗ki for i = 2, · · · ,6.
Consider the normalized Hessian H∗, which is rank deficient.
Its singular value decomposition (SVD) can be expressed by

H∗ =
[
Ul Us

][Σl 0
0 0

][
V T

l
V T

s

]
, (13)

where U and V are unitary matrices and Σl is a diagonal
matrix containing nonzero singular values of H∗. The rank
of H∗ is 3 since S∗ has rank 3 as aforementioned. Hence,
the dimensions of Σl , Ul and Vl are 3× 3, 6× 3 and 6× 3,
respectively. It can be proven that the column space of Ul
is the subspace of the identifiable parameter space [19]. In
other words, the vector ϑ obtained from reparameterizing θ

is identifiable, where ϑ is given by

ϑ =UT
l θ . (14)

It is important to note that an element in ϑ will correspond to
θ1 or x0 with extremely minor difference due to the numerical
properties of S∗ given above. That is, x0 will be projected
by U1 to a point in the identifiable subspace, which is very
close to itself. Thus it can be identified with a considerable
amount of accuracy.

From the above analysis, a joint state and parameter
estimation algorithm can be designed, which, though only
able to yield imprecise parameter estimates for α and γi’s,
would still provide reliable state estimation results. Hence,
adaptive SoC estimation will be achieved.

IV. ADAPTIVE SOC ESTIMATION

The adaptive SoC estimation is treated as joint state and
parameter estimation addressed by an IEKF based technique.
The IEKF is an improved version of the KF and EKF to
deal with severe nonlinearities in the system by iteratively
refining the state estimate around the current point at each
time instant.

State augmentation: To use the IEKF, define an augmented
state vector to incorporate both the original state x and the
unknown parameters:

ξk =
[
xk α γ0 γ1 γ2 γ3

]T
.

Thus (9) can be rewritten as
{

ξk+1 = Fk(uk)ξk,

yk = h̄(ξk,uk),
(15)

where

Fk(uk) =




1 uk
1

. . .
1


 ,

h̄(ξk) = β0 log(ξ1,k +β1)+β2

+ξ3,k
[
sinh−1(ξ4,kuk)− sinh−1(ξ5,kuk)

]
+ξ6,kuk.
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Fig. 2: Example 1 — noise-free case: (a) SoC estimation; (b) output estimation; (c) estimation of α; (d) estimation of γ .

Application of IEKF: For the augmented battery model
in (15), the IEKF is applied to estimating ξk. Like the KF
and EKF, it consists of two procedures — prediction and
update, which are implemented recursively.

The prediction formulae of the IEKF are

ξ̂k|k−1 = Fk−1(uk−1)ξ̂k−1|k−1, (16)

Pk|k−1 = Fk−1(uk−1)Pk−1|k−1FT
k−1(uk−1)+Q, (17)

where ξ̂k|k−1 and ξ̂k|k are the estimates of ξk given Zk−1 and
Zk, respectively, P is the estimation error covariance, and
Q > 0 is adjustable to reduce the effects of process noise.

The update is implemented iteratively:

K(i)
k = Pk|k−1H(i−1)

k

[
H(i−1)

k Pk|k−1H(i−1)T
k +R

]−1
, (18)

ŷ(i)k = h̄(ξ̂ (i−1)
k|k )−H(i−1)

k (ξ̂k|k−1− ξ̂
(i−1)
k|k ), (19)

ξ̂
(i)
k|k = ξ̂k|k−1 +K(i)

k (yk− ŷ(i)k ), (20)

where R > 0, the superscript (i) denotes the iteration number
and

H(i)
k =

∂ h̄
∂ξ

∣∣∣∣
ξ̂
(i)
k|k

.

The iteration process stops when i achieves the pre-specified
maximum iteration number imax or when the error between
two consecutive iterations is less than the pre-selected tol-
erance level. The associated estimation error covariance is

given by
Pk|k = (I−K(imax)

k H(imax)
k )Pk|k−1. (21)

The estimate of SoC is then given by ξ̂
(imax)
1,k .

The IEKF based adaptive SoC estimation algorithm,
AdaptSoC, is summarized in (16)-(21). It has a recursive
structure for sequential implementation, and furthermore, the
update procedure is executed through iterative operations.

Essentially, the AdaptSoC is concerned with joint state
and parameter estimation using state augmentation and the
IEKF. Its development is motivated by conceptual simplicity,
satisfying SoC estimation performance validated by experi-
ments and modest computational complexity.

The update procedure of IEKF is equivalent to apply-
ing the Gauss-Newton method to finding the minimum of
a mean-square-error cost function [20]. There are a few
methods available in the literature as improvements of the
Gauss-Newton method, e.g., the Levenberg-Marquardt algo-
rithm. They can be used in the AdaptSoC to attain better
estimation performance.

V. EXPERIMENTAL RESULTS

Two experiments are given to verify the findings and the
effectiveness of the AdaptSoC. The first one is based on
numerical simulation, and the second uses experimental data.

Experiment 1: Application of AdaptSoC to a perfect
model. Consider the model in (9) and assume that it is
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Fig. 3: Example 1 — noisy case: (a) SoC estimation; (b) output estimation; (c) estimation of α; (d) estimation of γ .

accurate. The parameters are given as follows: α = 4.7496×
10−5, β0 = 1.0480, β1 = 2.208× 10−1, β2 = 3.9998, γ0 =
5.1400× 10−2, γ1 = 8.7615× 10−7, γ2 = −1.5274× 10−7,
γ3 = −5× 10−3. The values of α and γi’s are reckoned
according to [15; 16]. The values of βi’s are determined
by fitting the SoC-OCV data of the battery that will be
experimented with in Example 3. The input to the model
is a square wave alternating between 5 and −5 with period
of 20s. Generate the simulation data using the model and
then apply the AdaptSoC. The iteration number at each
time step is set to be 10 in the update procedure.

The noise-free case is simulated first. The estimation
results are shown in Fig. 2. It is shown in Figs. 2(a)-2(c)
that the estimates of the SoC, α almost coincide with the true
values. Yet estimation of γ3 is not accurate. This observation
supports the finding that the model parameter vector is not
locally identifiable in Fact 1.

A weak noise with covariance of 10−8 is added to the
measured output for further investigation. The estimation
performance, as illustrated in Fig. 3, deteriorates as expected.
Whereas estimation of α and γ3 do not settle to fixed values,
the SoC estimates are still satisfactory, validating Fact 2.

Experiment 2: Application of AdaptSoC to experimental
data. The AdaptSoC is applied to data collected from
practical experiments with a Li+ battery. No details regarding
the battery could be released at present due to required
intellectual property protection. The SoC-OCV and current-

voltage data are obtained first. The values of βi’s are iden-
tified from the SoC-OCV data at the first stage. Then the
AdaptSoC is implemented to estimate the SoC during the
second stage. The current applied is also a square wave
alternating between 5A and −5A with period of 10s. A rough
estimate of the initial SoC is around 50%.

Fig. 4 summarizes the estimation results. From Fig. 4(a), it
is seen that the SoC estimates change periodically as a result
of the periodic input current, and that the range of variation
is reasonable and as expected. Fig. 4(d) further shows the
accurate output estimation through direct comparison with
the truth. The parameter estimates of α and γ3 shown in
Figs. 4(b)-4(c) are obviously not convergent, indicating that
the model does not fully match the true battery system.
However, the SoC estimation even in this case is still
considered reliable from the afore presented analysis and the
subjective observation.

VI. CONCLUSION

Instead of following the design paradigm of ‘modeling—
identification—SoC estimation’, this paper studies adaptive
SoC estimation for Li+ batteries, which integrates SoC esti-
mation with parameter identification. A reduced complexity
model is derived from the single particle model. Joint observ-
ability/identifiability of the SoC and the unknown parameters
of the model is studied, showing the advantageous property
that the SoC is strongly observable. An IEKF based adaptive
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Fig. 4: Example 2: (a) SoC estimation; (b) output estimation; (c) estimation of α; (d) estimation of γ3.

SoC estimator, the AdaptSoC, is then developed, which is
also found to be noticeably robust against model mismatch.
The analysis results and the performance of the AdaptSoC
are verified by both simulation and practical experiments.
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