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Abstract
Analytically-based circuit models for two types of spiral resonators, a single layer and a double
layer spiral, are given. The models are suitable for various spiral and wire crosssectional
shapes. The double layer spiral is composed of two identical spirals of opposite winding in
which the inner or outer leads may or may not be connected, such as through a via. For both
types, the model can account for the effect of a dielectric slab. The advantage of these models
to previous circuit models is shown through their comparison to experimental measurements
and numerical simulations.
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Abstract — Analytically-based circuit models for two types of 

spiral resonators, a single layer and a double layer spiral, are 
given. The models are suitable for various spiral and wire cross-
sectional shapes. The double layer spiral is composed of two 
identical spirals of opposite winding in which the inner or outer 
leads may or may not be connected, such as through a via. For 
both types, the model can account for the effect of a dielectric 
slab. The advantage of these models to previous circuit models is 
shown through their comparison to experimental measurements 
and numerical simulations.  

Index Terms — Circuit analysis, circuit topology, EM models, 
resonators, spirals 

I. INTRODUCTION 

Spiral resonators (SRs) have numerous applications. These 

include constituting metamaterials [1], filtering [2], and 

working as a telemetric force sensor [3]. Thus an accurate 

model of SRs is important. This paper focuses on an improved 

circuit model of a single layer spiral (SLS) and a double layer 

spiral (DLS). The two identical spirals forming a DLS are 

oppositely wound and may be connected by a conductor, such 

as a via. 

Previous circuit models of an SLS (such as for an 

Archimedes’ or square spiral) use the same circuit topology, a 

tank circuit model [1] [2]. Although the expressions used for 

calculating the component values of the circuit may differ 

between the models, all the models share the same technique 

in analyzing the SR into a tank circuit model. The inductance 

of the tank circuit model is calculated by assuming the current 

throughout the spiral is uniform. The capacitance of the tank 

circuit is assumed to be the parallel equivalent of the 

capacitances corresponding to each pair of adjacent loops. The 

tank circuit model presumes that the SR has only a single 

resonant frequency. Thus it may not be used to get insight into 

the electromagnetic properties of the single layer spiral over a 

large frequency span. 

Previous circuit models of a DLS (such as formed by 

Archimedes’ or square spirals) vary greatly in their topology 

[3][4]. The models are generally focused on their application 

of the DLS as an inductor instead of an SR [3]. An exception 

is the SR used as a telemetric force sensor [4]. Like the SLS 

model, these models do not predict the multiple resonant 

frequencies of the SRs and cannot give insight into the actual 

current distribution throughout the spiral. 

In this paper analytically-based circuit models for a SLS and 

a DLS are given. These models can give more insight into the 

electromagnetic properties of SRs. In addition, the results of 

the circuit models are compared to experimental results and 

simulations using the commercial software Sonnet [5]. Sonnet 

is a 3D planar electromagnetic simulator, based on the Method 

of Moments [5]. 

II. CIRCUIT MODELS OF SPIRAL RESONATORS 

A. Development of Circuit Topology 

The circuit models of both types of SRs are developed by 

modeling each loop as an isolated entity, a unit, and then 

modeling its connections and electromagnetic coupling with 

the other loops. The unit is composed of the series 

combination of a resistor and an inductor that models the 

intrinsic resistance and self-inductance of the corresponding 

loop. These units are then electrically connected in the 

sequence in which the physical loops of the spiral(s) are 

connected.  

The next step in the development of the circuit model is the 

inclusion of the capacitive and inductive coupling between 

loops. The capacitance between nearby loops of the spiral(s) is 

modeled by adding capacitors connecting the respective loops. 

In order to better reflect the distributed nature of the 

capacitance, two capacitors, each half the total capacitance 

between the loops, are connected between the respective units. 

The capacitors connect the ends of the loops (one end from 

each loop) that are nearest. The inductive coupling between 

loops sharing significant magnetic flux is modeled as mutual 

inductance between the inductors of the corresponding units. 

This mutual inductance is not explicitly shown in the circuit 

models. 

Using this methodology the general circuit model of an SLS 

and DLS was made. Fig. 1 and Fig. 2 contain a picture of a 

physical SR and its corresponding circuit model for an SLS 

and a DLS respectively. The SLS model only models the 

capacitance between adjacent loops. The DLS model only 

models the capacitance between opposing loops. Both models 

model the mutual inductance between all loops. A conductive 

connection between the leads, such as a via, is modeled by 

shorting the leads in the circuit model.    

 

a) b) 



 

Fig. 1. A single layer spiral: a) physical structure and b) circuit 
model. 

 

 

 
Fig. 2. A double layer spiral: a) physical structure and b) circuit 
model. 

B. Analytical Calculation of Component Values 

The exact analytical expressions used for calculating the 

component values depend on the shape of the spiral(s) forming 

the SR. However, independent of the shape there are some 

general methods that can be used to find the component 

values. In addition, it is helpful to approximate the shape of 

the loop such that the existing, simple analytical models for 

calculating the component values can be used. For example, 

the loops of an Archimedes’ or square spiral may be well 

approximated by circles or squares respectively. 

The values of the resistance of a loop are analytically 

calculated. The conductive resistance can be modeled using a 

skin-effect model, where the current density is largest near the 

surface. For a metallic wire with rectangular cross section, 

with width w and thickness at least 3 times larger than skin 

depth, the conductive resistance is simplified as 
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where σc is the conductance of the metal, f is excitation 

frequency, µc is permeability of metal, and δ is skin depth. 

Resistance of wire with different cross section can be 

calculated similarly.  

The self-inductance of a loop may be found by using the 

relationship that the self-inductance is the magnetic flux 

through the loop divided by the uniform current magnitude 

assumed in the loop. For a circular loop with diameter D and 

rectangular cross section with width w, the inductance is 

approximated by the Equation (2) assuming w is much smaller 

than D.  
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Similarly for a square loop with side length D, the 

inductance is approximately by Equation (3). 
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The interactions between loops are modeled as inductive 

coupling and capacitive coupling, and also calculated 

analytically. 

The mutual inductance is the ratio of the magnetic flux 

through one of the loops due to the other loop divided by the 

uniform current magnitude assumed flowing in the other loop. 

Simple analytical models for concentric circular loops and for 

concentric square loops can be derived analytically.  The 

mutual inductance between two concentric loops of loop 

radius and conductor width r1 and w1, and r2 and w2, separated 

by a distance h is given in Equations (3) through (6). The 

expression depends on the complete elliptic integrals of the 

first and second kind, K[] and E[], respectively. 
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The analytical expression for the capacitance between 

adjacent loops is dependent on the location of the dielectric 

and the cross-sectional shape of the conductor. For two traces 

(rectangular cross section) on a dielectric (printed circuit 

board in many cases), or separated by a dielectric, good 

approximations exist based on the mathematical technique 

known as conformal mapping [6, 7]. Consider two parallel 

metallic traces with length l, trace width w, and spacing s on a 

dielectric substrate with the dielectric constant εr, and 

thickness of the slab h, the capacitance C is calculated by 

Equations (8) through (14). The elliptic integral K[] is defined 

in Equation (6). 
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Based on the above equations, the equivalent circuit 

component values can be calculated depending on the 

geometry, layout and material of the spiral. Once the circuit 

component values are obtained, they can be used to fit into the 

circuit topology developed in previous section for resonant 

frequency calculations. 

III. RESONANT FREQUENCY  

Initial validity tests of the proposed circuit models were 

done through comparing their prediction of the lowest resonant 

frequency of various SRs with experimental and simulated 

results. There are multiple ways of defining a resonant 

frequency. In the research for this paper a resonant frequency 

of an SR was found in a similar manner for the circuit model, 

simulation and through experimentation. Specifically, 

electromagnetic energy was coupled into the SR through 

magnetic induction by a loop antenna. In this paper the 

resonant frequency is defined as a local minimum in the S11 

magnitude at the input to the loop antenna [8]. In Fig. 3 a 

drawing of the system for exciting and measuring the SR is 

given, along with a typical measurement of the S11 magnitude 

in decibels versus frequency.  

 
 

 
 

Fig. 3. Resonant frequency measurement: a) system setup and b) 

result. 

 

In order to predict the resonant frequency using the circuit 

model approach, a circuit model of the loop antenna, along 

with its inductive coupling with the loops of the SR was added 

to the circuit model of the SR. The loop antenna, powered by 

an ideal voltage source, was modeled as the series combination 

of an inductor and a resistor. The inductive coupling between 

the loop antenna and the SR is modeled by a mutual 

inductance term for each loop of the SR. The goal of this 

circuit analysis is to find the input impedance seen by a 

voltage source. By assuming a voltage for the voltage source, 

the current in each path of the circuit model can be calculated. 

The input impedance seen by the voltage source is the ratio of 

the assumed voltage to the current coming out of the voltage 

source. With this complex value, which is a function of the 

frequency, the S11 value describing the input to the system (the 

loop antenna coupled to the spiral) may be easily calculated 

and plotted as a function of frequency. The resonant 

frequencies of the SRs were found experimentally by 

measuring the S11 magnitude using a vector network analyzer 

(VNA). Port 1 of the VNA was attached to the leads of the 

loop antenna. The resonant frequencies of the SRs were found 

through the simulation of the S11 magnitude of the system in 

Sonnet. Using the computer aided design (CAD) interface in 

Sonnet, the geometry and material properties of the system 

(SR and loop antenna) were inputted.  

IV. RESULTS  

Multiple SLSs and DLSs were manufactured on printed 

circuit boards (PCBs). All of them had the properties listed in 

Table I but they varied in the number of loop that composed 

them. In addition, DLSs were manufactured with and without a 

via connecting their respective inner leads. Fig. 4 show some 

manufactured samples for each type of spirals. 

 

 
Fig. 4. Pictures of manufactured samples of (a) single layer spiral, 

(b) double layer spiral without via, and (c) double layer spiral with 

a) 

b) 

S11 Magnitude 

(about -12dB at 

resonance) 

Frequency (150-300MHz) 



 

via (pointed to by the red arrows). Top and bottom pictures show the 

two sides of each spiral. 

 

 

The loop antenna has the same properties as the SRs except 

that it has a trace width of 1mm and its outermost dimensions 

are 35mm x 35mm. The loop antenna was placed 10mm above 

the SR. The resonant frequency of the SRs were predicted and 

experimentally found. The results of the presented circuit 

models, experimental results, and simulations in Sonnet are 

shown graphically in Fig. 5a and 5b for the SLS and DLS 

respectively.  

The circuit model for the SLS shows the general trend of the 

resonant frequency as a function of the number of loops. 

However, as the number of loops increases, its error increases. 

The model may be improved by including the capacitance 

between non-adjacent loops. The DLS model with and without 

a via is much more accurate than the SLS model.  

The DLS model agrees nicely with numerical and 

experimental results over a large range in the number of loops, 

for both types of spirals with or without via connections 

between two layers. The small difference between circuit 

model and rigorous numerical results is due to the 

approximations used for both the analytical calculations of the 

circuit component values and the circuit model itself. 

TABLE I 

GEOMETRIC AND MATERIAL PROPERTIES OF SRS 
Trace Material Copper 

Trace Width 0.5mm 

Trace Spacing 0.5mm 

Trace Thickness 35µm 

Outermost Dimensions 25mm x 25mm 

Board Dielectric Constant  3.48  

Board Dissipation Factor 0.004 

Board Thickness 0.5mm 

 

 

 
 
Fig. 5. Comparison of lowest resonant frequency prediction of the 

a) SLS and the b) DLS (with and without an inner via). 

V. CONCLUSION  

A novel circuit model of a single layer and a double layer 

spiral were presented. In addition, analytical expressions for 

calculating the circuit component values were described. 

These models can better reflect the standing wave current 

distribution in the spiral(s) than previous models.  In addition, 

the models can predict some of the higher resonant frequencies 

of the SRs. Lastly, they can be analyzed very quickly relative 

to numerical simulations of SRs. The initial tests described 

above show that these models have promise in the accurate 

modeling of SRs composed of a range of loops. 
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