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ABSTRACT
This work explores the stability properties of a class of non-

linear system, which is obtained by applying a special transfor-
mation to the vector field of a linear system. It is proved that such
a nonlinear system preserves the stability of the original linear
system. This property can be used for checking the stability of
certain nonlinear systems, and designing novel network control
protocols based on homogeneous system theory. For the network
control application, finite-time convergence can be achieved in a
decentralized manner by properly choosing the smooth feedback
control law. The results are demonstrated by numerical exam-
ples.

INTRODUCTION
Finite time stable control systems have received consider-

able interest recently. A Lyapunov function theorey for finite-
time stability was proposed in [1] based on a class of Lyapunov
functions with constant decay exponent α ∈ (0,1). This theorem
was later extended to more general Lyapunov functions in [2, 3].
The finite-time stability theorem for homogeneous systems was
first introduced in [4], and has been used as a convenient tool for
establishing finite time convergence for multidimensional non-
linear systems. For example, the finite time stability problems for
high order nonlinear systems in specific forms were addressed
in [5–7] using the homogeneous system approach. The control
Lyapunov function also provides a means for the finite-time sta-
bilization of high dimensional nonlinear dynamical systems, and
was applied to the finite-time stabilization of homogeneous dy-
namical systems [8]. Discontinuous stabilizing feedback con-
trollers have also been developed in [9, 10], etc. However, dis-
continuous controllers may cause the excitation of unmodeled
high-frequency modes of the system, which is not favorable for

∗This work was done while the author was a graduate student in the School
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practical implementations.

Network control theory has been studied extensively [11,
12]. The network control problems are usually addressed via
the Laplacian dynamics, while a variant of this approach based
on the edge Laplacian has also been proposed in [13] and [14].
The later approach reveals the roles of different subgraphs and
enables the design of network control protocols through the edge
agreement.

Reference [15] studied the problem of finite-time conver-
gence to a continuum of equilibria, which is referred to as finite-
time semistability, and proposed a smooth state feedback con-
troller architecture for finite-time consensus of network system
with the assumption that the information flow between each pair
of agents in the network system is always maintained until the
consensus between these two agents has been achieved. This as-
sumption is later removed in Ref. [16], which proposed a finite-
time output feedback controller for the rendezvous of a system
of agents subject to limited range of communication. However,
the underlying controller is no longer smooth. In particular, the
control inputs could be bang-bang when the rendezvous process
is close to completion such that the system states are within a
certain distance from the semi-stable equilibrium set.

In this paper, based on current results in finite-time stabil-
ity and homogeneous system, we will analyze the stability for a
special type of nonlinear system, which is related to linear sys-
tems via certain nonlinear transformations. It is proved that the
finite-time convergence of such systems can be easily achieved
by applying homogeneous transformations to produce a negative
homogeneity degree. This result is used to design control proto-
cols for a network system containing a spanning tree. It will be
shown that the smooth finite-time feedback stabilizing controller
proposed in [15] can be generalized to arbitrary connected net-
works without the full connectedness assumption. As compared
to control laws in [10], such a feedback control law is infinitely
smooth except for the origin. Finally, numerical examples are



presented to validate the main theorem of this paper and demon-
strate the proposed network control algorithms.

1 Preliminaries and Notations
In this paper, we follow the definition of finite-time stability

introduced in [1].

Definition 1. Consider a scalar continuous autonomous ordi-
nary differential equation given by

ẋ(t) = f (x(t)), (1)

where f : D → R+ is a continuous function over some open
neighborhood D ∈ R of the origin, and f (0) = 0. The ori-
gin is a finite-time-stable equilibrium of (1) if there exists a
neighborhood B of the origin and a settling time function Tf :
B \ {0} → R+ such that the following two conditions hold: (i)
for any x0 ∈ B \{0}, the solution ψ(t,x0) is uniquely defined for
all t ∈ [0,Tf (x0)), ψ(t,x0) ∈ B , and limt→Tf (x0) ψ(t,x0) = 0; (ii)
the origin is Lyapunov stable.

It was shown in [1] that ψ(t,x0) is actually defined on R+×
B with ψ(t,x0) = 0, for all t ≥ Tf (x0), x ∈ B , and Tf (0) = 0.
The origin is said to be a globally finite-time-stable equilibrium
if B = D = Rn.

Next we briefly introduce the notion of homogeneous sys-
tem [17] and some concepts of graph theory [12], which will be
used later in this paper.

Definition 2. A dilation ∆r
λ : Rn ×R → Rn is defined with re-

spect to x = (x1,x2, . . . ,xn) ∈ Rn by assigning n positive real
numbers r = (r1,r2, . . . ,rn) and a positive real number λ such
that

∆r
λx = (λr1x1, . . . ,λr1 x1). (2)

Definition 3. A continuous function fi : Rn → R is homoge-
neous of degree l if fi(∆r

λ(x)) = λl fi(x). A vector field f is ho-
mogeneous of degree m with respect to ∆r

λ if each component fi
is of degree m+ ri.

An undirected graph denoted by G = (V ,E) is composed
of a vertex set V (G) = {vi; i = 1,2, . . . ,n} and an edge set E ,
which is a particular subset of V (G)×V (G) which describes
the connectedness between vertices [12]. A subgraph of a graph
G is a graph whose vertex and edge sets are subsets of those of
G . An orientation of an undirected graph G is the assignment of
directions to its edges.

A path in a directed graph from vi1 to vik is a sequence
vi1 ,vi2 , . . . ,vik ∈ V (G) such that (vi j ,vi j+1)∈ E(G). G = (V ,E)
has a spanning tree if there exists a vertex which can be con-
nected to all other vertices through paths. This vertex is called a
root. A circle is a path that starts and ends at the same vertex.

Following the definitions in Ref. [14], suppose an undirected
graph G contains n vertices and m edges, the n×m incidence
matrix E(G) for an orientation of G is given by

[E(G)]i,k =

1 if vi is the initial node of edge ek,
−1 if vi is the terminal node of edge ek,
0 otherwise.

The positive semi-definite n× n matrix L(G) , E(G)ET (G) is
called the Laplacian of G , which is a rank-deficient positive
semi-definite matrix. The edge Laplacian of G is defined as
Le(G) := E(G)T E(G), which is a real symmetric m×m matrix.

2 Stability Analysis of a Class of Nonlinear System
Consider the following nonlinear dynamical system:

ẋ(t) = AΦ(x(t)), (3)

where A ∈ Rn×n, x(t) = [x1(t),x2(t), . . . ,xn(t)]T ∈ Rn, Φ :
Rn → Rn be a function on Rn defined by Φ(x) =
[ϕ1(x1),ϕ2(x2), . . . ,ϕn(xn)]

T .
As will be shown, system (3) inherits the stability property

of the linear system ẋ = Ax when Φ satisfies the following as-
sumptions:

Assumption 1. For all i = 1, . . . ,n, ϕi : R → R is continuous
on R\{0}, Hölder continuous at the origin, and locally Lipschitz
continuous on (0,∞), ϕi(0) = 0, and sϕi(s) > 0 for all s ̸= 0.
Furthermore, there exists ε > 0 and sε > 0 such that |ϕi(s)| ≥ ε
for all |s|> sε.

Note that no assumption was made on the monotonicity or
boundedness of ϕi.

Theorem 1. Suppose A is Hurwitz, then system (3) with Φ sat-
isfying Assumption 1 is globally asymptotically stable.

Proof. Consider the Lyapunov function candidate

V (x) =
n

∑
i=1

(∫ xi

0
ϕi(s)ds

)
. (4)

By the definition of Φ, it is easily verified that V (x(t))≥ 0 for any
x(t) ∈ Rn, V (0) = 0 and V (x(t)) > 0 for any x(t) ̸= 0, x(t) ∈ P .
Also, because sgn(s)ϕi(s)≥ ε > 0 for |s| ∈ [sε,∞), 1 ≤ i ≤ n , we
have

∫ xi
0 ϕi(s)ds → ∞ as xi → ∞, hence V is radially unbounded.

Taking the time derivative of V , we have

V̇ (x(t)) =
n
∑

i=1
(ϕi(xi(t))ẋi)

= ΦT (x(t))ẋ(t)
= ΦT (x(t))AΦ(x(t)).



Because A is Hurwitz and Φ(x) ̸= 0 for x ̸= 0, V̇ (x(t)) is strictly
negative for any x ∈ R, x ̸= 0. Hence system (3) is globally
asymptotically stable.

According to Theorem 1, system (3) preserves the asymp-
totic stability of the linear system ẋ(t) = Ax(t) when A is Hur-
witz. As will be shown later in this paper, this conservation of
the stability of system (3) can help the design of nonlinear con-
trollers.

When A is symmetric, then a stronger result holds with the
following less restrictive assumption on Φ:

Assumption 2. ϕi : Rn → R is continuous on Rn\{0}, Hölder
continuous at the origin, and locally Lipschitz continuous on
(0,∞). ϕi(0) = 0, ϕi(z) ̸= 0 and ziϕi(z) > 0 for all z =
[z1, . . . ,zn]

T ∈ Rn with zi ̸= 0. Besides, there exists ε > 0 and
sε > 0 such that |ϕi(z)| ≥ ε for any z with ∥z∥ ≥ sε, i = 1,2, . . . ,n.

With the Lyapunov function V (x)=−xT A−1x, the following
theorem can be proved.

Theorem 2. Suppose A is Hurwitz and symmetric, and Φ sat-
isfies Assumption 2, then system ẋ = AΦ(x) is globally asymptot-
ically stable.

As an illustrative example for Theorem 1, consider the fol-
lowing two dimensional dynamical system with a constant drift
term:

ẋ1 =−ex1 −3e3x2 +4,
ẋ2 = ex1 − e3x2 .

The above dynamical system can be rewritten in the form of
(3) with

A =

[
−1 −3
1 −1

]
,

Φ(x) = [ϕ1(x1) ϕ2(x2)]
T , where ϕ1(x1) = ex1 − 1 and ϕ2(x2) =

e3x2 − 1. It can be verified that Φ satisfies assumption 1, hence
this system is globally asymptotically stable following Theo-
rem 1.

Consider another example of a two dimensional homoge-
neous system

ẋ1 =−3x3
1 +2x2

1x2 −3x2
2x1 +2x3

2,
ẋ2 = x3

1 + x2
1x2 − x2

2x1 − x3
2.

The above system can be rewritten as ẋ = AΦ(x), where

A =

[
−3 1
1 −1

]

is Hurwitz and symmetric, and Φ(x) = [x3
1+x2

2x1,x2
1x2+x2

2]
T sat-

isfies Assumption 2, hence, this homogeneous system is globally
asymptotically stable according to Theorem 2.

Now consider a specific class of Φ. Let r =
(r1,r2, . . . ,rn), where ri > 0 for i = 1,2, . . . ,n, and [x]r =
[sgn(x1)|x1|r1 ,sgn(x2)|x2|r2 , . . . ,sgn(xn)|xn|rn ]T . If r1 = r2 =
· · ·= rn = r, then [x]r is denoted with [x]r.

Corollary 1. Suppose A is Hurwitz. Let P be a finite index set.
cp > 0, and rp = (rp1,rp2, . . . ,rpn), rpi > 0 for any any p ∈ P .
Let XP (x) = ∑p∈P cp [x]

rp . Then the following dynamic system

ẋ(t) = AXP (x(t)) (5)

is globally asymptotically stable.

Proof. Let Φ(x) = XP (x(t)). It is easily verified that Φ satisfies
assumption 1, hence system (1) is globally asymptotically stable
following theorem 1.

According to [18], if a vector field can be written as the sum
of several vector fields, each of them being homogeneous with
respect to a fixed dilation, then asymptotic stability of the lowest
degree vector field implies local asymptotic stability of the orig-
inal vector field. System (5) is a special case of such a sum of
homogeneous vector fields, and its stability is actually global by
Corollary 1.

The following theorem is from [19]:

Theorem 3. Let the Euler vector field ν be C1 and suppose
f = g1 + · · ·+gk, where, for each i = 1, . . . ,k, the vector field gi
is continuous, homogeneous of degree mi with respect to ν and
m1 < m2 < · · · < mk. If the origin is a finite-time stable equilib-
rium under g1, then the origin is a finite-time-stable equilibrium
under f .

From theorem 3, we readily have the following lemma re-
garding the finite-time stability of system (5):

Lemma 1. Suppose A is Hurwitz, for p = 1, . . . ,P, cp > 0, 0 <
α1 < · · ·< αP. if ẋ = A[x]α1 is finite-time stable, then system (5)
with XP (x) = ∑P

p=1 cp[x]αp is also finite-time stable.

Proof. For any α> 0, the vector field A[x]α is homogeneous with
the standard dilation ∆λ(x) = λx, whose Euler vector field is C1.
It can be easily verified that the homogeneity degree of cpA[x]αp

is αp − 1 for p = 1, . . . ,P. Hence, the lemma holds following
theorem 3.

Remark 1. observing that when A is Hurwitz and symmetric,
the function W (x) = −xT A−1x is a common Lyapunov function
for any systems in the form of (3) with Φ satisfying either As-
sumption 1 or assumption2, and arbitrary switching between dif-
ferent systems will not destroy the stability of the overall system.
Hence switching control can be designed for taking advantage of
the best local convergence speed of different sub-systems.



3 Finite-Time Stabilizing State Feedback Control
Based on Edge Agreement
According to Theorem 2 in [4], a homogeneous system is

finite-time stable at the origin if and only if the origin is an
asymptotically stable point, and the system has a negative ho-
mogeneity degree. In this section we use this theorem to de-
sign decentralized rendezvous and formation control algorithms
based on edge agreement such that the desired control task is
achieved within finite time. We also present a method for ren-
dezvous and formation control with bounded control input. Al-
though these protocols are designed for non-weighted directed
graph, they can be easily extended to consider weights on edges
in the graph without any fundamental change.

Consider a connected network system comprising of n
agents xi(t) ∈ R, i = 1, . . . ,n. It is assumed that the graph G
associated with this network system is time-invariant, and con-
tains a spanning tree. We also assume that for any i, j ∈ V , i ̸= j,
agent i is able to observe the relative distance xi − x j from agent
j if and only if incidence matrix entry Ei j = 1.

The dynamics of the agents is given by

ẋ(t) = u(e(t)) , (6)

e(t) = ET x(t), (7)

where x(t) = [x1(t),x2(t), . . . ,xn(t)]T , e = [e1,e2, . . . ,em]
T , u :

Rm → Rn is an output feedback control with each of its com-
ponent ui being a function of those ek with E(i,k) = 1, for all
i = 1, . . . ,n, such that the control law is ensured to be decentral-
ized. Note that for any k = 1, . . . ,m, suppose [Er(Gr)]i,k = 1 and
[Er(Gr)] j,k = −1, i.e., the kth edge starts from the ith agent and
ends at the jth, then ek(t) = [ET

r x(t)]i = xi(t)− x j(t), which is
exactly the measurable relative displacement.

With a linear output feedback control law u(e(t)) =−Ee(t),
system (6) becomes the well-known node agreement dynamics

ẋ(t) =−EET x(t) =−L(G)x(t). (8)

With arbitrary initial condition x(0), x(t) in (8) converges to γ1n
exponentially for some γ ∈ R, and it takes infinitely long time
such that x(t) ∈ span{1n}.

Next, we propose a decentralized output feedback control
law such that the agreement between the states can be achieved
within finite time, i.e., there exists Tf > 0 such that x(t) → γ1n
for some γ ∈ R as t → Tf and x(t) ∈ span{1n}, t ≥ Tf . Instead
of designing a finite-time stabilizing feedback controller for the
node dynamics (6) directly, we will work on the edge dynamics,
which is described by the following expression

ė(t) =−ET ẋ(t) =−ET u(e(t)), (9)

where u becomes a state feedback law. By definition of e(t),
it is clear that when G is connected, ∥e(t)∥ → 0 if and only

if ∥x(t)∥ → γ1n for some γ ∈ R, and ∥e(t)∥ = 0 if and only if
∥x(t)∥ ∈ span{1n}. Hence, we can design a control for the edge
dynamics such that e(t) converges to the origin in finite time.
When G contains cycles, the components of e(t) are linearly
dependent. In order to remove the coupling between the edge
states, rewrite the incidence matrix E (possibally after a relabel-
ing of the edges) as [14]:

E = [Et Ec] = EtR, (10)

where Et corresponds to a particular spanning tree in G , Ec de-
scribes the remaining edges associated with the cycles in G ,
R = [I T] and T = (ET

t Et)
−1ET

t Ec. Correspondingly, the edge
states can also be partitioned as

e(t) = [eT
t (t),e

T
c (t)]

T = RT et(t),

where et , ec are the column vectors of edges associated with Et
and Ec, respectively.

Consider the feedback control law u(e(t)) = −EΦ(e(t)),
where Φ satisfies Assumption 1. It can be easily verified that
such a control law is decentralized, and by the assumption on Φ,
we may write Φ(e(t)) = [Φt(et(t))T ,Φc(ec(t))T ]T . Observing
that et(t) = ET

t x(t), we have

ėt(t) = ET
t ẋ(t)

= ET
t u(e(t))

=−ET
t EΦ(e(t))

=−ET
t [Et Ec]

[
Φt (et(t))

T Φc (ec(t))
T
]T

=−ET
t EtΦ(et(t))−ET

t EcΦ(ec(t))
=−Le (Gt)Φt (et(t))−ET

t EcΦc
(
TT et(t)

)
,

(11)

where Gt is a subgraph of G which corresponds to the spanning
tree with edges et . Consider first the special case such that G =
Gt , i.e., G is by itself a spanning tree. In this case, the second
term in the (11) vanishes. The following theorem shows that
finite-time rendezvous can be achieved using a state-feedback
controller which is designed based on the spanning tree Gt

Theorem 4. Suppose G contains a spanning tree Gt , and let Et
be the incidence matrix associated with Gt . Let 0 < α < 1. With
the following feedback control law for (6)

u(x(t)) =−Et [et(t)]α =−Et [ET
t x(t)]α, (12)

there exists Tf > 0 such that x(t)→ span1 as t → Tf , and x(t) ∈
span1 for t ≥ Tf .

Proof. Let Le(Gt) = ET
t Et be the edge Laplacian for Gt . Then

Le (Gt) is strictly positive definite. Consider the reduced edge
dynamics with the control in (12)

ėt(t) =−Le (Gt) [et ]
α (13)



Because −Le (Gt) is Hurwitz, system (13) is globally asymp-
totically stable following Theorem 1. Note that (13) is homo-
geneous with respect to the standard dilation ∆λ(e) = λe. Let
g(et) =−Le (Gt) [et ]

α. Apply ∆λ to g, we have

g(∆λ(et)) =−Le (Gt) [λet ]
α

=−λαLe (Gt) [et ]
α

= λ1+α−1g(et).

Hence, system (13) has a homogeneity degree of α−1. By Theo-
rem 2 in [4], there exists a real number Tf > 0 such that et(t)→ 0
as t → Tf , and et(t) = 0 for t ≥ Tf . Because et(t) = 0 if and only
if x(t) ∈ span1, the proof is complete.

As an extension to Theorem 12, consider the case when the
undirected graph G of the network topology is connected, then
G ⊃ Gr, but G ̸= Gr. The dimension of the incidence matrix
E(Gr) is n× (n−1), and the edges of the spanning tree is deter-
mined by er(t) = ET (Gr)x(t), which is a n−1 dimensional vec-
tor measuring the relative displacements between certain agents
in the network. Because the spanning tree of a connected graph
is not necessarily unique, so is the selection of the reduced edges.
The following convergence analysis holds with any choice of er.

Consider the rendezvous problem in the form of (6) with
nonlinear feedback control u(x(t)) =−EΦ(e(t))), where e(t) =
ET (G)x(t). Assuming that the topology of the network is invari-
ant, E(G) does not change with respect to time, thus we have
ė(t) = ET (G)ẋ(t). The dynamics of the edges e(t) is described
by

ė(t) =−ET (G)E(G)Φ(e(t)) =−Le(G)Φ(e(t)) . (14)

Because G itself is not a spanning tree, Le(G) is only pos-
itive semi-definite, hence theorem 1 can not be applied for the
convergence analysis of (14). Besides, the components of e(t)
are not linearly independent, which is inconvenient for studying
the convergence of e(t) to the origin.

When G contains, but is not, a spanning tree, the stability
of the reduced edge dynamical system is given by the following
theorem

Theorem 5. Let G be the undirected graph of a network sys-
tem which is connected, and Φ satisfies assumption 1. Then the
rendezvous problem in the form of (6) is solved with feedback
control u(x(t)) =−EΦ(e(t)).

Proof. Because G is connected, it contains a spanning tree Gr.
Let

δ(x(t)) = x(t)− 1
N

1T x(t)1 (15)

= (I− 1
N

11T )x(t), (16)

which is the component of the x(t) in the subspace which is or-
thogonal to span{1}(which is also referred to as the disagreement
subspace). Noting that the rendezvous problem is achieved if and
only if δ(x(t)) vanishes. Let

ζ(er(t)) = δ(x(t)).

ζ is indeed a function of e(t). To see this, notice that the ith

component of ζ:

ζi = [(I− 1
N

11T )x(t)]i =
1
N

n

∑
j=1; j ̸=i

(xi(t)− x j(t)).

Because G contains a spanning tree Gr, any agent is connected
to the route of Gr by certain path consisting of edges in Gr, then
xi(t)− x j(t) can be written as a linear combination of the edges
in Gr which compose the two pathes connecting the agents to the
root, therefore, there exists a matrix Q ∈ Rn×(n−1) such that

ζ(er(t)) = δ(x(t)) = Qer(t).

Consider the following Lyapunov function candidate for the re-
duced edge dynamics (11)

V (er(t)) =
1
2

ζT (er(t))ζ(er(t)) (17)

Clearly V (er(t)) ≥ 0, and V (er(t)) = 0 ⇔ ζ(er(t)) = 0 ⇔
δ(x(t)) = 0⇔ x(t)∈ span{1}⇔ er(t) = 0, where the last equiva-
lence relation holds because G contains a spanning tree, and this
implies that N {V}= 0. Since V (e(t)) = 1/2∥Qe(t)∥2, we have
that N {Q} = N {V} = 0, which means that QT Q is a positive
definite matrix, and V is radially unbounded, hence (17) is in-
deed a Lyapunov function candidate. Taking the time derivative
of V , we have

V̇ (er(t)) = δT (x(t))δ̇(x(t))

= x(t)T
(

I− 1
N

11T
)2

ẋ(t)

= x(t)T
(

I− 1
N

11T
)2

u(x(t))

=−x(t)T
(

I− 1
N

11T
)2

EΦ(e(t))

Because 1 ∈ N (ET ), 1T E = (ET 1)T = 0, the above expression



can be further simplified to

V̇ (er(t)) =−x(t)T EΦ(e(t))

=−
(
ET x(t)

)T Φ(e(t))

=−eT (t)Φ(e(t))

≤−eT
r (t)Φ(er(t))

≤ 0

By definition of Φ, eT
r (t)Φ(er(t)) = 0 if and only if er(t) = 0,

hence the reduced edge dynamics (11) is asymptotically stable,
which implies that x(t)→ γ1 for some γ ∈ R as t →+∞.

Theorem 5 explores the solution of network control problem
in the context of nonlinear feedback. It shows that consensus
can be achieved so long as the nonlinear feedback control law
satisfies assumption 1. The commonly used linear feedback for
network consensus is a special case of theorem 5 with Φ(e(t)) =
e(t).

The following theorem provides a solution to the finite-time
rendezvous problem:

Theorem 6. Assuming that G is connected, and Φ(x) =
∑P

p=1 cp[x]αp , where cp > 0, P ≥ 1, 0 < α1 < · · · < αP, and
α1 < 1. Then with the feedback control u(x(t)) = −Φ(Ex(t)),
there exists a real number Tf > 0 such that x(t) → span{1} as
t → Tf and x(t) ∈ span{1} for t ≥ Tf .

Noticing that the right hand side of equation (11) is homo-
geneous when Φ(x) = [x]α for any α > 0, the proof is similar to
that of Theorem 4, hence is omitted.

3.1 A Finite-time Formation Control Algorithm
Lemma 2. Let N(i) = { j|(i, j) ∈ E(Gr)}. With the same as-
sumptions as in theorem 5, the following protocol solves the
finite-time formation problem.

ui =− ∑
j∈N(i)

[sgn((xi − x j)− (hi −h j))∣∣(xi − x j)− (hi −h j)
∣∣α] , (18)

for i = 1,2, . . . ,n, 0 < α < 1.

Proof. Let zi = xi −hi, z = [z1,z2, . . . ,zn]
T , then xi −x j = hi −h j

if and only if zi = z j, i.e., the formation is achieved if and only if
z → span{1n}. According to theorem 6, the system

żi(t) =− ∑
j∈N(i)

sgn(zi − z j)
∣∣zi − z j

∣∣α
for i = 1,2, . . . ,n. z → span{1n} in finite time, hence with the
control protocol (18), the desired formation is achieved in finite
time.

3.2 Network Control with Bounded Control Input
It is usually assumed that the control in (6) is unbounded

during rendezvous or formation, yet in practice the maximum
allowable control of each agent is limited, and needs to be ad-
dressed in the controller design. Consider the consensus equa-
tion with control bounds

ẋ(t) = ui(x(t)), (19)

where |ui(x(t))| < U , i = 1, . . . ,n. Without loss of general-
ity, assume that the graph of the network G contains a spanning
tree Gr. The rendezvous problem is solved using (19) with the
following bounded control

ui(x(t)) =− U
µ(N(i)) ∑

j∈N(i)
tanh(xi − x j), (20)

where µ is the counting measure. It is easily verified that
|ui(x(t))| < U for i = 1, . . . ,n. Theorem 5 guarantees that with
the above control, the agents achieve consensus asymptotically.
Similar control protocol can also be design for the formation con-
trol problem with bounded control input.

4 Numerical Examples
In this section, we first illustrate the previously proposed fi-

nite time (FT) and the bounded control input (BCI) rendezvous
algorithms proposed with a randomly generated undirected graph
containing 12 vertices and 16 edges. The finite time rendezvous
algorithm and the bounded control input rendezvous algorithm
start for an arbitrary initial condition. The state and control his-
tory are compared with the commonly used asymptotic conver-
gent rendezvous algorithm using linear output feedback in Fig. 1
and 2.
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Figure 1. Rendezvous state history.
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Figure 2. Rendezvous control history.

Note that with the finite time rendezvous protocols, the
agents may no longer converge to the centroid of the initial con-
figuration compared with the commonly used linear feedback
rendezvous control.

Next, we consider a formation control problem in the 2D
plane. The desired formation is composed of one hexagon and
three pentagons with equal side length, as shown in Fig.3. The
agents are required to be located at the vortices of the polygons
at the end of formation. The communication between the agents
is also shown in the same figure. The network corresponds to a
undirected graph containing 15 vortices and 24 edges. The tra-
jectory of the agents during the formation and the final deploy-
ment are shown in Fig. 4. The state histories of the x coordi-
nate position errors for different formation control protocols are
shown in Fig. 5. The state histories of the y coordinate errors are
similar, hence are omitted.
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Figure 3. Desired formation and network topology.
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Figure 4. Finite-time formation.
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Figure 5. Finite-time formation x coordinate error histories.

5 Conclusions
We have shown that the stability of linear system is pre-

served by a class of nonlinear transformation. This property can
be directly applied to the design of finite-time consensus algo-
rithms based on the spanning tree. For an arbitrary connected
undirected network, it is shown that finite-time consensus is still
guaranteed with the same class of nonlinear feedback of the rel-
ative displacements between the agents, which provides more
flexibility for the design of decentralized network consensus pro-
tocols.
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