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Abstract—We propose two algorithms for the solution of
the Optimal Power Flow (OPF) problem to global optimality.
The algorithms are based on the spatial branch and bound
framework with lower bounds on the optimal objective function
value calculated by solving either the Lagrangian dual or the
semidefinite programming (SDP) relaxation. We show that this
approach can solve to global optimality the general form of the
OPF problem including: generation power bounds, apparent
and real power line limits, voltage limits and thermal loss limits.
The approach makes no assumption on the topology or resistive
connectivity of the network. This work also removes some of
the restrictive assumptions of the SDP approaches [1], [2], [3],
[4], [5]. We present the performance of the algorithms on a
number of standard IEEE systems, which are known to have
a zero duality gap. We also make parameter perturbations to
the test cases that result in solutions that fail to satisfy the SDP
rank condition and have a non-zero duality gap. The proposed
branch and bound algorithms are able to solve these cases to
global optimality.

I. INTRODUCTION

Optimal Power Flow (OPF) problem for alternating current
(AC) circuits concerns the problem of determining bus volt-
ages and generator power levels to minimize a cost function.
The cost functions employed include: generator cost, resistive
losses or tertiary voltage control. The constraints for OPF
include: (i) the AC power flow constraints, (ii) bounds on
power generation, (iii) bounds on bus voltage magnitudes,
(iv) bounds on thermal losses, and (v) limits on power trans-
fer on lines. The OPF problem, first introduced by Carpentier
[6], is a nonconvex optimization problem with quadratic
constraints and quadratic objective function (QCQP). We
provide a short survey of the existing literature and highlight
some of the recent advances that have enabled the solution of
OPF to global optimality. The assumptions associated with
each of these methods are particularly emphasized.

A. Literature Survery

Initial attempts at solving the OPF considered simplifying
the power flow equations using the DC-approximation [7],
[8], [9]. This reduces the OPF to a convex Quadratic Program
(QP). However, the assumption of small angle differences
(DC-approximation) between the buses may not hold in
general and this approximation turns out to perform poorly
in the general case [10]. Nonlinear programming approaches
have also been used to solve the OPF problem. A survey

of the approaches for solving the OPF are provided in [11],
[12]. For a more recent survey refer to [13].

Recently there has been an effort at obtaining globally
optimal solutions to the nonconvex problems through second
order cone programming (SOCP) and SDP relaxations. Jabr
[14], [15] developed a SOCP relaxation for the load flow
problem (generation levels fixed). The formulation dealt with
variables in the polar form and was shown to be exact for tree
networks. For meshed networks a successive approximation
technique was proposed. Jabr subsequently extended the
formulation to also address the OPF problem in [16] for
tree networks. No results were provided for the case of
meshed networks. The SDP approach for OPF was first
considered by Bai and co-workers in [17], [18]. This idea
was further analyzed by Lavaei and Low in [1] where the
authors provided a sufficient condition (rank of solution ≤ 2)
for the SDP relaxation of the OPF to have zero duality gap.
The authors empirically observed that a number of IEEE
bus systems after perturbation of the resistances did satisfy
the sufficiency condition. In an effort to provide necessary
conditions, a number of subsequent papers [19], [4] have
analyzed the conditions under which the rank condition can
be guaranteed to be satisfied. The results have only been
able to guarantee this for tree networks under the satisfaction
of a technical condition which is difficult to guarantee. A
drawback of the SDP approach is that there is no recourse
to obtaining a feasible solution when the rank condition is
not satisfied. This shortcoming was highlighted in the work
of Lesieture et al. [20] who provided an example of a three
bus system that violated the rank condition. There also exists
an earlier work of Makarov et al. [21] that showed the non-
convexity of the power flow boundary.

Zhang and Tse [2] investigated conditions under which the
boundary of the feasible injection region coincides with the
convex hull of the feasible injection region. This provides
another sufficient condition for OPF problems with objective
functions that are strictly monotonic in the power injections.
The authors showed that tree networks with voltage magni-
tude, real power line loss constraints, real power line flow
constraints on every other line and bus power constraints at
every other bus, have the same set of Pareto optimal points as
its convex hull implying a zero duality gap. This result was
also obtained subsequently using another approach by Bose
et al. [4]. For non-tree networks, they obtain a weaker result



by characterizing the convex hull of the voltage constraint
injection region for lossless cycles, a lossless cycle with a
chord and certain combinations of these networks.

For meshed networks, Sojoudi and Lavaei [5] consider
a SOCP relaxation similar to that in [16]. They showed
that the addition of sufficient number of phase shifters to
edges in cycles can guarantee zero duality gap under certain
assumptions such as load over-satisfaction and bounds only
on power generation and voltage magnitudes.

Lavaei, Tse and Zhang [3] consider the relaxation of some
of the restrictive assumptions in the work of Zhang and Tse
[2] and Bose et al. [4]. The restrictions impose that the
bounds can be allowed on power injections of alternate buses
and real power line limits on alternate lines. They show that
for practical tree networks, the OPF can be reduced to a
convex problem when the voltage magnitudes at the buses are
fixed and thermal lines losses, active line limits and bus limits
are considered. The entire problem is cast in the space of
angle differences between the buses with the power injection
constraint taking the form of an ellipse while the rest of the
constraints translate to linear inequalities. We stress again
that all results are restricted to the case of tree networks.

All of the above cited work using SDPs utilized the bus
injection formulation for the OPF. Farivar and Low [22]
investigated the branch flow model for solving the OPF.
They formulated the problem as a SOCP by relaxing some
angle constraints. Their analysis requires that the objective
function is a combination of line losses, linear costs on power
generation and penalty on voltage magnitudes and also that
only bounds on generation powers and bounds on voltage
magnitudes are imposed. The formulation is shown to be
exact for tree networks but for meshed networks they obtain
a result similar to that of Sojoudi and Lavaei [5].

As mentioned earlier, the SDP approaches provide no
recourse to obtaining a feasible solution when the rank
condition is not satisfied. The work of Phan [23] takes the
algorithmic route to achieving global optimality. The author
proposes a spatial branch and bound approach with solutions
of the Lagrangian dual providing lower bounds on the optimal
objective function value. They consider the OPF problem
with generation limits, voltage magnitude bounds and active
line limits. Numerical experience showed that duality gap
was closed at the root node without need for any branching
on the IEEE test bus systems. These are the systems for
which the SDP approach [1] also showed no duality gap.

B. Our Contribution

In this work, we are interested in solving to global opti-
mality a given power network without making any restrictive
assumptions on the topology of the network or constraints.
We propose two Branch & Bound (B & B) algorithms, that
rely on the SDP or Lagrangian dual relaxation to provide
lower bounds on the globally optimal solution. The SDP
based B & B solves the SDP relaxation of [1] for lower
bounding. The Lagrangian dual based B & B algorithm
builds on the work of [23], but is in the space of voltages
and line power flows. This lifting into a higher dimensional

space is necessary to incorporate the apparent power line
flow constraints and to ensure that the Lagrangian dual can
be solved efficiently. We compare the performance of the
algorithm on several IEEE test cases. We then make small
modifications to the parameters or constraints of the IEEE test
cases for which the SDP formulation of [1] has a solution
with rank greater than 2. In some cases, even modifying the
real and reactive power demands is sufficient to cause this
violation. The proposed B & B algorithms are able to provide
an ε-tolerance certificate of global optimality for these cases
also.

The paper is organized as follows. Section II formulates
the OPF problem and also its Lagrangian dual and SDP
relaxations. Section II-C shows the equivalence of the La-
grangian dual and SDP relaxation for a general OPF problem.
Section III outlines our SDP and Lagrangian dual based B
& B algorithm. Section IV provides the results and some
directions for future work.

C. Notation

In the following, we use j to denote the imaginary root of
−1. For a complex variable z, Re(z) and Im(z) will denote
the real and imaginary parts of the complex variable z; |z|
will denote the magnitude of the complex variable and z∗

will denote the Hermitian conjugate. For a symmetric matrix
A its trace will be denoted as Tr(A) which is the sum of the
diagonal entries.

II. OPF PROBLEM

We start with a given graph G = (N , E) of the power
network, where the nodes i ∈ N , j ∈ N represent the
buses and the edges in E represent branches connecting an
ordered pair of buses (i, j). NG ⊆ N denotes the set of
buses connected to generators. Further we introduce L to
denote the set in which the edges in E are duplicated, i.e.
(i, j) ∈ E ⇒ (i, j), (j, i) ∈ L. For a bus i, k ∼ i denotes the
set of buses k which are connected to i. The line admittance
is given by yij = gij + jbij , (i, j) ∈ L, with yij = 0 for
i 6∼ j. The bus admittance matrix, which relates the current
injections to the bus voltages, is formed as

Ybus =

−yij , i 6= j

yii +
∑
k∼i

yik, i = j (1)

where yii denotes the admittance-to-ground at bus i. Let v =
(V1, V2, · · · , V|N |) denote the complex bus voltages, and i =
(I1, I2, · · · , I|N |) denote the bus injection currents. Then by
Ohm’s and Kirchoff’s laws applied on the entire network, i =
Ybusv. Let PG = (PG1 , · · · , PG|N |), QG = (QG1 , · · · , QG|N |)
denote the power generations at each bus, with (PGi , Q

G
i ) =

0,∀i 6∈ NG. The power flowing from bus i to j is calculated
as,

Sij = Vi|Vi − Vj |∗y∗ij

The thermal loss on line (i, j) ∈ E is given by Lij = |Vi −
Vj |2gij . Note that Lij = Re(Sij) + Re(Sji). We define the



voltages and branch power flows in the rectangular form,

Vi := ei + jfi ∀i ∈ N
Sij := Pij + jQij ∀(i, j) ∈ L

The classical OPF problem (OPF) can be stated as,

min
∑
i∈NG

f(PGi )

s.t. PGi − PDi = xTYix, i ∈ N [αi] (2a)

QGi −QDi = xT Ȳix, i ∈ N [βi] (2b)

Pij = xTYijx, (i, j) ∈ L [λij ] (2c)

Qij = xT Ȳijx, (i, j) ∈ L [γij ] (2d)

Pmin
i ≤ PGi ≤ Pmax

i , i ∈ NG (2e)

Qmin
i ≤ QGi ≤ Qmax

i , i ∈ NG (2f)

(V min
i )2 ≤ xTMix ≤ (V max

i )2, i ∈ N [νi, νi] (2g)
Pij ≤ Pmax

ij , (i, j) ∈ L (2h)

P 2
ij +Q2

ij ≤ (Smax
ij )2, (i, j) ∈ L (2i)

xTMijx ≤ Lmax
ij , (i, j) ∈ L [µij ] (2j)

where x := [eT fT ]T =
[
Re(v)T Im(v)T

]T
and the

matrices Yi, Ȳi, Yij , Ȳij ,Mi,Mij are as defined in Appendix
A. The objective function is to minimize the cost of gen-
eration, which is typically chosen to be convex quadratic,
f(PGi ) = c2i(P

G
i )2 + c1iP

G
i + c0i. Other objectives such as

minimizing line losses could also be considered. Equations
(2a), (2b) represent the real and reactive power balances
at each bus. Equations (2c), (2d) are the real and reactive
branch power flows, which are limited by constraints (2h),
(2i). Constraints (2e), (2f) are the power generation limits,
(2g) is the voltage magnitude limit and (2j) is a limit on line
losses. The dual multipliers corresponding to a subset of the
constraints are shown in brackets [·].

It is well known that the OPF problem is nonconvex and
we are interested in solving it to global optimality. We first
outline two relaxations of the OPF based on the Lagrangian
dual (LD) and semidefinite programming (SDP) and show
their equivalence in Section II-C.

A. Lagrangian Dual Relaxation of the OPF

For brevity, we will denote by z := (PG, QG, P,Q),
ξeq := (α, β, λ, γ), ξin := (ν, ν, µ) and ξ := (ξeq, ξin). We
dualize the model equations (2a)-(2d) with their correspond-
ing multipliers in ξeq and the the constraints (2g), (2j) with
their corresponding multipliers in ξin to obtain the following
Lagrangian function,

L(z,x, ξ) := L1(z, ξ) + xTA(ξ)x

where,

L1(z, ξ) :=
∑

i∈NG

(
c2i(P

G
i )2 + c1iP

G
i + c0i

)
+
∑

i∈NG

(
αiP

G
i + βiQ

G
i

)
+

∑
(i,j)∈L

(λijPij + γijQij)

+
∑
i∈N

(
νi(V

min
i )2 − νi(V max

i )2
)
−

∑
(i,j)∈L

µijL
max
ij

−
∑
i∈N

(
αiP

D
i + βiQ

D
i

)

and

A(ξ) :=
∑
i∈N

(
−αiYi − βiȲi + (νi − νi)Mi

)
+

∑
(i,j)∈L

(
−λijYij − γij Ȳij + µijMij

)
The Lagrangian dual function g(ξ) can be written as,

g(ξ) := inf
z,x

L(z,x, ξ) s.t. (2e), (2f), (2h), (2i) (3)

and the optimal value of the dual function is denoted by,

max
ξ

g(ξ) s.t. ξin ≥ 0, ξeq free. (4)

Constraints (2e), (2f), (2h) and (2i) are not dualized as they
are easy to handle. We defer details on the solution of the
Lagrangian dual to Section III-A.

B. SDP Relaxation of the OPF

We introduce the following convex formulation with a
lifting of the quadratic voltage terms xxT to a semidefinite
matrix while retaining the remaining variables. This is done
so as to only relax the variables that appear in a nonconvex
fashion in the constraints. Denoting by W the 2|N | × 2|N |
symmetric matrix and dropping the rank(W) = 1 condition,
we formulate the SDP relaxation as follows,

min
∑
i∈NG

(c2i(P
G
i )2 + c1iP

G
i + c0i)

s.t. (2e), (2f), (2h), (2i)

PGi − PDi = Tr(YiW), QGi −QDi = Tr(ȲiW)

Pij = Tr(YijW), Qij = Tr(ȲijW)

(V min
i )2 ≤ Tr(MiW) ≤ (V max

i )2

Tr(MijW) ≤ Lmax
ij

W � 0.

(5)

The dual of the SDP relaxation can then be written in a
manner analogous to the previous section,

LSDP(z,W, ξ) := L1(z, ξ) + Tr(A(ξ),W).

The Lagrangian dual function is given by

gSDP(ξ) :=
inf
z,W

LSDP(z,W, ξ)

s.t. (2e), (2f), (2h), (2i),W � 0.
(6)

and the optimal value of the dual function is denoted by,

max
ξ

gSDP(ξ) s.t. ξin ≥ 0, ξeq free. (7)

C. Equivalence

To establish the equivalence between the Lagrangian dual
(4) and SDP relaxation (5), first note that if OPF (2) is
feasible then so is its SDP relaxation (5). Hence, strong
duality holds for SDP (5) and its dual (7) under Slater’s
condition. Now, consider the Lagrangian dual function of the
OPF g(ξ), and of the SDP relaxation gSDP(ξ). Firstly, observe
that the optimization problem defining g(ξ) is separable in z
and x. Similarly, the optimization problem defining gSDP(ξ)
is also separable in z and W. Further, the objective functions
and constraints with respect to z are identical in (3) and (6). It



only remains to resolve the contribution in the dual functions
due to x in (3) and due to W in (6). For this consider the
conditions under which infx x

TA(ξ)x is finite-valued. This
occurs only when A(ξ) � 0. It is easily seen that the same
condition is required for the term infW�0 Tr(A(ξ),W) to
be finite valued. This establishes that the Lagrangian dual of
the OPF (4) is equivalent to the dual of the SDP relaxation
(7). The equivalence is far more general and can be shown
to hold for any QCQP [24].

The optimal value of the Lagrangian dual yields a lower
bound on the original problem due to weak duality for the
nonconvex OPF. The optimal value of the SDP relaxation
likewise yields a lower bound on the original problem, even
if the rank ≤ 2 condition fails. So we have,

LD = SDP = dual SDP ≤ OPF (2)

and the optimal Lagrangian multipliers corresponding to the
Lagrangian dual are nothing but the optimal dual vector
for the SDP. However, computationally they are not equiv-
alent. Finding the optimal Lagrangian multipliers might be
a challenge in practice as the Lagrangian dual of the OPF
is non-smooth, and the convergence behavior of nonsmooth
algorithms tend to be slower compared to their smooth
counterparts [25]. On the other hand, the SDP relaxation is
a smooth problem that can be solved in polynomial time by
interior point algorithms [26].

III. GLOBAL OPTIMIZATION BY BRANCH AND BOUND

The branch and bound method is a general purpose global
optimization technique for a wide class of nonconvex prob-
lems. It solves the problem P by constructing a convex
relaxation R, that is easy to solve and provides a lower
bound (L) on the optimal objective function value (Figure
1a). The upper bound (U ) can be arrived at by using local
minimization, which also yields a feasible solution. If U −L
is sufficiently small, the procedure terminates with the current
upper bounding solution. Otherwise, the feasible region is
recursively partitioned, and the procedure is repeated (Figure
1b) until the gap U − L is sufficiently small. Nodes are
fathomed if the lower bound L is greater than the current
best upper bound (Figure 1c). We refer the interested reader
to [27] for additional information.

Objective

Variable

P

R

U

L

(a) Lower and Upper
Bounding

Objective

Variable

P

R

R1

R2U

L

(b) Domain Subdivi-
sion

R

R1 R2

Subdivide

Fathom

(c) Search tree

Fig. 1: Branch and Bound Schematic

In this work, the upper bounding problem is done through
CONOPT [28], a local nonlinear programming (NLP) solver.
The lower bounding is done through either the SDP relax-
ation or the Lagrangian dual, both of which are equivalent

but could differ in computational performance. If there is
an optimality gap, the feasible region is partitioned into
two sub-regions, over which the procedure is repeated. The
partitioning is done as follows. At the root node 0 of the
branch and bound tree, define

B0 :=



PG

QG

e
f

 :

Pmin
i ≤ PGi ≤ Pmax

i , i ∈ NG

Qmin
i ≤ QGi ≤ Qmax

i , i ∈ NG

(V min
i )2 ≤ e2i + f2i ≤ (V max

i )2, i ∈ N



PG

i

QG

i

PG

i

QG

i

PG

i

QG

i

R R1 R2
R4

R2
R3

(a) Rectangular Bisections

R

ei

fi

(V max
i )2

R2

ei

fi

(V max
i )2

R1

(V min
i

)2+(V max
i

)2

2

(V min
i )2

(b) Radial bisections

Fig. 2: Domain subdivision in the B & B algorithm.

Subproblems R1 and R2 are created by either rectangular
bisection on PGi or QGi , or by radial bisection on the voltage
magnitudes (e2i + f2i ) as shown in Figure 2. The newly
generated bounds B̄,

B̄ :=



PG

QG

e
f

 :

P̄min
i ≤ PGi ≤ P̄max

i , i ∈ NG

Q̄min
i ≤ QGi ≤ Q̄max

i , i ∈ NG

(V̄ min
i )2 ≤ e2i + f2i ≤ (V̄ max

i )2, i ∈ N


replace the existing bounds in the upper bounding problem
OPF and in the Lagrangian dual & SDP relaxations.

A. Lagrangian dual based branch and bound

The minimization of the Lagrangian in (3) is tractable
because it can be decomposed into individual problems
for the generators, line flows and voltages as follows. The
decomposition for the generator and voltage subproblems
follows along the lines of [23]. The line flow subproblem
however represents an extension of the work in [23].
Generator subproblems: (LD1

i ) ∀i ∈ NG

min
PG

i ,Q
G
i

∑
i∈NG

[c2i(P
G
i )2 + c1iP

G
i + c0i + αiP

G
i + βiQ

G
i ]

s.t. Pmin
i ≤ PGi ≤ Pmax

i , ∀i ∈ NG

Qmin
i ≤ QGi ≤ Qmax

i , ∀i ∈ NG

(8)
It is easy to see (8) is convex and can be solved analytically
for each generation variable.
Line flow subproblems: (LD2

ij) ∀(i, j) ∈ L

min
Pij ,Qij

λijPij + γijQij

s.t. Pij ≤ Pmax
ij , (Pij)

2 + (Qij)
2 ≤ (Smax

ij )2
(9)



The |L| line flow subproblems are also convex, decoupled
and can be solved analytically for each line flow variable.
Voltage subproblem: (LD3)

min
x

xTA(ξ)x

s.t. ∆L ≤ xTx ≤ ∆U

(10)

where ∆L =
∑
i∈N

(V min
i )2,∆U =

∑
i∈N

(V max
i )2. Two redun-

dant spherical inequalities are added in order to tighten the
bounds obtained from solving the Lagrangian dual as in [23].
The voltage subproblem is nonconvex and we need to find
its global minimum. This is a special case of the trust-region
problem: minimization of a purely quadratic objective subject
to two ball constraints, the global solution of which is simply
given by the eigenvector corresponding to the mimimum
eigenvalue of the quadratic term.

xopt =


xmin ∆U

||xmin||
, if emin < 0

xmin ∆L

||xmin||
, if emin ≥ 0

(11)

where xmin is the eigenvector corresponding to the smallest
eigenvalue emin of A(ξ). For large and sparse matrices,
the smallest eigenvalue is fairly easy to compute through
a Krylov subspace method involving matrix multiplications
only. The Matlab function eigs implements this.

The Lagrangian dual provides a lower bound on the
optimal value of OPF (2), and in order to get the best lower
bound we have to solve (4). This is a non-smooth concave
maximization problem, which can be solved using a projected
subgradient method. It involves a simple iterative update of
the form,

ξ(k+1)
eq = ξ(k)eq + α(k)g(k)

eq , ξ
(k+1)
in =

[
ξ
(k)
in + α(k)g

(k)
in

]+
There are several ways to choose the stepsize α(k) and search
direction g(k). The method in [29] suggests choosing the step
size as α(k) = (q(k) − q̂∗)/||g(k)||22, where q̂∗ is an estimate
on the best dual value which can be set as z∗live (refer
algorithm). The search direction g(k) is computed through
a conic combination of the subgradient and the direction at
the previous iteration,

g(k) = d(k) + β(k)g(k−1)

with β(k) = max(0,−1.5(g(k−1))Td(k)/||g(k−1)||22). One
element of the subgradient d(k) is simply the residual of the
constraint corresponding to its multiplier in the Lagrangian,
d(k) = (∂L∂ξ )(k).

The subgradient method does not guarantee ascent, and
it can take a large number of iterations before the optimal
multipliers ξ are found. Hence it is usually terminated after
a fixed number of iterations (maxiter). We now state the
branch and bound algorithm using the Lagrangian dual.
ALGORITHM for LD-BB

1. Set BestUB = inf, BestLB = -inf, nodes = {0}.
2. If (nodes 6= ∅ and (BestUB− BestLB)/BestUB >

tol), choose a live node to explore from nodes.

Else return best upper bounding solution as global
optimum and STOP.

3. Solve OPF (2) using an NLP solver with bounds Blive
(a) If OPF is infeasible, fathom live. Go to Step 5.
(b) If OPF is feasible with objective z∗live, update

BestUB = min(BestUB,z∗live).
4. Solve LD (4) using a subgradient method with bounds
Blive.
(a) If at any iteration k ≤ maxiter of the subgra-

dient method, q(k) > BestUB or (BestUB −
q(k))/BestUB ≤ tol, fathom live. Go to Step
5.

(b) At termination of subgradient method, set q∗live =
max
k

q(k). Partition Blive into two regions and
update nodes = {nodes,child1,child2}.
LB(child1) = LB(child2) = q∗live. Remove
live from nodes.

5. Set BestLB = min(LB(nodes)). Go to Step 2.
In Step 3(a) we rely on the robustness of the NLP solver to
detect infeasibilities. This assumption was not too restrictive
for the problems we considered and helped to accelerate
convergence.

Speeding up the subgradient method: Though subgradient
methods are presumed to be slow in practice, we were able
to speed it up through two observations.
• We have a tight bound on the optimal value q̂∗ of the

Lagrangian dual from the solution of the NLP at each
node of the branch and bound tree. A stepsize selection
based on q̂∗ is known to considerably speed up the
method [25]. This also helped in fathoming nodes early
in Step 4(a) of the algorithm.

• The dual variables corresponding to the NLP optimal
solution provide a very good initial point as they are a
valid lower bound on the dual objective. A better initial
point is also available from the best dual solution of its
parent node in the branch and bound tree. This warm
start technique helps to improve the performance of the
algorithm at the expense of increased storage.

B. SDP based branch and bound

We now state the SDP based branch and bound algorithm.
The SDP relaxation at each node is solved using SeDuMi
through the YALMIP interface [30] in Matlab. Instead of
solving the dual of (5), we solve the dual of the SDP
relaxation as suggested by [1], i.e. in the space of only
voltages and with all constraints dualized.
ALGORITHM for SDP-BB

1. Set BestUB = inf, BestLB = -inf, nodes = {0}.
2. If (nodes 6= ∅ and (BestUB− BestLB)/BestUB >

tol), choose a live node to explore from nodes.
Else return best upper bounding solution as global
optimum and STOP.

3. Solve OPF (2) using an NLP solver with bounds Blive
(a) If OPF is infeasible, fathom live. Go to Step 5.
(b) If OPF is feasible with objective z∗live, update

BestUB = min(BestUB,z∗live).



4. Solve SDP (7) using SeDuMi with bounds Blive.
(a) If SDP is infeasible, fathom live. Go to Step 5.
(b) If SDP is feasible with objective q∗live

(i) If q∗live > BestUB or (BestUB −
q∗live)/BestUB ≤ tol, fathom live.
Go to Step 5.

(ii) Partition Blive into two regions and update
nodes = {nodes, child1, child2}.
LB(child1) = LB(child2) = q∗live.
BestLB = min(LB(nodes)). Remove
live from nodes.

5. Set BestLB = min(LB(nodes)). Go to Step 2.

C. Convergence to Global Optimum

We provide a proof of convergence for the algorithms.

Remark 1. Since the subdivision of the bounds B involves a
bisection of PG, the feasible region for PG shrinks at every
step. If the resulting OPF problem is feasible then, so is the
SDP relaxation in (5). Further, the upper and lower bounds
also converge in the limit as the objective function value is a
function of only PG. The bounding scheme is thus consistent
[27] (p. 6). From the equivalence of the SDP relaxation and
Lagrangian dual we have that the algorithm based on the
latter method is also consistent.

Remark 2. The bisections on QG and (e, f) help in raising
the lower bound and speeding up convergence.

Remark 3. The selection of the live node to be explored in
Step 2 is done by picking the one with the best lower bound.
This ensures the algorithm is bound improving [27] (p. 6).

Theorem 1. The B&B algorithms based on Lagrangian Dual
and SDP relaxation converge to the globally optimal solution.

Proof: The branch and bound algorithm we have pro-
posed is both consistent and bound improving. Hence, it is
also convergent [27] (p. 6).

IV. RESULTS

In this section we report the results from the branch and
bound algorithms applied on multiple test cases. The algo-
rithms were implemented in Matlab 7.11 and executed on a
machine with Intel Core i7 3.4 GHz running under Windows
7 operating system. All computations were executed on a
single processor. We first solve the following test cases,
• 3bus example from [20]
• Contour 6bus example from PowerWorld [31]
• caseww6, case9 from the MATPOWER data set [32]
• New England 39-bus case
• IEEE14, IEEE30, IEEE57, IEEE118 test cases.

Table I shows the results from the two algorithms LD-BB
and SDP-BB on the test cases. In addition, we also make
a comparison with BARON [33], a powerful general pur-
pose global optimization solver available under GAMS [34].
BARON uses linear programming relaxations to solve the
lower bounding problem.

For both the algorithms we have proposed, the optimality
gap was closed at the root node itself, corroborating the
findings of [23]. The optimal solution for caseww6 and NE39
examples is slightly different from [23] due to the inclusion
of apparent line limit constraints. We would also like to
point out that the small perturbation to the resistance term
(10−5 p.u.) suggested by [1] is not required here as the SDP
solution is only used to provide a lower bound. The CPU
times for both the branch and bound algorithms are of the
order of seconds. The maximum time limit (600 CPU sec)
was reached by BARON (with default options) in most of
the test cases, indicating a weakness of the linear relaxations
used by the solver to compute the lower bound.

A. Perturbed cases

In all of the above test cases, the SDP and Lagrangian
dual relaxations were able to close the gap at the root node.
However, in the presence of line flow constraints [20] or
lower bounds on reactive power generations [2], the SDP
approach is not guaranteed to give a rank 2 solution and
consequently we expect a non-zero duality gap at the root
node. We modify the following operational parameters in
some of the test cases: apparent line power flow limits, real
and reactive power demands, and lower bounds on reactive
power generation, in order to simulate case studies with a
non-zero duality gap. The modifications are shown in Table
II. In some cases, we found that just a change in real and
reactive power demands was sufficient to cause a violation
of the rank 2 condition. None of the physical parameters of
the network were modified.

# Test bus Changes SDP Rank
1. 3bus Smax

3 = 50 4
2. IEEE9 Qmin = 10, PD = 1.1PD 6
3. IEEE14 Qmin = 0, QD = 0.1QD 6
4. IEEE30 PD = 0.5PD , QD = 0.1QD 10

5. IEEE57 PD = 1.06PD , QD = 1.06QD
4

Smax
ij = 100

TABLE II: Modified test cases

Though the SDP and Lagrangian dual relaxations give the
same theoretical bounds, it remains to be seen which one
is the more effective approach. The LD (4) is a concave
maximization problem whose optimal value is the same as
SDP (7), but we may not be able to reach that value within
a finite number of iterations due to computational difficulties
associated with the non-smooth nature of the Lagrangian
dual. We set a stopping criteria of maxiter = 500 for
the subgradient method. The convergence criterion for both
algorithms was set at relative gap of tol = 0.01 (Table III)
and tol = 0.001 (Table IV). This corresponds to converging
the quantity BestUB − BestLB to within 1% and 0.1%
respectively of BestUB. The root node gap and gap at
termination of the algorithms, the wall clock time and # nodes
opened in the B & B tree are also shown.

The SDP-BB algorithm was able to arrive at and certify the
globally optimal solution to a 1% tolerance at the root node
itself for all the cases. The LD-BB algorithm was able to do



SDP-BB LD-BB BARON
Case BestUB gap % Time (sec) Nodes gap % Time (sec) Nodes Time (sec)
3bus 5707.10 0 2.83 1 0 0.32 1 0.58
6bus 7381.82 0 2.15 1 0 0.33 1 lim
caseww6 3143.97 0 2.23 1 0 0.30 1 3.01
IEEE9 5296.69 0 2.27 1 0 0.32 1 lim
IEEE14 8081.53 0 2.42 1 0 0.33 1 lim
IEEE30 8906.14 0 3.38 1 0 0.39 1 lim
NE39 41862.10 < 0.1 4.73 1 < 0.1 6.20 1 lim
IEEE57 41737.79 < 0.1 7.63 1 < 0.1 0.85 1 lim
IEEE118 129660.68 < 0.1 28.52 1 < 0.1 3.75 1 lim

TABLE I: Branch and bound algorithm solved to a relative gap (tol) of 0.1 %.

SDP-BB LD-BB

# root closed Time Nodes root closed Time Nodes
gap% gap% (sec) gap% gap% (sec)

1. 0.39 < 1 2.01 1 1.42 1.07 lim 303
2. 0.36 < 1 2.16 1 0.97 < 1 1.58 1
3. 0.16 < 1 2.35 1 6.05 3.59 lim 75
4. 0.19 < 1 3.22 1 31.42 17.89 lim 17
5. 2.31 < 1 76.52 23 30.90 12.93 lim 5

TABLE III: Various branch and bound algorithms applied
on the modified test cases with timelim = 300 sec and a
relative gap of 1 % (tol = 0.01).

so for # 2 only. Even though the rank condition is violated,
the SDP relaxation continues to provide strong lower bounds
as is indicated by the gap at the root node. We also try solving
the problems to a tighter tolerance of 0.1% and the results
are shown in Table IV.

SDP-BB LD-BB

# root closed Time Nodes root closed Time Nodes
gap% gap% (sec) gap% gap% (sec)

1. 0.39 < 0.1 11.01 31 1.42 1.07 lim 289
2. 0.36 < 0.1 37.12 91 0.87 0.85 lim 153
3. 0.16 0.12 lim 715 6.05 3.59 lim 75
4. 0.19 < 0.1 149.04 137 31.42 17.89 lim 17
5. 2.31 0.75 lim 110 30.90 12.93 lim 5

TABLE IV: Various branch and bound algorithms applied
on the modified test cases with timelim = 300 sec and a
relative gap of 1 % (tol = 0.001).

For the tighter tolerance, the SDP-BB algorithm took
more nodes to close the gap to the given tolerance but
the computational times are still within practical limits.
There was however also no improvement in the best upper
bound (globally optimal solution) on tightening the tolerance,
indicating that a 1% tolerance would be sufficient in practice.
The LD-BB algorithm was unable to certify the optimal
solution to the tighter tolerance, and within the given time
limit for all of the cases tested.

To study the difference in performance, we plot BestLB
and BestUB for the 3 bus case (#1). The global solution
(BestUB) was found at the root node itself by the NLP
solver, and the SDP based B & B (solid line) had to explore
31 nodes in the search tree to certify the global optima to a
0.1 % tolerance. The LD based approach (dash-dotted line)
could not close the gap to 1 %, within the time limit.

The progress of the subgradient algorithm for the above
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Fig. 3: Performance of the two B & B algorithms on the 3
bus case.

case at the root node is plotted in Figure 4. The theoret-
ical best value of the Lagrangian dual at the root node is
given by the SDP solution at the root node (5789.91). The
global solution is found by the NLP solver at the root node
(5812.64). The optimal value of multipliers corresponding to
this solution (optimal dual SDP vector) could not be found
by the subgradient algorithm within 500 iterations. The best
value (5730.38) was found in the iteration 449. The zig-
zag nature of the objective function is characteristic of the
subgradient algorithm as it lacks an ascent property.
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V. CONCLUSION

In this work, we presented two branch and bound algo-
rithms to solve the Optimal Power Flow problem to global
optimality. The algorithms differ in their lower bounding
approach, which is done either by solving the Lagrangian
dual or the SDP relaxation of the OPF, both of which are
theoretically equivalent but differ in computational perfor-
mance. Both the algorithms were able to solve to global
optimality all of the standard test cases at the root node
itself indicating a zero duality gap. However when some of
the parameters from the standard test cases were modified, a
duality gap existed, and the SDP based B & B algorithm was
able to solve the cases tested to global optimality within a
specified tolerance. The Lagrangian dual based algorithm was
unable to close the gap due to computational difficulties in
solving the non-smooth dual relaxation through a subgradient
method. Alternate methods such as bundle methods could be
used to overcome this. The performance of the algorithm
on larger test cases also remains to be tested. We will also
investigate the use of strengthening cuts in order to improve
the performance of SDP-BB algorithm.

APPENDIX

Following Lavaei and Low [1] we introduce the matrices
that are introduced in the definition of the OPF problem
below. ζi denotes a vector of size |N | with a 1 at the i-th
component and zeros elsewhere.

Ybus,i := ζiζ
T
i Ybus

Ybus,ij := yijζiζ
T
i − yijζiζTj

Yi := 1
2

[
Re(Ybus,i + Y Tbus,i) Im(Y Tbus,i − Ybus,i)

Im(Ybus,i − Y Tbus,i) Re(Ybus,i + Y Tbus,i)

]
Ȳi := − 1

2

[
Im(Ybus,i + Y Tbus,i) Re(Ybus,i − Y Tbus,i)

Re(Y Tbus,i − Ybus,i) Im(Ybus,i + Y Tbus,i)

]
Yij := 1

2

[
Re(Ybus,ij + Y Tbus,ij) Im(Y Tbus,ij − Ybus,ij)

Im(Ybus,ij − Y Tbus,ij) Re(Ybus,ij + Y Tbus,ij)

]
Ȳij := − 1

2

[
Im(Ybus,ij + Y Tbus,ij) Re(Ybus,ij − Y Tbus,ij)

Re(Y Tbus,ij − Ybus,ij) Im(Ybus,ij + Y Tbus,ij)

]
Mi :=

[
ζiζ

T
i 0

0 ζiζ
T
i

]
Mij :=

[
(ζi − ζj)(ζi − ζj)T 0

0 (ζi − ζj)(ζi − ζj)T
]
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